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Abstract: In this paper, we present a re-established functional fractal circuit model of arterial blood
flow that incorporates the shunt effect of the branch vessels. Under the background of hemodynamics,
we abstracted a family of fractal operators and investigate the kernel function and properties thereof.
Based on fractal operators, the intrinsic relation between Bessel function and Struve function was
revealed, and some new special functions were found. The results provide mathematical tools for
biomechanics and automatic control.
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1. Introduction

The functional circuit model (FCM) [1,2] is extensively employed in the field of hemo-
dynamics. The arterial lumen can be considered as an elastic cavity with periodic con-
traction and dilation, known as the Windkessel model, introduced by Frank [2]. Based
on the electrical-mechanical analogy, the blood flow movement within the elastic cavity
can be simulated by a functional circuit model composed of basic electrical components.
Frank’s functional circuit model only involves a single elastic cavity and two components
(a capacitor and a resistor), with limited simulation capabilities. Goldwyn et al. [3] pro-
posed a multi-level elastic chamber model that incorporates the blood acceleration in space.
Burattini et al. [4] and Stergiopulos et al. [5] introduced the inductive component to simu-
late the inertia of blood. With the increasement of the variety of electrical components and
the number of cavities, more and more complex circuits were used to simulate blood flow
movements more accurately [6–14].

Generally, the utilization of fluid dynamics methods based on the Navier–Stokes
equations for simulating blood flow demands a substantial amount of computational
resources and time due to high computation costs. In contrast, Windkessel models and
FCM, which only require solving circuit equations without dealing with complex models
and equations, can effectively simulate the pressure-flow relationship of hemodynamics
at a relatively low computational cost, so they have been widely utilized and applied in
medical diagnostics [15,16].

The concepts of fractal cells and fractal operators have been developed in recent years
and successfully applied to various disciplines such as tendon and ligament, nerve, bone and
hemodynamics [17–20]. The results indicate a close correlation between functional fractals and
fractional dynamics. Based on the constitutive established by functional fractals, both fractional-
order operators and fractional-order responses can be derived [21,22], which significantly
differs from merely introducing fractional-order elements phenomenally [23–25]. In 2020,
through the infinite-level division of the elastic cavities, Peng et al. [20] achieved the fractal
of blood flow image and designed the functional fractal circuit of aorta and arterioles,
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developing the hemodynamics in the functional fractal space. Recently, we realized that
Peng’s model ignored the shunt effect of branch vessels. Therefore, this paper enhances
the model, establishing a new functional fractal circuit, and a family of fractal operators
are abstracted from the new model. The properties of the operator family are studied. The
study of operator properties is not limited to hemodynamics. In fact, since the circuits
we have given are constructible with the components and parameters designable, the
properties of the operators we have studied can serve as a foundation for automatic control
and a better description of biological phenomena.

The present paper primarily encompasses the subsequent sections. In Section 2, the
functional fractal circuit is established. In Section 3, the operator algebraic equations are
established and solved. In Sections 4 and 5, the kernel functions of the fractal operator
family are investigated.

2. Fractal Circuit Model

In the classical elastic cavity model (Windkessel model), the blood pressure P is
compared to the voltage U, and the flow rate Q is compared to the current I. For the
aorta, the longitudinal inertia of the blood flow is compared to the inductance L, causing
the longitudinal flow; the wall compliance is compared to the capacitance C, causing the
transverse flow. For the arteriole, transverse flow is also caused by the wall compliance,
while the longitudinal flow is dominated by the blood viscosity, compared to the resistance
R. the relationship between longitudinal and transverse flow can be likened to that of two
branches in parallel of a circuit.

The comparative relationship between hemodynamics and the electric parameters is
shown in Table 1. cL and cR are constant coefficients. r is the vessel radius, and h is the
thickness of the vessel.

Table 1. The comparative correlation between parameters of hemodynamics and functional circuits [20,26].

Hemodynamic Electric Quantitative Correlation

Pressure P Voltage U P = U
Flow rate Q Current I Q = I

Blood inertia ρ Inductance L L = cLρ/
(
πr2)

Wall Compliance E Capacitance C C = 3πr2/(2Eh)
Blood Viscosity µ Resistance R R = 8cRµ/

(
πr4)

Peng et al. [20] differentiated the classical single segment elastic cavity into a combi-
nation of infinite micro-elastic ones, which is inherited by this article as a basic thought.
However, we notice that both the single elastic cavity model and Peng’s infinite micro-
elastic cavity model took no account of the branch vessels and therefore ignored the shunt
effect of the branch vessels.

Nevertheless, the real artery has a multilevel branching topology, called “arterial
vascular tree” in textbooks. Taking the aorta as an example, due to its numerous branch
vessels, blood flowing through the aortic lumen continuously exits along these branches,
forming tributaries. In this case, if we establish the elastic cavity model of the aorta, the
shunt effect of tributaries should be taken into account.

When the shunt vessels are taken into account, the basic flow pattern of arterial blood
flow can be described as follows, as depicted in Figure 1.

When the aortic wall undergoes contraction and dilation (indicated by black arrows in
Figure 1), the blood flow within the vascular lumen exhibits three distinct patterns of flow
(indicated by red arrows in Figure 1): axial (longitudinal) flow, radial (transverse) flow, and
lateral branch flow. The axial flow is normal, that is, irrespective of whether the vessel wall
dilates or contracts, axial flow always exists and maintains a consistent direction towards
the distal end. There is a cooperative relationship between radial flow and branch flow,
both driven by the motion of the vessel wall.
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Figure 1. The basic pattern of arterial flow: (a) The arterial wall contracts. (b) The arterial wall dilates. 
There are three distinct patterns of flow: axial (longitudinal) flow, radial (transverse) flow, and the 
lateral branch flow, indicated by the red arrows. When the arterial wall contracts and dilates, the 
directions of the transverse flow are opposite. The direction of the longitudinal flow is constant. The 
branch flow exists when the arterial wall contracts. More details are explained in the content. 

When the aortic wall undergoes contraction and dilation (indicated by black arrows 
in Figure 1), the blood flow within the vascular lumen exhibits three distinct patterns of 
flow (indicated by red arrows in Figure 1): axial (longitudinal) flow, radial (transverse) 
flow, and lateral branch flow. The axial flow is normal, that is, irrespective of whether the 
vessel wall dilates or contracts, axial flow always exists and maintains a consistent direc-
tion towards the distal end. There is a cooperative relationship between radial flow and 
branch flow, both driven by the motion of the vessel wall.  

When the vessel wall contracts (indicated by the black arrows in Figure 1a), radial 
blood flow is directed from the wall towards the center (indicated by the red arrows in 
Figure 1a). Simultaneously, lateral branch flow is initiated, causing intracavity blood to 
exit the main cavity through branch blood vessels (indicated by the red arrows in Figure 
1a). When the wall undergoes dilation (indicated by the black arrows in Figure 1b), radial 
blood flow is directed from the central region towards the wall (indicated by the red ar-
rows in Figure 1b). Simultaneously, closure of the branch vessel channel occurs, effectively 
arresting branch flow and preventing any backflow of blood from the branch vessel into 
the main cavity. 

