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Abstract: A five-dimensional hyperchaotic system is a dynamical system with five state variables
that exhibits chaotic behavior in multiple directions. In this work, we incorporated a 5D hyperchaotic
system with constant- and variable-order Caputo and the Caputo–Fabrizio fractional derivatives.
These fractional 5D hyperchaotic systems are solved numerically. Through simulations, the chaotic
behavior of these fractional-order hyperchaotic systems is analyzed and a comparison between
constant- and variable-order fractional hyperchaotic systems is presented.
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1. Introduction

A hyperchaotic system is a system that shows multiple chaotic behaviors simultane-
ously. These type of systems have more complex chaotic dynamics than regular chaotic
systems. Hyperchaotic systems involve the presence of multiple positive Lyapunov expo-
nents that indicate a higher degree of unpredictability and complexity in their behavior.
The unique characteristics of hyperchaotic systems make them valuable in various fields
where randomness, complexity, and security are important considerations.

For years, hyperchaotic systems have progressed consistently since their introduction
by Rossler [1]. Recently, numerous distinct hyperchaotic systems have been developed,
such as the 2D hyperchaotic system for image encryption proposed by Erkan, Toktas, and
Lai [2]. Erkan et al. also [3] designed a two dimensional hyperchaotic system using the
optimization benchmark function. Zhu et al. [4] constructed a 2D hyperchaotic map with
application in pseudo-random number generation and color image encryption. Gao [5]
presented an image encryption algorithm based on a 2D hyperchaotic system. A 2D
cosine–sine interleaved chaotic system for secure communications was introduced by Tang
et al. [6]. A simple chaotic model with complex chaotic behavior was also studied by
Tang et al. [7]. Further developments in 3D hyperchaotic systems with applications in
secure transmission were studied by Li et al. [8]. A non-degenerate hyperchaotic map
with an ultra-wide parameter range was presented by Huang et al. [9]. Cui and Li [10]
proposed a hyperchaotic system with four dimensions. The dynamics of a multi-stable 4D
hyperchaotic Lorenz system, along with its applications, were studied by Leutcho et al. [11].
Advancements in dynamical systems with five state variables with more than one positive
Lyapunov exponent were studied by Ojoniyi and Njah [12], along with coexisting hidden
attractors. A multistable 5D memristive hyperchaotic system with coexisting multiple
attractors was studied by Yu et al. [13]. Li and Cui [14] proposed a 5D hyperchaotic system
and provided a dynamical analysis.
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The intricate dynamics of the hyperchaotic systems have led to its extensive applica-
tions across various domains, such as electronics, communications, information processing,
neuroscience, and more. These applications include image encryption [15–22], audio en-
cryption [23,24], video encryption [25], random number generation [26,27], and secure
communication [6,28,29].

Instead of using integer-order derivatives and integrals, hyperchaotic systems can be
described with fractional-order derivatives. Fractional derivatives are a generalization of
the concept of derivatives to non-integer (fractional) orders. This advanced mathematical
framework effectively models systems with memory and hereditary properties, which
are common in various complex physical, biological, and engineering systems. Key types
of fractional derivatives include Riemann–Liouville [30], Liouville–Caputo [30], Caputo–
Fabrizio [31], and more. These equations allow for a more nuanced description of system
dynamics. The synchronization of chaotic systems with fractional orders facilitates secure
communication and information transmission. By incorporating fractional calculus [30],
hyperchaotic systems can capture complex behaviors that may not be fully captured
by integer-order models. This introduces additional complexity into the dynamics of
hyperchaotic systems, which includes long-range memory effects, non-local interactions,
and anomalous diffusion.

Iskakova et al. [32] studied the dynamics of a 4D hyperchaotic system using integer-
and fractional-order derivatives. Feng et al. [33] considered a fractional-order 3D Lorenz
chaotic system and 2D discrete polynomial hyperchaotic map for high-performance multi-
image encryption. Az-Zo’bi et al. [34] studied the dynamics of a generalized time-fractional
viscous-capillarity compressible fluid model. Sene [35] presented the theory and applica-
tions of a fractional-order chaotic system with a Caputo operator.

Fractional-order hyperchaotic systems can develop advanced control strategies, syn-
chronization schemes [36,37], and encryption techniques for a wide range of practical
applications in secure communications [38,39], image encryption [34,40–43], etc.

