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Abstract: The effective operation of model-based control strategies in modern energy systems, char-
acterized by significant complexity, is contingent upon highly accurate large-scale models. However,
achieving such precision becomes challenging in complex energy systems rife with uncertainties and
disturbances. Controlling different parts of the energy system poses a challenge to achieving optimal
power system efficiency, particularly when employing model-based control strategies, thereby adding
complexity to current systems. This paper proposes a novel model-independent control approach
aimed at augmenting transient stability and voltage regulation performance in multi machine energy
systems. The approach involves the introduction of an optimized model-free fractional-order-based
excitation system stabilizer for synchronous generators in a multi machine energy system. To over-
come the limitations associated with complex system model identification, which add degrees of
simplification at defined operating conditions and assume the system model remains fixed despite
high uncertainty and numerous disturbances, an optimal model-independent fractional-order-based
excitation control strategy is introduced. The efficacy of the proposed approach is validated through
comparative numerical analyses using the MATLAB/Simulink environment. These simulations were
conducted on a two-area, 12-bus multi-machine power system. Simulation results demonstrate that
the presented excitation system stabilizer outperforms conventional controllers in terms of transient
and small-signal stability. It also suppresses the low-frequency electromechanical oscillations within
the multimachine energy system.

Keywords: power system stabilizer (PSS); model-free control; small-signal stability; fractional-order
controller; optimization algorithms; power system; mathematical model

1. Introduction

The evolution of electrical power systems has transitioned from local, rudimentary
setups to interconnected networks of transmission lines. This new configuration has
heralded a new era of complexity. In the modern power system landscapes the challenges of
achieving transient and small-signal stability in multi-machine power systems have become
increasingly daunting and pose significant hurdles for engineers. This challenge becomes
more intense with the integration of renewable energy sources, distributed generation and
diverse, unpredictable loads [1,2].

The stability concerns stem from low-frequency electromechanical oscillations. They
occur within synchronous generators following different types of disturbances. With
frequencies ranging from 0.2 to 3 Hz, these oscillations result from imbalances between
mechanical and electrical torques. Commonly referred to as local and inter-area oscilla-
tions [3,4]. Such oscillations exert stress on mechanical shafts, diminishing overall opera-
tional efficiency and threatening system security and power transmission capabilities [5,6].
During the synchronous operation of generators and loads within a power system at a
pre-determined frequency, the difference in the synchronous speed increases the risk of
generating transient and small-signal instability. Therefore, swift control action plans in
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terms of exciter or turbine controller settings are necessary to maintain synchronous speed
despite these deviations.

On the other hand, existing controller configurations and networking conditions can
worsen the aforementioned issues, which can, in turn, endanger system stability [7,8]. Of
all the problems, high-speed excitation mechanisms are the main ones, as they can deprive
the power system of the necessary damping, which is critical for maintaining the stability of
the system during a momentary lack of synchronizing torque and for enhancing transient
stability. Knowledge about the complicated characteristics of transient and small-signal
instabilities in a modern power system is an essential factor in control strategies to maintain
the reliability and resilience of the system [9,10].

To address these challenges, Power System Stabilizers (PSSs) in combination with
the Automatic Voltage Regulator (AVR) have been integrated into multi-machine power
systems to enhance the transient and small-signal stability of the synchronous genera-
tors [11,12]. Different types of linear and nonlinear PSSs are proposed in the literature.
The literature presents various types of linear and nonlinear supplementary excitation
control methods.

In linear control categories, advanced techniques such as linear quadratic gaussian
(LQR) methods [13], feedback linearization control [14,15], linear matrix inequality con-
trollers [16,17] and fuzzy logic control strategies [18,19] have been suggested to enhance
power system performance. Furthermore, the stabilizers formulated based on linearized
power system models have disadvantages. Firstly, linearized models might not depict the
nonlinear dynamics of the power system across all operational scenarios effectively. This
potentially leads to suboptimal performance. It could also cause instability. Thus, linear
controllers might not address disturbances or uncertainties inherent in real-world power
systems [20,21]. In addition, linear approaches only ensure proper operation in the vicinity
of equivalent points. These points are around which the linearized model of the power
system is derived. To address the abovementioned challenges, researchers propose various
nonlinear control methodologies, such as adaptive control techniques [22], robust control
strategies [23] and nonlinear model predictive control approaches [24]. Sliding mode con-
trol (SMC) stands out as a prominent nonlinear and reliable technique for crafting excitation
system controllers [25]. In pursuit of enhancing system stability [26] proposes sliding mode
control equipping quadratic reduction implemented on single-machine infinite-bus power
systems. The second-order sliding mode control (SOSMC) is introduced in [27]. This adap-
tive technique mitigates low-frequency oscillations effectively and expands the boundaries
of conventional SMC.