According to the above flow patterns, the principal topological characteristics of ar-
terial flow images can be summarized: for each micro-elastic cavity unit, the longitudinal 
(axial) flow in the main cavity is in parallel with the transverse (radial) flow; the blood 
flow in branch blood vessels runs parallel to that in the main vessel, and the branch blood 
flow of each micro-elastic cavity unit leads to infinity and no longer flows into the main 
blood vessel. By combining an infinite number of micro-elastic cavities, we can construct 
the functional fractal circuit shown in Figure 2. In Figure 2, 1M  , 2M  , and 3M   are 
basic electrical components, which could be inductors, capacitors, or resistors. 

It could be seen that the functional fractal circuit in Figure 2 fully conforms to the 
mentioned topological characteristics of the blood flow image. Specifically, the parallel 
operation of 1M  and 2M  mirrors the parallel operation of the longitudinal and trans-
verse blood flow; the branches of 3M  extend infinitely, corresponding to the branching 
outflow towards infinity, thereby becoming disconnected with the main vessel’s blood 
flow. 

Figure 1. The basic pattern of arterial flow: (a) The arterial wall contracts. (b) The arterial wall dilates.
There are three distinct patterns of flow: axial (longitudinal) flow, radial (transverse) flow, and the
lateral branch flow, indicated by the red arrows. When the arterial wall contracts and dilates, the
directions of the transverse flow are opposite. The direction of the longitudinal flow is constant. The
branch flow exists when the arterial wall contracts. More details are explained in the content.

When the vessel wall contracts (indicated by the black arrows in Figure 1a), radial
blood flow is directed from the wall towards the center (indicated by the red arrows in
Figure 1a). Simultaneously, lateral branch flow is initiated, causing intracavity blood to exit
the main cavity through branch blood vessels (indicated by the red arrows in Figure 1a).
When the wall undergoes dilation (indicated by the black arrows in Figure 1b), radial blood
flow is directed from the central region towards the wall (indicated by the red arrows
in Figure 1b). Simultaneously, closure of the branch vessel channel occurs, effectively
arresting branch flow and preventing any backflow of blood from the branch vessel into
the main cavity.

According to the above flow patterns, the principal topological characteristics of
arterial flow images can be summarized: for each micro-elastic cavity unit, the longitudinal
(axial) flow in the main cavity is in parallel with the transverse (radial) flow; the blood flow
in branch blood vessels runs parallel to that in the main vessel, and the branch blood flow
of each micro-elastic cavity unit leads to infinity and no longer flows into the main blood
vessel. By combining an infinite number of micro-elastic cavities, we can construct the
functional fractal circuit shown in Figure 2. In Figure 2, M1, M2, and M3 are basic electrical
components, which could be inductors, capacitors, or resistors.

It could be seen that the functional fractal circuit in Figure 2 fully conforms to the
mentioned topological characteristics of the blood flow image. Specifically, the parallel
operation of M1 and M2 mirrors the parallel operation of the longitudinal and transverse
blood flow; the branches of M3 extend infinitely, corresponding to the branching outflow
towards infinity, thereby becoming disconnected with the main vessel’s blood flow.

Moreover, the functional fractal circuit in Figure 2 has the property of infinite self-
similarity. The right side of Figure 2 gives the smallest repeating unit in the circuit, called
the fractal cell. While classical fractals exhibit “self-similarity” [27,28], the functional fractal
circuit demonstrates “self-congruence”.
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Figure 2. Functional fractal circuit and fractal cell. In the functional fractal circuit, electronic compo-
nents 1M  and 2M  denote longitudinal and transverse flow in the main arterial cavity respec-

tively, while 3M  denotes the flow in branch vessels. The right side gives the smallest repeating 
unit of the circuit, called the fractal cell. 

Moreover, the functional fractal circuit in Figure 2 has the property of infinite self-
similarity. The right side of Figure 2 gives the smallest repeating unit in the circuit, called 
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tal circuit demonstrates “self-congruence”. 

It is noted that the flow patterns depicted in Figure 1 are universally observed in 
living organisms. Blood flow, lymph flow, and fluid flow in tissues can all be reduced to 
the movement patterns shown in Figure 1. In other words, the functional fractal shown in 
Figure 2 represents a spatial pattern with universal significance in biological systems. 
Therefore, the primary objective of this paper is not to investigate hemodynamics, but 
rather to examine the fundamental characteristics of functional fractal spaces utilizing 
blood flow images as a contextual backdrop. This approach offers a fresh perspective and 
establishes a novel mathematical foundation for studying fluid dynamics within living 
organisms. 
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Solutions 
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Figure 2. Functional fractal circuit and fractal cell. In the functional fractal circuit, electronic compo-
nents M1 and M2 denote longitudinal and transverse flow in the main arterial cavity respectively,
while M3 denotes the flow in branch vessels. The right side gives the smallest repeating unit of the
circuit, called the fractal cell.

It is noted that the flow patterns depicted in Figure 1 are universally observed in
living organisms. Blood flow, lymph flow, and fluid flow in tissues can all be reduced to
the movement patterns shown in Figure 1. In other words, the functional fractal shown
in Figure 2 represents a spatial pattern with universal significance in biological systems.
Therefore, the primary objective of this paper is not to investigate hemodynamics, but rather
to examine the fundamental characteristics of functional fractal spaces utilizing blood flow
images as a contextual backdrop. This approach offers a fresh perspective and establishes a
novel mathematical foundation for studying fluid dynamics within living organisms.

3. Operator Algebraic Equations of the Fractal Circuit Model and Their
Radical Solutions

According to Mikusinski’s work [29], the basic differential and integral operators
are defined as follows. If the function f (t) has continuous derivatives at t ≥ 0, then the
definition of the differential operator acting on the function is

p f (t) =
d f (t)

dt
+ f (0)δ(t), (1)

where δ(t) is the Dirac pulse function. The definition of integral operator l is that

l f (t) =
∫ t

0
f (τ)dτ. (2)

The definitions of the basic differential and integral operators p and l in this paper strictly
adhere to the explicit forms presented in Mikusinski’s work [29]. Based on basic differential
operators and integral operators, Mikusinski constructed the operator domain, which is
referred to as the Mikusinski operator field in this paper, and its internal structure has been
described in detail in [29,30]. Mikusinski employed rigorous mathematical logic within
his book to prove that the basic differential operator p and integral operator l defined by
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(1) and (2) are mutually inverse, also demonstrating that their combined operation yields
results independent of the order of action. In the Mikusinski operator field, Equation (3) is
valid, which serves as a crucial logical foundation for operator algebra theory.

l =
1
p

. (3)

Based on Equation (3), both differential operators and integral operators can be regarded
as functions of the basic differential operator p defined in Equation (1).

Similar to Peng et al. [20], the admittance operator T is used to denote the map from
voltage u(t) to current i(t), that is:

i(t) = Tu(t), (4)

The concept of admittance is widely utilized in the field of electricity, and it serves as
the reciprocal of impedance. Each electrical component has its corresponding admittance
operator. Admittance operators for the three types of basic electrical components are
presented in Table 2.

Table 2. Admittance operators for the three types of basic components [20].

Component Admittance Operator Note

Inductance L TL = 1
Lp First-order integral operator

Capacitance C TC = Cp First-order derivative operator
Resistance R TR = 1

R Zero-order operator

The three admittance operators listed in Table 2 are all basic operators in the Mikusinski
operator field.

In the functional fractal circuit shown in Figure 2, the admittance operators corre-
sponding to the electrical components M1, M2, and M3 are denoted as T1, T2, and T3,
respectively. The admittance operator of the fractal element M is denoted as T, referred
to as the fractal operator. T1, T2, and T3 are determined based on the selection of M1,
M2, and M3, respectively, according to Table 2. Therefore, T1, T2, and T3 are operators in
the Mikusinski operator field, which is a prerequisite for performing following algebraic
operations on them.