In this work, we study the complex and dynamical behavior of a five-dimensional
hyperchaotic system. We will incorporate the 5D hyperchaotic system proposed by Az-
zawi and Hasan [44] with constant- and variable-order Caputo and Caputo–Fabrizio (CF)
fractional derivatives.

In fractional derivatives with a constant order, the derivative remains constant through-
out the process, while a variable-order fractional derivative [45] is a generalization of the
traditional fractional derivative (order of the derivative remains constant in traditional
fractional calculus) where the order of differentiation varies as a function of time or space.
By allowing the fractional order to vary, variable-order fractional derivatives provide a
more versatile and responsive method for modeling and studying intricate systems. The
application of variable-order fractional derivatives can be seen in neural networks [46],
solid mechanics [47], dynamic analyses of a nonlinear oscillator [48], etc.

In our current work, we consider the following fractional-order 5D hyperchaotic system.

• 5D constant-order fractional Caputo hyperchaotic system:

LC
0 Dϱ

0{x(t)} = y z − c v, x(0) = x0;
LC
0 Dϱ

0{y(t)} = x − y, y(0) = y0;
LC
0 Dϱ

0{z(t)} = 1 − x2, z(0) = z0; (1)
LC
0 Dϱ

0{u(t)} = a x z + b u, u(0) = u0,
LC
0 Dϱ

0{v(t)} = x + p y z, v(0) = v0.

• 5D variable-order fractional Caputo hyperchaotic system:
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LCV
0 Dϱ(t)

0 {x(t)} = y z − c v, x(0) = x0;
LCV
0 Dϱ(t)

0 {y(t)} = x − y, y(0) = y0;
LCV
0 Dϱ(t)

0 {z(t)} = 1 − x2, z(0) = z0; (2)
LCV
0 Dϱ(t)

0 {u(t)} = a x z + b u, u(0) = u0;
LCV
0 Dϱ(t)

0 {v(t)} = x + p y z, v(0) = v0.

• 5D constant-order fractional Caputo–Fabrizio hyperchaotic system:

CF
0 Dϱ

0{x(t)} = y z − c v, x(0) = x0;
CF
0 Dϱ

0{y(t)} = x − y, y(0) = y0;
CF
0 Dϱ

0{z(t)} = 1 − x2, z(0) = z0; (3)
CF
0 Dϱ

0{u(t)} = a x z + b u, u(0) = u0;
CF
0 Dϱ

0{v(t)} = x + p y z, v(0) = v0.

• 5D variable-order fractional Caputo–Fabrizio hyperchaotic system:

CFV
0 Dϱ(t)

0 {x(t)} = y z − c v, x(0) = x0;
CFV
0 Dϱ(t)

0 {y(t)} = x − y, y(0) = y0;
CFV
0 Dϱ(t)

0 {z(t)} = 1 − x2, z(0) = z0; (4)
CFV
0 Dϱ(t)

0 {u(t)} = a x z + b u, u(0) = u0;
CFV
0 Dϱ(t)

0 {v(t)} = x + p y z, v(0) = v0.

where

LCDϱ
t : Caputo f ractional derivative with constant order;

CFDϱ
t : Caputo − Fabrizio f ractional derivative with constant order;

LCVDϱ(t)
0 : Caputo f ractional derivative with variable order;

CFVDϱ(t)
0 : Caputo − Fabrizio f ractional derivative with variable order.

Here, x, y, z, u, v are driving variables and a, b, c, p are constants.
The paper is organized in the following manner. Section 2 provides the preliminar-

ies. In Section 3, we obtain the numerical solution and simulations for the 5D constant-
and variable-order fractional Caputo hyperchaotic systems. In Section 4, we obtain the
numerical solution and simulations for the 5D constant- and variable-order fractional
Caputo–Fabrizio hyperchaotic system. Finally, the conclusion is provided in Section 5.

2. Preliminaries

Definition 1 ([30]). The Liouville–Caputo (LC) derivative with constant order ϱ is given as follows:

LCDϱ
t g(t) =

1
Γ(1 − ϱ)

∫ t

0

1
(t − w)ϱ

d
d w

g(w)d w, 0 < ϱ < 1. (5)

Definition 2 ([31]). The Caputo–Fabrizio (CF) derivative with constant-order ϱ is defined as
follows:

CFDϱ
t (g(t)) =

M(ϱ)

1 − ϱ

∫ t

0
exp

(
−ϱ(t − w)