A comparative analysis in [28] demonstrates the control performance efficiency of the
SOSMC over the traditional PSSs in mitigating modeling uncertainties and reduces low-
frequency oscillations. These advancements were validated through simulations conducted
on IEEE 10-bus and 39-bus systems. Furthermore, a nonlinear backstepping PSS rooted
in a fourth-order model of the synchronous machine is presented in [29]. This method
enhances the transient stability of the studied power system by suppressing oscillations.
The validation of this approach used a power system model featuring three machines.
Addressing inherent chattering issues in SMC synergetic control theory emerges as a
promising solution. Reference [30] introduces a nonlinear excitation system founded on
synergetic control theory, entirely synthesizing the PSS design from a streamlined nonlinear
power system model. Furthermore, ref. [31] enhances the performance and stability of
power systems by introducing a decentralized synergetic PSS specifically tailored for multi-
machine energy systems. A power system oscillation damping controller designed based
on model-predictive control and extended state observers is introduced for multi-machine
power systems in [24].

The nonlinear control strategies designed for enhancing power system stability and
voltage regulation can overcome the limitations of linear based controllers but their effective-
ness is still highly dependent on the accurate dynamic models of the power system [32,33].
These detailed models are essential to ensuring that the excitation system stabilizers op-
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erate effectively across diverse operating conditions. On the other hand, because of the
highly nonlinear and complex nature of modern power systems, coupled with various
external disturbances, unknowns and uncertainties, extracting a precise power system
model becomes critical and more complex [32].

Particularly in systems with high levels of unmodeled dynamics and uncertainties,
model-free controllers (MFCs) show promise as a remedy to the issues of model identifi-
cation [1]. MFC frameworks provide convincing methods for power system stabilization.
They do this without the requirement for detailed model identification. By continuously
updating input/output (I/O) data and implementing an observer, MFC systems predict
disturbances using the ultra-local model (ULM) [34]. The benefits of ultra-local models
in systems with time-varying features, such as power systems, are considerable. ULMs
simplify the control procedure by eliminating complicated system dynamics. They convert
dynamics into an updateable and controllable structure. Since the real-time updating pro-
cess enables the controller to adjust to changes and disturbances, ULM guarantees steady
performance throughout different operating situations. ULMs avoid the requirement for in-
depth parameter identification and system modeling [35,36]. Consequently, their adoption
decreases computational calculations resulting in rapid adoption and lower maintenance
costs. Intelligent model-independent controllers [37] and ultra-local controllers used in
various applications [38] have been developed to address the challenges posed by the
complex dynamics of modern power systems. For instance, in [39], a non-singular fast
terminal sliding mode controller based on robust model-free techniques was devised to
mitigate permanent magnet synchronous motor demagnetization.

Model-free controllers have found applications beyond different electrical systems,
such as robots, shipboard power systems (SPSs) and aircraft power distribution net-
works [40]. Another example is the application of the MFC scheme in microgrids, where
a model-independent controller utilizing sliding mode control theory was introduced
for a time delay standalone microgrid system [41]. The defined control strategy aimed
to optimize power management, balance generation and load requirements. The MFCs
exhibit reduced dependency on system dynamics while demonstrating adaptability to
changing system parameters. Given the intricate mechanics and unstable nature of modern
large-scale power systems deriving accurate mathematical models for such systems poses
significant challenges. The characteristics of the MFCs make these controllers suitable for
power system stabilization.

In line with the preceding discussion, this paper proposes a novel model-free fractional
calculus-based excitation system stabilizer grounded on the ultra-local control concept
and fractional-order calculus. The aim is to enhance transient performances and suppress
low-frequency electromechanical oscillations in multimachine power systems. To optimize
the performance of the suggested stabilizer, a fractional calculus-based particle swarm
optimization algorithm is employed within the stabilizer control structure. The proposed
practical stabilizer solves the challenges associated with obtaining precise mathematical
models for modern multi-machine power systems, particularly in the face of parametric
uncertainty and asymptotic stability concerns.

Fractional Calculus (FC) enlarges the domain of classical mathematical theories, espe-
cially fractional derivatives and integrals. Contrarily to traditional calculus, fraction orders,
on which fractional calculus (FC) is based, are parameter-dependent. Its adaptability has
many advantages. First, it provides more accurate descriptions of real-world phenomena
when processes exhibit abnormal or memory effects that cannot be sufficiently represented
by integer-order models. It is also established that FC reduces control accuracy in con-
trol systems, which leads to improved control performance and stability in engineering
applications. In addition, it offers new ways to think about and solutions for differen-
tial equations and can be particularly useful when traditional methods fail, especially in
complex systems [42].