The fractal cell in Figure 2 is equivalent to the entire fractal circuit, and the fractal
circuit entirety is equivalent to a fractal element. Thus, it is immediately deduced that
the fractal cell is equivalent to a fractal element. For the convenience of discussion, the
equivalence is depicted in Figure 3, the admittance of each component or element denoted
in parentheses.
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Based on such equivalence and combined with operator algebra theory [29–32], the
operator algebraic equation can be established:

(T1 + T2)T
T1 + T2 + T

+ T3 = T. (5)

The process of deriving Equation (5) is as follows: The parallel combination of M1 and M2
can be treated as a composite component with an admittance of (T1 + T2). This composite
component is then in series with the fractal element M, whose admittance is T, resulting
in a total admittance of (T1+T2)T

(T1+T2)+T . Subsequently, the entire branch is in parallel with M3,
and their admittances are summed to obtain the overall admittance of the fractal cell, that
is the left side of Equation (5). As the fractal cell is equivalent to the fractal element, their
admittances are equal, thus ensuring that Equation (5) holds.

By rearranging Equation (5) we can obtain

T2 − T3T − T3(T1 + T2) = 0. (6)

Equation (6) is the algebraic equation of the fractal operator T. It is a quadratic equation
with one unknown, which has the radical solution

T =
T3 ±

√
T2

3 + 4T3(T1 + T2)

2
. (7)

Since T1, T2, and T3 are all functions of the basic differential operator p defined by
Equation (1), the fractal operator T is also a function of p, i.e.,

T = T(p). (8)

As introduced at the beginning of Section 2, the arteries are divided into the aorta and
the arteriole, whose longitudinal flows are, respectively, dominated by inertia and viscosity.
According to Table 1, the longitudinal flow of the aorta and the arteries are respectively
denoted by the inductive component L and the resistive component R. The elasticity of the
artery wall is represented by the capacitive component C. Therefore, as a direct application,
M1 and M3 should be selected from the inductive L and the resistive R according to the
type of main and branch vessels described, i.e., T1 and T3 should be selected from TL and
TR; M2 should be taken as the capacitive C, i.e., T2 should be taken as TC.

However, the discussion in this paper is not limited to this. The functional fractal
circuit shown in Figure 2 provides a completely different topological structure than that of
previous models, and the topological structure is universal in living bodies. Therefore, we
hope to leverage the topological structure and optimize the control characteristics through
different element matching methods, thereby obtaining valuable control results for the
biomechanics and automatic control, not limited to hemodynamics. In the scope of this
paper, the types of basic components are finite, so we can take an ergodic approach and
discuss all possible cases where T1, T2 and T3 take on admittance operators of various basic
electronic components. These cases are constructible, and the components and parameter
range are designable. See the analysis below for details.

Notice that there is a radical
√
(·) in the fractal operator. In the previous articles [21,22],

we referred to the fractal operators with radical
√
(·) forms as fractional operators of

apparent 1/2 order. Apparently, they are irrational fractional operators.
The fractal operator mentioned in Equation (7) is rooted in hemodynamics. It should be

emphasized that the subjects and physical mechanisms studied in hemodynamics, ligament
fiber mechanics, and nerve signal release dynamics are fundamentally distinct [33–37].
However, disciplines with such great differences have similar functional fractals, similar
fractal operator algebraic equations, and similar radical operator solutions for algebraic
equations. This means that it is imperative to study the radical operators uniformly.
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The fractal operators in Equation (7) constitute a “family of fractal operators” of
radical type. This raises a question: If we abandon the hemodynamic background and
focus solely on investigating the fractal operator family, can we obtain results that hold
universal significance? Specifically, we can ask the following question: How many basic or
independent operators are there in the family of fractal operators? What are their properties?
What are the similarities and differences between these properties? Clearly, by clarifying
these questions, the toolbox of biomechanics and control theory can be greatly enriched.

There are three types of basic electrical components, resistance, inductance, and
capacitance, as shown in Table 2. In Equation (7), there are exactly three operators, T1, T2,
and T3. Therefore, T1, T2, and T3 can be selected as admittance operators of the three basic
components respectively. By combining the three basic admittance operators, nine fractal
operators can be obtained, as shown in Table 3.

Table 3. The family of fractal operators derived by the functional fractal circuit.

T3 T1, T2 = TC, TL T1, T2 = TC, TR T1, T2 = TL, TR

TR
1

2R

[
1 ±

√
1 + 4RC

(
p + 1

LC
1
p

)]
1

2R
[
1 ±

√
5 + 4RCp

] 1
2R

[
1 ±

√
5 + 4R

L
1
p

]
TL

1
2L

[
1
p ±

√
5
p2 + 4LC

] 1
2L

[
1
p ±

√
1
p2 +

4L
R

1
p + 4LC

]
1

2L

[
1
p ±

√
5
p2 +

4L
R

1
p

]

TC
C
2

[
p ±

√
5p2 + 4

LC

]
C
2

[
p ±

√
5p2 + 4

RC p
]

C
2

[
p ±

√
p2 + 4

RC p + 4
LC

]

In Table 3, the powers of the basic differential operator p in the radical
√
(·), from

−2 to 2, all appear. It can be said that Table 3 gives the basic graph of the 1/2 order
fractal operator.

All constants in Table 3 have specific physical significance: RC, LC, L
R , determining

the characteristic frequency or characteristic time of a functional fractal system. In order
to ensure the universality of the research results, we discard the specific meanings of the
physical parameters, and then abstract the operators with radical

√
(·) into the following

more general form:
√

p2 + α2, 1
p

√
p2 + α2;

√
p + α, 1

p
√

p + α, 1√
p
√

p + α;
√
(p + β)2 − α2,

1
p

√
(p + β)2 − α2, 1√

p

√
(p + β)2 − α2. Without special instructions, we set α, β > 0. α

and β are physical constants that generally depends on the characteristic frequency or
characteristic time.

4. Definition of Kernel Functions of Fractal Operators

The convolution of two functions f (t) and g(t) are defined as follows.

f (t) ∗ g(t) ≜
∫ t

0
f (t − τ)g(τ)dτ. (9)

According to Mikusinski’s operator theory [29], as functions of the basic differential opera-
tor p, operators T(p) can be defined by their kernel functions K(t). Specifically, the action
of operator T(p) on a function f (t) is equal to the convolution between the kernel function
K(t) of the operator T(p) and the function f (t), that is:

T(p) f (t) = K(t) ∗ f (t) =
∫ t

0
K(t − τ) f (τ)dτ. (10)

If we take f (t) as the Dirac pulse function δ(t) from Equation (10), we can derive Equation (11).

T(p)δ(t) = K(t). (11)
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Equation (11) means that, the kernel function (also called the integral kernel) of operator
T(p) is equal to the result of the action of T(p) on the Dirac pulse function δ(t). As a direct
definition of the kernel function, Equation (10) repeatedly is used in the remain part of
the article.