In this paper, an FC-based PSO (FCPSO) algorithm is presented to adjust the parame-
ters of the model-free excitation system stabilizer. By enabling the controller to dynamically
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tune its coefficients, this integration improves the controller’s robustness and flexibility
to changing operating conditions. Finally, this paper incorporates a rigorous and compre-
hensive numerical analysis, demonstrating the effect of the proposed control framework
in a two-area multi-machine power system. The remainder of this work is structured as
follows: The modeling of a multi-machine power system with interconnected generators
is covered in Section 2. Section 3 provides an illustration of the design of the optimal
excitation system stabilizer that is offered. It is based on a combination of a fractional-order
calculus framework and an ultra-local idea. The performance of the controller provided
has been proven by the simulation results in Section 4. An outline of the conclusions and
possible directions for further research is provided in Section 5.

2. Dynamic Model of a Multi-Machine Power System

This section focuses on the modeling of the multi-machine energy system. In this
system structure, interconnected generators, lines and transformers serve distinct energy
demands of various loads. Figure 1 depicts a two-area, four-machine power system. This
system serves as a representative example of a multi-machine energy system [43]. Each
generator is treated as an individual subsystem and a decentralized, optimal model-free
excitation stabilizer is designed for it. By incorporating certain standard assumptions,
we can outline the dynamical model of this m-machine power system, consisting of m
interconnected subsystems, as follows [44]:

.
δj = ω0

(
ωj − 1

)
, (1)

.
ω j = − 1

2Hj
(Pej − Pmj)−

Dj

2Hj
(ωj − 1), (2)

.
E
′
qj = − 1

T′
d0j

(
E′

qj + Idj

(
xdj − x′dj

)
− E f dj

)
, (3)

where j = 1, 2, 3, . . . , m. The following grid-algebraic equations can be employed to
characterize the power system’s static features:

Idj =
m

∑
i=1

E′
qi
(
Gji sin

(
δj − δi

)
− Bji sin

(
δj − δi

))
, (4)

Iqj =
m

∑
i=1

E′
qi
(

Bji sin
(
δj − δi

)
+ Gji sin

(
δj − δi

))
, (5)

Vtj =

√√√√√
(

x′dj Iqj

)2

︸ ︷︷ ︸
Vdj

+
(

E′
qj − x′dj Idj

)2

︸ ︷︷ ︸
Vqj

, (6)

Pej = E′
qj Idj =

E′
qjVdj

x′dj
, (7)

Qej = E′
qj Idj =

E′
qjVqj − V2

tj

x′dj
, (8)
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Figure 1. Single-line diagram of a two-area, four-machine power system: a representative example of
a multi-machine power system.

Note that the comprehensive list of symbols used in the dynamic model of the multi
machine power system is described in Appendix A.

In order to advance a more convenient mathematical calculation, Equations (6) and (7)
are incorporated into Equations (2) and (3). Additionally, the variables δj, ωj and E′

qj are
replaced with x1j, x2j and x3j, respectively. As a result, the dynamics of the jth synchronous
generator can be expressed as follows:

.
x1j = ξ1jx2j + η1j.
x2j = ξ2jx3j + η2j.

x3j = ξ3jE f dj + η3j

, (9)

where

xj =

x1j
x2j
x3j

, ξ j =

ξ1j
ξ2j
ξ3j

 =


ω0

−ω0 Iqj
2Hj

1
T′

d0j

, ηj =

η1j
η2j
η3j

 =


−ω0

ω0
2Hj

Pmj −
Dj

2Hj
x2j

− 1
T′

d0j
(x3j + Idj

(
xdj − x′dj

)
 , (10)

3. Model-Free Excitation System Stabilizer Using the Fractional Calculus
Optimization Algorithm

Nowadays, accurately modeling the nonlinearities and dynamic behaviors of modern
power systems has become increasingly intricate especially with the growth in these
systems’ size and diversity. Therefore, model-based control strategies encounter substantial
challenges due to the inherent complexities and uncertainties of large-scale power systems.
Uncertainties such as the integration of renewable energy and variable load patterns
have a high impact on the model’s accuracy. Hence, the real-time implementation of
model-based control strategies requires continuous model updates, resulting in significant
computational resources and scalability concerns. In this section, a practical model-free
excitation system stabilizer (MFESS) is developed, utilizing a combination of intelligent
proportional integral-derivative (iPID) control, ultra-local control theory and a fractional-
order calculus framework. The primary objectives of this control scheme involve enhancing
transient and small-signal stability as well as suppressing low-frequency electromechanical
oscillations in multi-machine power systems. Note that the proposed model-independent
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control framework enhances the control adaptability that renders it a practical choice
for complex multi-machine energy systems. Furthermore, a fractional calculus based
PSO (FCPSO) optimization algorithm is designed. This optimization algorithm tunes the
suggested model-free stabilizer parameters by minimizing the objective function, thereby
reducing generator rotor angle deviations.

3.1. Design of an Ultra-Local Controller

An ultra-local model can substitute for the sophisticated mathematical model of
the presented multi-machine power system. The dynamics of the energy system can be
expressed using the ultra-local model in the model independent control strategy in the
following way [45]:

F
(

t, x,
.
x, . . . , x(n), u,

.
u, . . . ,u(ℓ)

)
= 0, (11)

where x represents the system’s output variable and u denotes the input variable, with
x and u ∈ R, the function F(t,x, u) is sufficiently smooth function of time, and input and
output variables. F(t,x, u) sufficiently smooth function of time, and input and output
variables. The application of the implicit function theorem to Equation (11) facilitates the
construction of a local model under the presumption of ℓ, n ≥ 0, n ≥ k, k ∈ Z+, and

∂F
∂x(k) ̸≡ 0, as follows:

x(k) = Ω
(

t, x,
.
x, . . . , x(k−1),x(k+1), . . . ,x(n), u,

.
u, . . . ,u(ℓ)

)
, (12)

This equation is formulated to segregate and accentuate the elements of uncertainty,
the unknown (or insufficiently unknown), and different disturbances in the system. This
is achieved by introducing a distinct and continually updated term denoted as g and a
non-physical constant represented by η ∈ R as follows:

u(k) = g+ ηu, (13)

The model works accurately for a limited amount of time, especially for a sample
period that is optimally selected to be as short as feasible to ensure efficient control. The
value of g can be derived from the input u and output x(k), expressed as g∗ = x(k) − ηu,
where g∗ represents the estimated value of the function g. It should be noted that utilizing
the control input u in its current presentation is discouraged to prevent the formation
of an algebraic loop [46]. Consequently, to rectify this the input u is incorporated into
Equation (13) after being subjected to a one-sample time delay, defined as ts:

g∗(t) = x(k)(t)− ηu(t − ts), (14)

To eradicate unknown power system dynamics and achieve an asymptotic reduction
in tracking error ε(k)(t) = x(k)(t)−x

(k)
re f (t), the construction of the control input can be

expanded as follows [47]:

u(t) =
1
η

(
x
(k)
re f (t)−g∗(t)− E(ε, t)

)
, (15)

where x
(k)
re f represents the reference tracking signal and E(ε, t) denotes the feedback con-

troller. If g∗(t) closely approximates g(t) (g∗(t)−g(t) ≃ 0), indicating the elimination
of unknown, and uncertain effects, system stability relies solely on the feedback con-
troller E(ε, t). Utilizing linear control theory, controller parameters can be selected to track
the reference signal x(k)

re f (t). By combining Equations (13) and (15), the error dynamics

ε(k)(t) + E(ε, t) = 0 is extracted that ensure asymptotic stability under the given conditions
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( lim
t→∞

ε(t) = 0) [48]. When employing a PID regulator as the feedback controller, it is referred

to as an i-PID regulator [49] with the control input u(t) for i-PID being determined as:

u(t) =
x
(k)
re f (t)−g∗(t)−

(
KD

.
ε(t) + KI

∫
ε(t)dt

)
+ KPε(t)

η
, (16)

To enhance control performance minimizing the impact of noise and accurately deter-
mining g∗(t) (as Equation (15)) is crucial. Assuming a sufficiently small sampling time k,
the following equation is devised to minimize noise effects and determine Fest, as outlined
in [50]:

g∗ =
∫ t

t−ts

6(ts − τ)

ts
3 (x(τ) + ητu(τ))dτ, (17)

An alternative equation for determining Fest is obtained by rearranging Equation
(14) as g∗(t) = x(k)(t)− ηu(t − ts). Calculating the k-th derivative of the system output,
x(k)(t), facilitates the computation of g∗(t). The system and the practitioner determine
which derivative order to use. Computational efficiency and control performance are
trade-offs, while a higher derivative order can improve control performance, it may also
provide computational difficulties. In order to handle this trade-off, the following term is
proposed in place of specifying the ideal derivative operator X(s) = s which is improper
and would not yield trustworthy results in physical systems:

X(s) =
fs

s + f
, (18)

where f > 0 denotes a positive factor. As f approaches infinity (f → ∞ ), X(s) merges with
the ideal derivative function. This technique enables the estimation of the kth derivative of
the system output x(k)(t), as follows:

x∗(k)(s) = X(k)(s)x(s), (19)

In the transient solution of a specific signal in the control system, a fundamental
element is represented by eγt. By choosing x(t) = eγt, the estimated first derivative of the
control system output is given by:

.
x
∗
(t) =

f

γ + f

(
fe−ft − γe−γt

)
, (20)

Utilizing Equation (15) and selecting the first derivative of the control output (
.
x(t) =

γeγt), the tracing error function can be computed using the following numerical derivative
expression [50]:

ε(t) =
1

.
x(t)

∣∣ .
x
∗
(t)− .

x(t)
∣∣, (21)

However, the presented error value indicated in Equation (21) inversely varies with
the factor f. Note that, it becomes zero when f tends to infinity (f → ∞ ). The study

also demonstrates effectiveness for higher derivative orders, as
{

lim
f→∞

ε(t,f) = 0, ∀t, |γ| ∈

(0, ∞)}. In addition to this procedure, Newton’s difference quotient is a fundamental
approach for taking derivatives. When the noise level is low or effectively eliminated with
a low pass filter, a numerical derivative equation can be applied as follows [50]:

.
x(t) =

1
ts
(x(t)−x(t − ts)), (22)

The suggested control strategy is built on Newton’s difference quotient technique
for derivative calculation with factors. In the first step, a low-pass filter has already been
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applied to the system output, reducing the signal’s noise, and making it acceptable for this
procedure. Further, to ensure precise computations, a sufficiently small sample duration, k,
has been selected. In addition, the system model’s order makes it sufficient to choose n = 1,
that is, the first derivative of the system output

.
x(t).

3.2. Fractional Calculus-Based Particle Swarm Optimization (FCPSO) Algorithm

Based on Equation (11) the control inputs of u(t) is affected by control coefficients
KD, KI , and KP. Therefore, optimizing the control coefficients of the proposed model-free
controller is crucial. Note that tuning the parameters of the presented control framework can
guarantee optimal performance and stability in the multi-machine power system. Properly
tuned parameters can also enhance responsiveness, minimize overshoot, and reduce settling
time, thereby improving the system’s ability to accurately track desired setpoints and reject
disturbances. In order to optimize the performance of the designed controller, a fractional
calculus-based particle swarm optimization (PSO) algorithm is employed.

PSO is a stochastic optimization method based on social simulation models inspired
by rules regulating coordinated behaviors in real populations such as fish groups, animal
herds, and flocks of birds. Its increasing popularity is due to several special features, such
as simple implementation, independence from gradient information, dependency only
on values of the objective function, adaptability to high-dimensional multi-optima and
nonlinear problems, and robustness to initial particle states. The efficiency of the PSO
algorithm is demonstrated through a diverse analysis in different fields in comparison with
the other optimization frameworks. Illustrated in Algorithm 1 is a typical PSO algorithm,
portraying its fundamental operations with a random initialization of the swarm within
the search space [45,51].

The provided pseudocode in Algorithm 1 is denoted by t with t + 1 that represent the
successive iteration. Position (z) of each particle evolves by counting a velocity term (v).
This velocity is determined by adding an increment to the previous velocity value, which is
computed based on two components representing cognitive and social knowledge. Each
particle’s cognitive knowledge is determined by comparing its current position, z, with
the best position it has discovered, ℓ. Meanwhile, the social knowledge of each particle
considers the disparity between its current position, z, and the best global position the
swarm has attained, ob [52].

Algorithm 1

set the population size and dimension
set the searching space
initialize swarm
repeat
for all particles do
calculate fitness function values
end
for all particles do
vt+1 = vt + µ1(ℓ−z) + µ2(ob −z)
zt+1 = zt + vt+1
end

t = t + 1
until stopping rule

By randomly generated terms µ1 and µ2 the cognitive and social factors are weighted.
PSO stands for a powerful optimization algorithm known for its efficiency, robustness
and simplicity. Thus, without careful consideration, velocities within the algorithm can
escalate, especially when particles are distant from local to global bests. Among the different
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strategies that have been explored in the literature to mitigate this problem, Eberhart et al.
introduced a clamping function to restrict velocity, defined by the expression [53]:

vij, t+1 =

{
vmax,j, where v́ij, t+1 ≥ vmax,j
v́ij, t+1, where v́ij, t+1 < vmax,j

, (23)

where v́ij, t+1 is equal to ℑvij, t + µ1(ℓ−z) + µ2(ob −z) for the parameter j of the particle
i at iteration t + 1. In addition, ℑ is the inertia weighting coefficient that shows the
convergence rate over each evolution, as follows:

v t+1 = ℑvt + µ1(ℓ−z) + µ2(ob −z), (24)