Mikusinski did not provide a universal method for explicitly obtaining the kernel
function of a general operator. Yu et al. [30], based on an analysis of the properties of the
Minkusinsiki operator field and kernel function space, rigorously derived the following
conclusion: when the definition of the basic differential operator p follows Equation (1), the
kernel function K(t) of the operator T(p) can be obtained by taking the Laplace inverse
transform of the operator function T(p), that is:

L−1[T(p)] = K(t), (12)

i.e.,
T(p)δ(t) = K(t) = L−1[T(p)], (13)

Based on the above theory, the kernel function of the fractal operator family can be clarified.
To solve differential equations, the Laplace transform on the differential equation is a

well-known operation. Yu’s work [30] rigorously demonstrated that within Mikusinski’s
operator algebra system, the integral kernel of an operator can be obtained by directly
applying the Laplace inverse transform to the operator itself, eliminating the need for
performing both Laplace transform and inverse transform on the entire differential equation.
In fact, the operator solely encompasses the intrinsic properties of the system, whereas
the differential equation incorporates both intrinsic information and external excitation
(as depicted in (4)). Transforming the operator directly to obtain the integral kernel is more
conducive to comprehending the inherent structure and properties of the system, which is
exactly what we want in this paper.

5. Kernel Functions of the Fractal Operator Family

The present section focuses on the kernel functions of the exemplary fractal operators
listed in Table 3.

5.1. Kernel Functions of the Fractal Operators
√

p2 + α2 and 1
p

√
p2 + α2

Peng et al. [20] used to derive the operator
√

p2 + α2 − p in hemodynamics. Mikusin-
ski also discussed the operator in his work [29]. The inverse Laplace transformation of the
fractal operator

√
p2 + α2 − p is:

L−1
(√

p2 + α2 − p
)
=

α

t
J1(αt), (14)

where J1 is the Bessel function of the first kind. As a direct application of Equation (12), the
right side of Equation (14) gives the kernel function of the fractal operator

√
p2 + α2 − p.

Thus, according to Equation (11) we have[√
p2 + α2 − p

]
δ(t) =

α

t
J1(αt). (15)

The kernel function results given by Equations (14) and (15) are consistent with
those obtained by Mikusinski [20] using a series expansion. Note that

√
p2 + α2 − p is

an irrational operator; therefore, its kernel is a non-elementary function, specifically a
weighted Bessel function α

t J1(αt).
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Based on Equation (15), we can analyze the operator 1
p

√
p2 + α2. Equation (13),

combined with the inverse Laplace transformation, derives that

L−1

(√
p2 + α2 − p

p

)
=
∫ t

0

α

τ
J1(ατ)dτ, (16)

So, the kernel function is[√
p2 + α2 − p

p

]
δ(t) =

∫ t
0

α

τ
J1(ατ)dτ

=
α

2
{2[αtJ0(αt)− J1(αt)] + παt[J1(αt)H0(αt)− J0(αt)H1(αt)]}

. (17)

The proof of the second equation of Equation (17) can be seen in Appendix A. H0 and H1 are

zero-order and first-order Struve functions, respectively.
√

p2+α2−p
p is an irrational operator,

and its kernel function is a non-elementary function
∫ t

0
α

τ
J1(ατ)dτ. Curiously, the non-

elementary function can be characterized by the Bessel function and the Struve function.
Figure 4 involves Bessel function J1(t), weighted Bessel function J1(t)

t , and its integral∫ t
0

1
τ

J1(τ)dτ. The graphs in Figure 4 demonstrate that all the three types of functions
exhibit volatility, which evidently comes from the inherent properties of the Bessel function.
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As time tends to infinity, all three types of functions tend to converge towards a
constant value, that is:

lim
t→∞

J1(t) = lim
t→∞

J1(t)
t

= 0. (18)

lim
t→∞

∫ t

0

1
τ

J1(τ)dτ = 1. (19)

Compared with the Bessel function J1(t), the weighted Bessel function J1(t)
t and its

integral
∫ t

0
1
τ

J1(τ)dτ exhibit a shorter convergence time to a constant value. Such superior
convergence properties hold potential applications in the fields of biomechanics, biomimetic
mechanics and automatic control.
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Equation (17) is instructive. If the operator term on the left side of Equation (16) is
discarded and only the second equation remains, it can be obtained that (see Appendix A
for detailed proof):∫ t

0

1
τ

J1(ατ)dτ =
1
2
{2[αtJ0(αt)− J1(αt)] + παt[J1(αt)H0(αt)− J0(αt)H1(αt)]}. (20)

The Bessel function and the Struve function are associated by Equation (19). The Struve
function arises from the nonhomogeneous Bessel equation given below [38]:

x2 d2y
dx2 + x

dy
dx

+
(

x2 − m2
)

y =
4
( x

2
)m+1

√
πΓ
(

m + 1
2

) . (21)

A set of solutions to the Equation (21) is

Hm(z) =
( z

2

)m+1 ∞

∑
n=0

(−1)n
( z

2

)2n

Γ
(

n +
3
2

)
Γ
(

n + m +
3
2

) , (22)

where Hm(z) is the Struve function. Thus, Equation (19) is not particularly unexpected.
Although there is a correlation between the Bessel function and the Struve function, what is
really surprising is that they are correlated in such a complex way. It should be emphasized
that they are very different special functions. Obviously, the irrational fractional operator√

p2+α2−p
p serves as an exceptional bridge, connecting two distinct special functions in a

remarkably ingenious manner.
The fractal operators have a clear biomechanical background, indicating that it is

insufficient to describe the mechanical behavior of biological materials or structures solely
through elementary functions. In practice, it is difficult to characterize the long-term
behavior of organisms using elementary functions alone; non-elementary functions are
necessary in such cases [39,40]. To a certain extent, it could be said that biomechanics is
mechanics characterized by fractal operators and non-elementary functions.

As depicted in Figure 4, the kernel function of the fractal operator
√

p2+α2−p
p converges

very fast and almost converges to a stable value after two oscillations. These desirable char-
acteristics align perfectly with the requirements of automatic control theory. In particular,

the parameters in the operator
√

p2+α2−p
p are designable. In other words, by designing the

component parameters in the fractal circuit, we can obtain useful control characteristics.

5.2. Kernel Functions of the Fractal Operators
√

p2 − α2 and 1
p

√
p2 − α2

Although operators
√

p2 − α2 and 1
p

√
p2 − α2 do not appear in Table 3, they are

deeply intrinsically related to the fractal operators
√

p2 + α2 and 1
p

√
p2 + α2 in the above

section, so they are also included in the family of radical type operators.
Introducing the fractal operator

√
p2 − α2 − p, there are two ways to obtain its ker-

nel function. The first path is the inverse Laplace transformation. The inverse Laplace
transformation of operator

√
p2 − α2 − p gives that

L−1
(√

p2 − α2 − p
)
= −α

t
J1(αt). (23)

The function − α
t J1(αt) at the right side of Equation (23) is the kernel function of the operator√

p2 − α2 − p, where J1(αt) is the modified Bessel function of the first kind.
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The second path is to consider a variable substitution. Extend the parameter α to a
complex and introduce the complex transformation

α → iα.

Then, the fractal operator
√

p2 − α2 − p has the following transformation:√
p2 + α2 − p →

√
p2 − α2 − p.

Thus, Equation (15) is transformed into[√
p2 − α2 − p

]
δ(t) =

iα
t

J1(iαt). (24)

The transformation between the Bessel function Jm(αt) and the modified Bessel function
Jm(αt) is that

Jm(iαt) = im Jm(αt). (25)

The combination of Equations (22) and (23) immediately obtains Equation (26).[√
p2 − α2 − p

]
δ(t) = −α

t
J1(αt). (26)

Similarly, Equation (16) is transformed into Equation (27).[√
p2 − α2 − p

p

]
δ(t) =

∫ t
0

iα
τ

J1(iατ)dτ

=
iα
2
{2[iαtJ0(iαt)− J1(iαt)] + πiαt[J1(iαt)H0(iαt)− J0(iαt)H1(iαt)]}

. (27)

With the help of Equation (25), Equation (27) can be rewritten as Equation (28).[√
p2 − α2 − p

p

]
δ(t) = −

∫ t
0

α

τ
J1(ατ)dτ

= −α

2
{

2
[
αtJ0(αt)− J1(αt)

]
+ παt

[
J1(αt)iH0(iαt)− J0(αt)H1(iαt)

]} . (28)

On the surface, Equation (27) is strange: the first equation exists in the field of real numbers,
but the imaginary number appears in the last term of the second equation. However, further
analysis reveals that this imaginary number can be eliminated. Based on the transformation
between modified Struve function Hm(t) and Struve function Hm(t):

Hm(it) = im+1Hm(t), (29)

Hm(t) ≜
(

t
2

)m+1 ∞

∑
n=0

(
t
2

)2n

Γ
(

n +
3
2

)
Γ
(

n + m +
3
2

) , (30)

we can obtain
H0(iαt) = iH0(αt), (31)

H1(iαt) = −H1(αt). (32)
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Then Equation (28) can be changed into[√
p2 − α2 − p

p

]
δ(t) = −

∫ t
0

α

τ
J1(ατ)dτ

= −α

2
{

2
[
αtJ0(αt)− J1(αt)

]
+ παt

[
J0(αt)H1(αt)− J1(αt)H0(αt)

]} . (33)

That is, the kernel function of the fractal operator
√

p2−α2−p
p can be characterized by modified

Bessel function and modified Struve function. Comparing Equations (33) and (17), fantastic
symmetry can be seen. Discard the operator term and only retain the second equation of
Equation (33), we obtain∫ t

0

1
τ

J1(ατ)dτ =
1
2
{

2
[
αtJ0(αt)− J1(αt)

]
+ παt

[
J0(αt)H1(αt)− J1(αt)H0(αt)

]}
(34)

The modified Bessel function Jm(αt) exhibits a profound intrinsic correlation with the
modified Struve function Hm(αt). Equations (34) and (20) still exhibit an elegant symmetry,
which can be further enhanced as follows. The physical parameter α is present in both
Equations (20) and (34). As mentioned earlier, α is the characteristic frequency of a func-
tional fractal. However, mathematical theorems are typically independent of physics. To
reveal the independence, the following variable substitution is introduced:

αt → t , ατ → τ .

Then, Equations (20) and (34) are transformed into the following forms, respectively:∫ t

0

1
τ

J1(τ)dτ =
1
2
{2[tJ0(t)− J1(t)] + πt[J1(t)H0(t)− J0(t)H1(t)]}. (35)

∫ t

0

1
τ

J1(τ)dτ =
1
2
{

2
[
tJ0(t)− J1(t)

]
+ πt

[
J0(t)H1(t)− J1(t)H0(t)

]}
. (36)

The physical parameters disappear, and the symmetry is enhanced.
Comparing the content of this section with that of the previous section, it becomes

evident that the entire theoretical system exhibits remarkable symmetry. The Bessel function
Jm(αt) and the modified Bessel function Jm(αt) demonstrate symmetrical characteristics.
Similarly, the Struve function Hm(αt) and the modified Struve function Hm(αt) also possess
inherent symmetry. The symmetry arises from the symmetry between operators, that is,
the structure of operator

√
p2 + α2 and operator

√
p2 − α2 are completely symmetric.

The graphs of modified Bessel function J1(t), weighted modified Bessel function J1(t)
t ,

and its integral
∫ t

0
1
τ

J1(τ)dτ are shown in Figure 5. When time tends to zero, we obtain
Equation (37).

lim
t→0

J1(t) = 0, lim
t→0

J1(t)
t

=
1
2

, lim
t→0

∫ t

0

1
τ

J1(τ)dτ = 0 (37)

That is, the values of the three types of special functions J1(t),
J1(t)

t , and
∫ t

0
1
τ

J1(τ)dτ

remain finite at t = 0. When time tends to infinity, we obtain Equation (38).

lim
t→∞

J1(t) → ∞ , lim
t→∞

J1(t)
t

→ ∞ , lim
t→∞

∫ t

0

1
τ

J1(τ)dτ → ∞ . (38)
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That is, the three types of special functions all diverge, in which
∫ t

0
1
τ

J1(τ)dτ demon-

strates the fastest divergence rate, followed by J1(t) and then lim
t→∞

J1(t)
t . It is evident that the

divergence observed in the three types of functions stems from the inherent properties of
the modified Bessel function.

Since the three kinds of special functions all diverge, the fractal operators
[√

p2 − α2 − p
]

and
[√

p2−α2−p
p

]
and their kernel functions do not converge.

The theoretical and practical value of operators and functions that fail to converge is
significantly constrained. How can we overcome these limitations? An effective method
is as follows: mathematically, decay terms can be introduced into the kernel function;
physically, the parameters of the physical components can be changed, introducing a
translation into the operator. See the Section 5.3 for details.

5.3. Kernel Functions of the Fractal Operators
√
(p + β)2 − α2, 1

p

√
(p + β)2 − α2 and

1√
p

√
(p + β)2 − α2

In this section, the operators
√
(p + β)2 − α2 and 1

p

√
(p + β)2 − α2 are considered. If

we set a = 0, the two operators are reduced to the two operators
√

p2 − α2 and 1
p

√
p2 − α2

in the previous section.

The direct acquisition of the kernel function of operators
√
(p + β)2 − α2 and

1
p

√
(p + β)2 − α2 poses a challenge. However, we can take a detour. By combining op-

erator
√

p2 − α2 from the previous section with the translation transformation, operator√
(p + β)2 − α2 and its kernel function can be obtained.

By translation transformation, the operator p in Equation (23) is transformed into p + a:

p → p + β,

Then the operator
√

p2 − α2 − p is transformed into:√
p2 − α2 − p →

√
(p + β)2 − α2 − (p + β).
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Combined with the translation property of the Laplace transformation, we obtain

L−1
[√

(p + β)2 − α2 − (p + β)

]
= −α

t
J1(αt)e−βt. (39)

Then the kernel function of the fractal operator
√
(p + β)2 − α2 − (p + β) is[√

(p + β)2 − α2 − (p + β)

]
δ(t) = −α

t
J1(αt)e−βt. (40)

From Equation (40), the kernel function of operator
√
(p + β)2 − α2 could be derived. Since√

(p + β)2 − α2 is an irrational radical operator, its kernel is a non-elementary function.
Notice that the decay term appears in the kernel function, specifically as the negative power
exponential function e−βt. If we let β → 0 by translation transform, Equation (40) could be
reduced to Equation (26).

When t → 0 , the limit of the kernel function 1
t J1(αt)e−βt is

lim
t→0

[
1
t

J1(αt)e−βt
]
=

α

2
. (41)

When t → ∞ , the limit of the kernel function 1
t J1(αt)e−βt should be discussed in two cases.