Fractional calculus has its roots in the theory of differential calculus and has gained
significant attention in the past two decades driven by advances in nonlinear and complex
systems. While some work has been done in the field of dynamic systems theory, models
and algorithms are still in the early stages of development. The foundational aspects of FC
theory are extensively discussed in the literature. FC extends the concept of derivative and
integral to non-integer order ℘ defined using the Grünwald-Letnikov definition as follows:

D℘[Z(t)] =
1

TFC
∑q

p=0
(−1)pZ(t −pTFC)Γ(℘+ 1)

Γ(℘−p+ 1)Γ(p+ 1)
, (25)

where q denotes the truncation order. Also, TFC stands for the sampling period in Equation
(25). This definition highlights the key difference between integer and fractional derivatives:
while integer derivatives are ‘local’ operators’ fractional derivatives inherently possess a
‘memory’ of past events. This is due to their requirement for an infinite series of terms.

The following Z-transform formulation provides a direct generalization of the clas-
sical integer-order scheme for fractional derivatives, which is well-suited for describing
phenomena such as irreversibility and chaos due to its memory property [54]:

Z{D℘[Z(t)]} =

(
1 −D−1

TFC

)℘

Z(D), (26)

where D is the variable of the Z-transform function. The fractional-order model property
makes FC tools suitable for modeling the propagation of perturbations and long-term
dynamic phenomena in evolving populations.

In this step, the fractional calculus-based particle swarm optimization (FCPSO) algo-
rithm is employed to adjust the parameters of the model-free control framework presented
in Part A. By combining the velocity update rule Equation (24) and the Grünwald-Letnikov
equation the position term (ℓ−z) can be extracted as follows:

ℓ−zt+1 = ℓ− ℘zt −
℘(1 − ℘)

2
zt−1 −

℘(1 − ℘)(2 − ℘)

6
zt−2 −

℘(1 − ℘)(2 − ℘)(3 − ℘)

24
zt−3, (27)

Note that Equation (27) is expanded based on the first four terms of the fractional
derivative series (q = 4). As depicted in Figure 2, the local feedback of the particle
position zt is modified by fractional feedback in the FCPSO structure. By using the
characteristics of the Gamma function (Γ(℘+ 1) = ℘Γ(℘) = ℘(℘− 1)Γ(℘− 1)Γ(℘+ 1) =
℘(℘− 1)(℘− 2)Γ(℘− 2)) and Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(4) = 6, Γ(5) = 24, the
final velocity update low for the FCPSO can be described as:

vt+1 = ℑvt + µ2(ob −zt) + µ1(ℓ− ℘zt − ℘(1−℘)
2 zt−1−

℘(1−℘)(2−℘)
6 zt−2 − ℘(1−℘)(2−℘)(3−℘)

24 zt−3),
(28)
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Note that the presented FCPSO algorithm has been employed to optimally tune the
design parameters of the suggested MFES (KD, KI and KP). To define an effective objective
function, the integral of time absolute error (ITAE) is considered a constrained optimization
framework as follows:

Minimize ITAE =
∫ tsim

0
t.|∆ω|.dt, (29)

Subjected to:
Kmin

D ≤ KD ≤ Kmax
D , (30)

Kmin
I ≤ KI ≤ Kmax

I , (31)

Kmin
P ≤ KP ≤ Kmax

P , (32)

The proposed control framework is depicted in Figure 3. As mentioned in Section 2,
the main goal of the presented control framework is to enhance transient stability and
suppress low-frequency electromechanical oscillations within the multimachine energy
system. Therefore, for the dynamics of the jth generation unit, presented in Equations
(1)–(10), the input control reference in Figure 3 is the reference value of the rotor speed of
the jth generator.
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4. Simulation Results

This part conducts a comprehensive numerical analysis to demonstrate the effective-
ness of the proposed optimal fractional-based model-free approach. Numerical analysis
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is conducted on the presented two-area four-machine power system. As depicted in
Figure 1, this system comprises two areas each housing two generators rated at 900 MW
and 20 kV [43]. These two areas are interconnected by two identical 230 kV transmission
lines with a total length of 440 km. Each generator is linked to a 230 kV transmission
line via transformers. These generation units transfer 400 MV from Area 1 to Area 2 [54].
The parameters of the synchronous machines utilized in the simulation are: x′dj = 0.3 pu,
xdj = 1.8 pu, xqj = 1.7 pu, x́qj = 0.55 pu, Rsj = 0.0025 pu, x1 = 0.2 pu, T′

d0j = 0.4 s [43]. To
validate the efficacy of the proposed model-free excitation system stabilizer (MFESS) inte-
grated with the fractional calculus-based particle swarm optimization (FCPSO) algorithm,
termed FCPSO-MFESS, simulation results of this framework are compared with those
obtained from conventional excitation systems comprising a conventional power system
stabilizer and automatic voltage regulator (CPSS-AVR). Additionally, comparisons are
made with the proposed MFESS framework devoid of parameter tuning schemes (MFESS)
and a particle swarm optimization-based MFESS (PSO-MFESS).

The standard block diagram of the conventional excitation system (CPSS-AVR), which
includes the washout filter, limiters, and two lead-lag compensation networks, is illustrated
in Figure 4. The parameters of the conventional excitation system (with AVR) for each
generator are: KAi = 300, TAi = 0.001 s, TBi = 2 s, TCi = 10 s. Moreover, the parameters of
the CPSS for each machine are summarized in Table 1 [55].

Fractal Fract. 2024, 8, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 3. Block diagram of MFESS with supplementary FCPSO parameter adaptation algorithm. 

4. Simulation Results 

This part conducts a comprehensive numerical analysis to demonstrate the effective-

ness of the proposed optimal fractional-based model-free approach. Numerical analysis 

is conducted on the presented two-area four-machine power system. As depicted in Fig-

ure 1, this system comprises two areas each housing two generators rated at 900 MW and 

20 kV [43]. These two areas are interconnected by two identical 230 kV transmission lines 

with a total length of 440 km. Each generator is linked to a 230 kV transmission line via 

transformers. These generation units transfer 400 MV from Area 1 to Area 2 [54]. The pa-

rameters of the synchronous machines utilized in the simulation are: ���
� = 0.3 pu, ��� =

1.8 pu, ��� = 1.7 pu, �́�� = 0.55 pu, ��� = 0.0025 pu, �� = 0.2 pu, ����
� = 0.4 s [43].To val-

idate the efficacy of the proposed model-free excitation system stabilizer (MFESS) inte-

grated with the fractional calculus-based particle swarm optimization (FCPSO) algorithm, 

termed FCPSO-MFESS, simulation results of this framework are compared with those ob-

tained from conventional excitation systems comprising a conventional power system sta-

bilizer and automatic voltage regulator (CPSS-AVR). Additionally, comparisons are made 

with the proposed MFESS framework devoid of parameter tuning schemes (MFESS) and 

a particle swarm optimization-based MFESS (PSO-MFESS). 

The standard block diagram of the conventional excitation system (CPSS-AVR), 

which includes the washout filter, limiters, and two lead-lag compensation networks, is 

illustrated in Figure 4. The parameters of the conventional excitation system (with AVR) 

for each generator are: ��� = 300, ��� = 0.001 �, ��� = 2 �, ��� = 10 �. Moreover, the pa-

rameters of the CPSS for each machine are summarized in Table 1 [55]. 

 

Figure 4. The standard block diagram of the conventional excitation system (CPSS-AVR). 

Table 1. Parameters of conventional excitation systems. 

�� �����,� ������,� ������,� ������,� ������,� 

G� 10.81 0.913 0.038 0.723 0.213 

G� 20.22 0.310 0.066 0.878 0.019 

G� 7.025 0.516 0.112 1.400 0.015 

G� 9.442 1.422 0.045 0.456 0.050 
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Table 1. Parameters of conventional excitation systems.

Gi KCPSS, i T1CPSS, i T2CPSS, i T3CPSS, i T4CPSS, i

G1 10.81 0.913 0.038 0.723 0.213

G2 20.22 0.310 0.066 0.878 0.019

G3 7.025 0.516 0.112 1.400 0.015

G4 9.442 1.422 0.045 0.456 0.050

Figure 5 illustrates the responses of the multi-machine power system to a three-phase
short-circuit fault (large disturbance) occurring at t = 0 s along one of the two 220 km lines
between Buses 9 and 10. The fault persists in the system for 0.15 s before being rectified.
The control parameters of the MFESS are:

KD = 0.3051, KI = 0.8010, KP = 1.2048. Furthermore, the optimal settings for the
PSO-MFESS and FCPSO-MFESS stabilizers are KD = 0.2062, KI = 0.5097, KP = 0.9028
and KD = 0.2643, KI = 0.4706, KP = 0.8502, respectively. Comparative analysis with other
configurations (CPSS-AVR, MFESS, and PSO-MFESS) reveals that the system integrated
with the FCPSO-MFESS exhibits superior performance in terms of transient and small-
signal stability, effectively damping low-frequency electromechanical oscillations.
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Figure 5. Multi machine power system responses to a three-phase short-circuit fault (large
disturbance).