In the case of 0 < β
α < 1, there is

lim
t→∞

[
1
t

J1(αt)e−βt
]
= ∞. (42)

While in the case of β
α ≥ 1, there is

lim
t→∞

[
1
t

J1(αt)e−βt
]
= 0. (43)

Obviously, β
α = 1 is exactly the turning point of the monotonicity, the detailed analysis

as follows. Suppose α is fixed as α = 1, and the graphs of the kernel function 1
t J1(t)e−βt

with different values of a are shown in Figure 6. As shown in Figure 6, the convergence of

the operator
√
(p + β)2 − α2 − (p + β) when t → ∞ is determined by the value of β

α . In

the case of 0 < β
α < 1, the kernel function exhibits a decrement followed by an increment,

ultimately tending towards infinity. In the case of β
α = 1, the function exactly loses its

capability to increase. Evidently, in the case of β
α ≥ 1, the convergence of the kernel

function 1
t J1(αt)e−βt in this section is much better than that of the non-convergent kernel

function 1
t J1(αt) in the previous section. It can be seen that in this case, the modulation

effect of the negative power exponential function e−βt is highly significant, facilitating
the transformation of a non-convergent kernel function 1

t J1(αt) into a rapidly convergent
one 1

t J1(αt)e−βt.

For the operator

√
(p+β)2−α2−(p+β)

p , Equation (38) combined with the inverse Laplace
transform obtains

L−1


√
(p + β)2 − α2 − (p + β)

p

 = −
∫ t

0

α

τ
J1(ατ)e−βτdτ. (44)
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Therefore, the kernel function of operator

√
(p+β)2−α2−(p+β)

p could be given:


√
(p + β)2 − α2 − (p + β)

p

δ(t) = −α
∫ t

0

1
τ

J1(ατ)e−βτdτ. (45)

From Equation (45), the kernel function of the operator could be 1
p

√
(p + β)2 − α2 derived.

Since 1
p

√
(p + β)2 − α2 is an irrational operator, its kernel function is a non-elementary

function, given by the integral of the weighted modified Bessel function. If we set β → 0
by translation transform, Equation (45) could be reduced to Equation (33).

The convergence of the integral
∫ t

0
1
τ

J1(ατ)e−βτdτ is ensured due to the boundedness

of the function 1
τ J1(ατ)e−βτ within the interval [0, t] for any t > 0. For the convenience of

discussion, we define ∫ t

0

1
τ

J1(ατ)e−βτdτ ≜ J1e(−β, αt). (46)

The modified Bessel function J1(ατ) is a special function. After applying weighting,
1
τ J1(ατ)e−βτ is still a special function; therefore, it is reasonable to anticipate that the
integral J1e(−β, αt) should be a new special function.

At last, consider the operator 1√
p

√
(p + β)2 − α2. The inverse Laplace transformation

gives that

L−1
(

1
√

p

)
=

1√
πt

. (47)

Equations (39) and (47), combined with the convolution theorem of the Laplace transforma-
tion, obtain that

L−1


√
(p + β)2 − α2 − (p + β)

√
p

 = − α√
π

∫ t

0

1√
t − τ

1
τ

J1(ατ)e−βτdτ. (48)
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The kernel function of the operator in Equation (48) is given as
√
(p + β)2 − α2 − (p + β)

√
p

δ(t) = − α√
π

∫ t

0

1√
t − τ

1
τ

J1(ατ)e−βτdτ. (49)

The proof of the convergence of the integral
∫ t

0
1√

t − τ

1
τ

J1(ατ)e−βτdτ could be seen in

Appendix B. In Equation (49), the kernel function of operator 1√
p is given by Equation (47),

and the property of operator
√

p could be referred to in Courant’s work [31]. Therefore, the

calculability of the operator 1√
p

√
(p + β)2 − α2 is ensured.

If we let β → 0 by translation transform, Equation (49) could be reduced to[√
p2 − α2 − p

√
p

]
δ(t) = − α√

π

∫ t

0

1√
t − τ

1
τ

J1(ατ)dτ. (50)

For the convenience of discussion, we define∫ t

0

1√
t − τ

1
τ

J1(ατ)e−βτdτ ≜ J̃1e(−β, αt). (51)

After applying weighting on the Bessel function J1(ατ), 1√
t−τ

1
τ J1(ατ)e−βτ is still a spe-

cial function. It is reasonable to anticipate that the integral J̃1e(−β, αt) should be a new
special function.

In the case of 0 < β
α < 1, due to the divergence of the function 1

t J1(t)e−βt, the values

of the integrals J1e(−β, αt) and J̃1e(−β, αt) tends to infinity when t → ∞ , indicating poor
convergence of the operator and limited practical applicability. Therefore, the following
content focuses on the case of β

α ≥ 1.
Suppose that α is fixed as α = 1, β is set as β = 1 and β = 2, respectively, and the

graphs of functions J1e(−β, t) and J̃1e(−β, t) are shown in Figure 7. The two functions
exhibit different monotonicity. The function J1e(−β, t) tends to a constant value and
saturated evolution after monotonically increasing. When t → ∞ , there is

lim
t→∞

J1e(−1, t) = 1.000, lim
t→∞

J1e(−2, t) = 0.268. (52)

The function J̃1e(−β, t) first increases for a short time and then slowly decreases, tending
to a constant value. The function J̃1e(−1, t) attains its maximum value 0.568 at amount
t = 1.1, and the function J̃1e(−2, t) attains its maximum value 0.387 at amount t = 0.45.

Following the aforementioned analysis, we can obtain that all the kernel functions
of the whole operator family in Table 3 exist. It can also be observed that certain opera-
tors’ kernel functions cannot be directly expressed through established special functions,
necessitating the introduction of novel special functions in such cases.

In disciplines such as rock mechanics, the pressure difference often exhibits a gradual
decay over time. While exponential and other elementary functions can illustrate the
convergence of physical quantities, the convergence is frequently too rapid to accurately
represent this slow decay. The gradual decline depicted in Figure 7 suggests that the

operator 1√
p

√
(p + β)2 − α2 can effectively characterize this phenomenon.
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5.4. Kernel Functions of the Fractal Operators
√
(p + β)2 + α2, 1

p

√
(p + β)2 + α2 and

1√
p

√
(p + β)2 + α2

Section 5.1 is symmetric with Section 5.2, and the symmetry can be used for reference.
Now that we have Section 5.3, can we construct content that is symmetric with it? The
answer is yes. We can construct Section 5.4, the contents of this section.

Extend the parameter α to complex field and introduce the complex transformation

α → iα.

Then, the fractal operator
√
(p + β)2 − α2 − (p + β) has the following transformation√

(p + β)2 − α2 − (p + β) →
√
(p + β)2 + α2 − (p + β).

Based on the above parameter transformation and operator transformation, the content of
Section 5.3 can be transformed into the content of this section.

Equation (40) is transformed into[√
(p + β)2 + α2 − (p + β)

]
δ(t) = − iα

t
J1(iαt)e−βt. (53)

From the transformation between the Bessel function and the modified Bessel function
(Equation (25)), we can immediately obtain that[√

(p + β)2 + α2 − (p + β)

]
δ(t) =

α

t
J1(αt)e−βt. (54)

From Equation (54), the kernel function of the operator
√
(p + β)2 + α2 could be derived. The

comparison between Equation (54) and Equation (40) reveals their complete symmetry, as
both the algebraic structure of the operators and the kernel functions exhibit symmetrical
characteristics. When t → 0 , there is

lim
t→0

[
1
t

J1(αt)e−βt
]
=

α

2
. (55)
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When t → ∞ , the limit of the kernel function is

lim
t→∞

[
1
t

J1(αt)e−βt
]
= 0. (56)

Unlike in Section 5.3, the limit of the kernel function 1
t J1(αt)e−βt is not affected by the

value of β
α , as shown in Figure 8. This advantage stems from the inherent oscillation and

convergence properties of the Bessel function.
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In the case of β
α ≥ 1, both functions 1

t J1(αt)e−βt and 1
t J1(αt)e−βt converge rapidly to 0,

indicating a high degree of similarity in their graphs. This similarity highlights the inherent

symmetry in the fractal operators
√
(p + β)2 + α2 − (p + β) and

√
(p + β)2 + α2 − (p + β).