Figure 5a depicts the relative rotor angle response between the first and third gen-
erators, demonstrating the effective operation of the proposed FCPSO-MFESS control
framework in managing overshoot, undershoot, and settling time compared to other cases.
For example, this comparison shows that the suggested control approach in this paper
can reduce the undershoot of the first wave relative rotor angle and its settling time to
−15.18 degrees and 6 s, respectively, from −36.161 degrees and 10 s in the CPSS-AVR
case, representing a 58.05% reduction in undershoot and a 40% reduction in settling time.
Figure 5b illustrates disparities in rotor angle responses between the second and fourth
synchronous generators. These results also demonstrate the effective control behavior of
the presented FCPSO-MFESS.



Fractal Fract. 2024, 8, 419 13 of 16

Moreover, Figure 5c,d present the relative rotor angle responses of first-to-third-
generation units, and second-to -fourth generation units respectively. A comparative
examination indicates that both PSO-MFESS and FCPSO-MFESS significantly enhance
system transient stability compared to MFESS and traditional excitation systems. For
example, in Figure 5d, the first wave overshoot and undershoot of the speed response
reduce to 0.003493 p.u. and 0.0019236 p.u., respectively, from 0.006341 p.u. to 0.003979
p.u. in the CPSS-AVR case, representing a 44.95% reduction in overshoot and a 51.69%
reduction in first wave undershoot. Furthermore, FCPSO-MFESS demonstrates superior
performance over PSO-MFESS, underscoring the efficacy of the parameter adaptation
technique based on fractional calculus. Specifically, PSO-MFESS facilitates faster attain-
ment of a new equilibrium state for generator rotor angle and rotor speed while efficiently
dampening oscillations. The control operation of the proposed FCPSO-MFESS framework
effectively dampens oscillations in the relative active power of generation units within the
same and opposite areas of the multimachine power system. These results, depicted in
Figure 5e,f, demonstrate the effective performance of the suggested intelligent model-free
approach in this paper.

5. Conclusions

This paper introduces a novel and practical model-free fractional calculus-based
excitation system stabilizer. It is strategically devised to tackle the inherent challenges of
modern energy systems. By harnessing principles of ultra-local control and fractional-order
calculus the proposed stabilizer aims to enhance transient performance and mitigate low-
frequency electromechanical oscillations in multimachine power systems. The integration
of fractional calculus-based particle swarm optimization algorithms amplifies stabilizer
efficacy. This algorithm fine-tunes the controller parameters to adapt to diverse operational
conditions. Diverse numerical analyses have been conducted on a two-area multi-machine
power system to demonstrate the effectiveness of the proposed control framework over
conventional controllers in terms of transient and small-signal stability. The results show
that the suggested control strategy in this work is capable of maintaining transient stability
and suppressing low-frequency oscillations in multi-machine power systems. This research
represents a significant advancement in the realm of model-independent control strategies
tailored to the intricacies and uncertainties of modern energy systems. It thereby contributes
to the optimization of power system efficiency and enhances stability. Due to the learning-
based nature of the machine learning-based optimization algorithms, future research will
include exploring how deep reinforcement learning algorithms can be used as a parameter
in the proposed model independent control framework.
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Appendix A. List of Symbols of the Dynamic Model of a Multi-Machine Power System

In this appendix, the comprehensive list of symbols utilized in the dynamic model of
the multi-machine power system is illustrated as follows:

T′
d0j D-axis open circuit field time constant

ωj Rotor speed of the jth synchronous generator
ω0 Synchronous speed of the synchronous generators

ωre f Rotor speed reference value of the jth synchronous generator
δj Rotor angle of the jth synchronous generator
Dj Mechanical damping coefficient of the jth synchronous generator
Hj Inertia constant of the jth synchronous generator
Pmj Mechanical power input to the jth synchronous generator shaft
Pej Active electrical power output of the jth synchronous generator
E′

qj Transient q-axis electromechanical force (EMF) of the jth synchronous generator
E f dj Equivalent electro-motive force (EMF) in excitation winding of the jth synchronous

generator
xdj Direct-axis reactance of the jth synchronous generator
x′dj Direct-axis transient reactance of the jth synchronous generator
Idj Direct-axis stator current of the jth synchronous generator
Iqj Quadrature-axis stator current of the jth synchronous generator
Vtj Terminal voltage of the jth synchronous generator

Vdj, Vqj q and d-axis of the jth synchronous generator stator voltages
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