Similarly, Equations (45) and (49) are transformed into
√
(p + β)2 + α2 − (p + β)

p

δ(t) = α
∫ t

0

1
τ

J1(ατ)e−βτdτ, (57)


√
(p + β)2 + α2 − (p + β)

√
p

δ(t) =
α√
π

∫ t

0

1√
t − τ

1
τ

J1(ατ)e−βτdτ. (58)

The proof of the convergence of the integrals at the right side of Equations (57) and (58)

is identical to that in Section 5.3. Thus, the calculability of the operators

√
(p+β)2+α2

p and√
(p+β)2+α2

√
p is ensured.

If we set β → 0 by translation transform, Equation (57) could be reduced to Equation (17),
and Equation (58) could be reduced to[√

p2 + α2 − p
√

p

]
δ(t) =

α√
π

∫ t

0

1√
t − τ

1
τ

J1(ατ)dτ. (59)



Fractal Fract. 2024, 8, 420 19 of 25

Corresponding to Section 5.3, we have the definitions∫ t

0

1
τ

J1(ατ)e−βτdτ ≜ J1e(−β, αt), (60)

∫ t

0

1√
t − τ

1
τ

J1(ατ)e−βτdτ ≜ J̃1e(−β, αt). (61)

Suppose α is fixed as α = 1 and β is set to β = 1 and β = 2, respectively, and the graphs of
functions J1e(−β, t) and J̃1e(−β, t) are shown in Figure 9.
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By comparing Figures 7 and 9, it can be observed that the graph trends of J1e(−β, t)
and J1e(−β, t) are similar, the similarity increasing with the increase of the value of a. The
similarity can be attributed to the regulation imposed by the exponential function. This

shows that the fractal operators

√
(p+β)2+α2−(p+β)

p and

√
(p+β)2−α2−(p+β)

p are symmetric,
the symmetry increasing with the increase of the value of β. When t → ∞ , there is

lim
t→∞

J1e(−1, t) = 414, lim
t→∞

J1e(−2, t) = 0.236. (62)

It can be seen that in the case of β = 2, the difference between functions J1e(−2, t) and
J1e(−2, t) is already minimal, and their graph contours are exactly the same.

Similarly, the graph trends of J̃1e(−β, t) and J̃1e(−β, t) in Figures 7 and 9, respec-

tively, are also similar, which means that the fractal operators

√
(p+β)2+α2−(p+β)

√
p and√

(p+β)2−α2−(p+β)
√

p also exhibit a pleasing symmetry. The function J̃1e(−1, t) attains its

maximum value 0.522 at amount t = 0.75, and the function J̃1e(−2, t) attains its maximum
value 0.379 at amount t = 0.4. Also, we can see that in the case of β = 2, the difference
between functions J̃1e(−2, t) and J̃1e(−2, t) is already minimal, and their graph contours
are exactly the same.

The logical basis of the above symmetries is the symmetry between the Bessel function
and the modified Bessel function, as well as the symmetry between the Struve function and
the modified Struve function. It is quite an unexpected result.

After comparing Figure 8, Figure 9, and Figure 4, it becomes evident that the oscillation
characteristics induced by the Bessel function J1(t) are completely eradicated following the
modulation of 1

t J1(t)e−2t, leaving no discernible trace of oscillation on the curve, which
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highlights the efficiency of eliminating oscillations by designing parameters with the help
of fractal operators.

5.5. Kernel Functions of the Fractal Operators
√

p + β, 1
p
√

p + β and 1√
p
√

p + β√
p + β is a classical operator. Jian et al. [19] conducted a detailed analysis and derived

the following expression:

√
p + α2η(t) = αerf(

√
α2t) +

e−α2t
√

πt
, (63)

where η(t) is the Heaviside step function. Setting β = α2 and noting that

pη(t) = δ(t), (64)

we can give that
1
p
√

p + βδ(t) =
√

βerf(
√

βt) +
e−βt
√

πt
, (65)

where erf(·) is the error function.
The operator 1

p
√

p + β will now be considered from a different perspective. When
β > 0, the inverse Laplace transformation gives that

L−1
(

1
p
√

p + β

)
=

e−βt
√

πt
+
√

βerf
(√

βt
)

. (66)

Therefore, the kernel function of the fractal operator is

1
p
√

p + βδ(t) =
e−βt
√

πt
+
√

βerf
(√

βt
)

. (67)

Equation (67) is consistent with the result derived by Jian et al. [19]. Since 1
p
√

p + β is an
irrational fractional-type operator, the kernel function contains the non-elementary function
erf(·).

Then, consider the operator 1√
p
√

p + β. For the Laplace transformation of the modified

Bessel function of the first kind J0 and J1, the following equation is valid:

L
{

β

2

[
J0

(
βt
2

)
+ J1

(
βt
2

)]}
=

√√√√ p + β
2

p − β
2

− 1. (68)

Observing the right side of Equation (68), if we introduce the translation transformation,
we can obtain that:

p → p +
β

2
,

Then, we have √√√√ p + β
2

p − β
2

→
√

p + β

p
.

That is, when the operator p is translated to p + β
2 , the operator is exactly translated to

√
p+β

p .
Therefore, Equation (68) combined with the translation property of the Laplace transformation
obtains that

L
{

β

2
e−

βt
2

[
J0

(
βt
2

)
+ J1

(
βt
2

)]}
=

√
p + β

p
− 1. (69)
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It can be derived further that[
1
√

p
√

p + β − 1
]

δ(t) =
β

2
e−

βt
2

[
J0

(
βt
2

)
+ J1

(
βt
2

)]
. (70)

1√
p
√

p + β − 1 is an irrational fractional-type operator, so its kernel function contains the
non-elementary function, specifically the modified Bessel function.

6. Conclusions

In this paper, the functional fractal circuit model of arterial blood flow was recon-
structed, the fractal operators were abstracted, and their kernel functions were studied.
The main conclusions drawn from this are as follows:

1. The structure and motion of living organisms offer abundant resources for exploring
new spatial forms and fractal operators. After taking the shunt effect of the branch
vessels into account, the reconstructed functional circuit model exhibited a distinct
topological structure compared to that of previous models. Such topological structure
can indeed yield insightful results.

2. By selecting basic admittance operators, the fractal operator family abstracted from the
fractal circuit model constituted the fundamental graph of the apparent
1/2-order operators. The kernel functions and properties of these operators offer
novel perspectives on the fields of automatic control and biomechanics.

3. The Bessel function and Struve function were related through explicit integration;
the modified Bessel function and modified Struve function also exhibited analogous
connection. The connections could be employed for constructing the kernel functions
of operators 1

p

√
p2 + α2 and 1

p

√
p2 − α2.

4. By translation transformation, the divergent operators
√

p2 − α2 and 1
p

√
p2 − α2 were

transformed into convergent operators
√
(p + β)2 − α2 and 1

p

√
(p + β)2 − α2, greatly

broadening the scope of the operators.

5. Under certain conditions, operators
√
(p + β)2 − α2, 1

p

√
(p + β)2 − α2, and

1√
p

√
(p + β)2 − α2 demonstrate notable symmetry with operators

√
(p + β)2 + α2,

1
p

√
(p + β)2 + α2, and 1√

p

√
(p + β)2 + α2 respectively. The constructions of the ker-

nel functions for those operators necessitates the introduction of novel special func-
tions, which possess properties challenging to articulate by elementary functions.

6. These results provide a powerful mathematical lexicon and toolkit for the biomechanics.

The results presented in this paper possess broad applicability and can be effectively
employed in the fields of biomechanics and automatic control. The scope of this paper is
limited to the combination of the fundamental electrical admittance operators: inductance,
capacitance, and resistance. To enhance our understanding of biological phenomena, future
research will incorporate more intricate electrical components (including fractional-order
components) for a more comprehensive depiction.
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Appendix A. Proof of Equation (19)

The following equation without parameter α is considered first:{
1
2
{2[tJ0(t)− J1(t)] + πt[J1(t)H0(t)− J0(t)H1(t)]}

}′
=

1
t

J1(t). (A1)

The Bessel function exhibits recursion properties:

J′n(t) =
1
2

Jn−1(t)−
1
2

Jn+1(t), (A2)

nJn(t) =
t
2

Jn−1(t) +
t
2

Jn+1(t). (A3)

From Equations (A2) and (A3) we can derive

J′n(t) =
n
t

Jn(t)− Jn+1(t). (A4)

The Struve function exhibits recursion properties:

Hn−1(t)− Hn+1(t) = 2H′
n(t)−

1
√

πΓ
(
n + 3

2
)( t

2

)n
, (A5)

Hn−1(t) + Hn+1(t) =
2n
t

Hn(t) +
1

√
πΓ
(
n + 3

2
)( t

2

)n
. (A6)

From Equations (A2), (A4) and (A5), we can derive that

J′0(t) = −J1(t), (A7)

J′1(t) =
1
2

J0(t)−
1
2

J2(t), (A8)

H′
0(t) =

1
2
[H−1(t) + H1(t)] +

4
π

, (A9)

H′
1(t) =

1
2
[H0(t) + H2(t)] +

t
3π

. (A10)

Substituting Equations (A7)–(A10) into the left side of Equation (A1) obtains{
1
2{J1(t)[−2 + πtH0(t)] + tJ0(t)[2 − πH1(t)]}

}′
= 1

2 J0(t)− 1
6 t2 J0(t)− 1

2 tJ1(t) + 1
2 J2(t)

+ 1
4 πtJ1(t)H−1(t) + 1

2 π J1(t)H0(t)
− 1

4 πtJ2(t)H0(t)− 1
2 π J0(t)H1(t)

+ 1
4 πtJ1(t)H1(t) + 1

4 πtJ0(t)H2(t)

. (A11)

From Equation (A3), we can obtain that the right side of Equation (A1) satisfies

1
t

J1(t) =
1
2
[J0(t) + J2(t)]. (A12)
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From Equations (A11) and (A12), we can obtain that Equation (A1) is equivalent to the
following equation:

1
4 π J1(t)H−1(t) + 1

2t π J1(t)H0(t)− 1
4 π J2(t)H0(t)

− 1
2t π J0(t)H1(t) + 1

4 π J1(t)H1(t) + 1
4 π J0(t)H2(t)

= t
6 J0(t) + 1

2 J1(t)
. (A13)

Then, we only need to prove Equation (A13). Substituting Equation (A12) into the left side
of the Equation (A13); eliminating 1

t J1(t), (A13) changes into

1
4 π J1(t)H−1(t) + 1

4 π J0(t)H0(t)
− 1

2t π J0(t)H1(t) + 1
4 π J1(t)H1(t)

+ 1
4 π J0(t)H2(t)

= t
6 J0(t) + 1

2 J1(t)

. (A14)

From Equation (A6) we can obtain that

H0(t) + H2(t) =
2
t

H1(t) +
2t
3π

, (A15)

H−1(t) + H1(t) =
2
π

. (A16)

Substituting Equation (A15) into Equation (A14), eliminating H0(t) + H2(t), Equation (A14)
changes into

1
4

π J1(t)H−1(t) +
1
4

π J1(t)H1(t) +
1
6

tJ0(t) =
t
6

J0(t) +
1
2

J1(t). (A17)

Substituting Equation (A16) into the left side of Equation (A17) directly obtains the right
side of Equation (A17); therefore, Equation (A17) is valid, i.e., the Equation (A1) is valid.

In Equation (A1), substituting the variable t into αt, i.e.,

t → αt,

we can obtain that

d
d(αt)

{
1
2
{2[αtJ0(αt)− J1(αt)] + παt[J1(αt)H0(αt)− J0(αt)H1(αt)]}

}
=

1
αt

J1(αt), (A18)

i.e.,

d
dt

{
1
2
{2[αtJ0(αt)− J1(αt)] + παt[J1(αt)H0(αt)− J0(αt)H1(αt)]}

}
=

1
t

J1(αt). (A19)

The Equation (A19) is obviously equivalent to Equation (19); therefore, Equation (19)
is proved.

Appendix B. Proof of the Convergence of the Integral
∫ t

0
1

τ
√

t − τ
J1(ατ)e−βτdτ

The theorem of convergence for improper integrals is introduced:

Theorem A1. Suppose that the function f (x) is continuous over the interval (a, b], and there
is f (x) ≥ 0, and x = a is a flaw of f (x). If there exists 0 < q < 1, which makes the limit
lim

x→a+
(x − a)q f (x) exist; then, the improper integral

∫ b
a f (x)dx is convergent.
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In the integral
∫ t

0
1

τ
√

t − τ
J1(ατ)e−βτdτ, introduce the variable substitution ζ = −τ;

then, we have ∫ t
0

1√
t − τ

1
τ

J1(ατ)e−βτdτ

=
∫ t

0
1√

t + (−τ)

1
τ

J1(ατ)eβ(−τ)dτ

=
∫ −t

0
1√

t + ζ

1
(−ζ)

J1(−αζ)eβζd(−ζ)

=
∫ 0
−t

1√
t + ζ

1
ζ

J1(αζ)eβζdζ

. (A20)

We have α, β > 0, and t > 0, so there is 1
ζ
√

t+ζ
J1(αζ)eβζ ≥ 0 over the interval −t < ζ < 0.

Obviously, ζ = −t is the flaw of the integrand. At ζ = 0, the limit of the integrand is
lim
ζ→0

1√
t+ζ

1
ζ J1(αζ)eβζ = α

2
√

t
, i.e., the limit exists. Therefore, the case at ζ = 0 does not affect

the convergence of the entire integral. Based on the fact that

lim
ζ→(−t)+

(ζ + t)
1
2 1√

t+ζ
1
ζ J1(αζ)eβζ

= lim
ζ→(−t)+

1
ζ J1(αζ)eβζ

= 1
t J1(αt)e−βt

(A21)

the limit lim
ζ→(−t)+

(ζ + t)
1
2 1√

t+ζ
1
ζ J1(αζ)eβζ exists. Then according to the Theorem, the in-

tegral
∫ 0
−t

1√
t + ζ

1
ζ

J1(αζ)eβζdζ is convergent, i.e., the integral
∫ t

0
1

τ
√

t − τ
J1(ατ)e−βτdτ

is convergent.
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