1 − ϱ

)
g′(w)dw, 0 < ϱ < 1, (6)

where M(ϱ) is known as the normalization function with the following condition: M(0) = 1 =
M(1).
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Definition 3 ([49]). The Liouville–Caputo (LC) fractional derivative of variable-order ϱ(t) is given
as follows:

LCV
0 Dϱ(t)

0 g(t) =
1

Γ(1 − ϱ(t))

∫ t

0
(t − w)−ϱ(t) g′(w)dw, 0 < ϱ(t) < 1. (7)

Definition 4 ([49]). The Caputo–Fabrizio (CF) fractional derivative with variable-order ϱ(t) in
the LC sense is defined as follows:

CFV
0 Dϱ(t)

0 g(t) =
(2 − ϱ(t)) M(ϱ(t))

2(1 − ϱ(t))

∫ t

0
exp

[
−ϱ(t)

(t − w)

1 − ϱ(t)

]
g′(w)dw, 0 < ϱ(t) < 1, (8)

where M(ϱ(t)) is the normalization function with the value 2
2−ϱ(t) .

3. Computational Techniques for Solving a 5D Constant- and Variable-Order Fractional
Caputo Hyperchaotic System

In this section, we compute the numerical solutions for the 5D constant-order fractional
Caputo hyperchaotic system and the 5D variable-order fractional Caputo hyperchaotic system.

To find the numerical solution for a 5D constant-order fractional Caputo hyperchaotic
system, we take into account the method as proposed in [50] and will take into account the
numerical method proposed by Perez et al. [49] to compute the numerical solution for the
5D variable-order fractional Caputo hyperchaotic system.

3.1. Computational Techniques for Solving a 5D Constant-Order Caputo Hyperchaotic System

Consider the 5D constant-order fractional Caputo hyperchaotic system, which is
as follows:

LC
0 Dϱ

0{x(t)} = y z − c v, x(0) = x0,
LC
0 Dϱ

0{y(t)} = x − y, y(0) = y0,
LC
0 Dϱ

0{z(t)} = 1 − x2, z(0) = z0, (9)
LC
0 Dϱ

0{u(t)} = a x z + b u, u(0) = u0,
LC
0 Dϱ

0{v(t)} = x + p y z, v(0) = v0,

where LC
0 Dϱ

0 represents the Caputo fractional derivative with constant order.
To find the numerical solution, consider the following equation:

LC
0 Dϱ

0{S(t)} = ϑ(t, S(t)), t ≥ 0, S(0) = S0, (10)

where S(t) = {x(t), y(t), z(t), u(t), v(t)} and S(0) = {x(0), y(0), z(0), u(0), v(0)}.
Using the numerical method given by [50], Equation (10) can be reformulated as

follows:

S(t) = S(0) +
1

Γ(ϱ)

∫ t

0
(t − w)ϱ−1ϑ(S, w)dw, (11)

at time t = tn+1, Equation (11) is as follows:

Sn+1 = S(tn+1) = S(0) +
1

Γ(ϱ)

∫ tn+1

0
(tn+1 − w)ϱ−1ϑ(S, w)dw, (12)

at time t = tn, Equation (11) is as follows:
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Sn = S(tn) = S(0) +
1

Γ(ϱ)

∫ tn

0
(tn − w)ϱ−1ϑ(S, w)dw, (13)

From (12) and (13)

S(tn+1)− S(tn) =
1

Γ(ϱ)

[∫ tn+1
0 (tn+1 − w)ϱ−1ϑ(S, w)dw

−
∫ tn

0 (tn − w)ϱ−1 ϑ(S, w)dw
]
.

(14)

Using Lagrange polynomial interpolation, the numerical solution of Equation (10) is
as follows:

Sn+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, Sm)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, Sm−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
.

(15)

Hence, the numerical solutions for the 5D constant-order fractional hyperchaotic
system are given as follows:

xn+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, xm)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, xm−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
,

(16)

where ϑ1(t, x) = y z − c v.

yn+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, ym)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, ym−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
,

(17)

where ϑ2(t, y) = x − y.

zn+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, zm)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, zm−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
,

(18)

where ϑ3(t, z) = 1 − x2.

un+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, um)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, um−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
,

(19)

where ϑ4(t, u) = a x z + b u.

vn+1 = ϱhϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm, vm)[(n − m + 1)ϱ(n − m + 2 + 2ϱ)

− (n − m)ϱ(n − m + 2 + 2ϱ)]

− hϱ

Γ(ϱ+2)

r
∑

m=0
ϑ(tm−1, vm−1)

[
(n − m + 1)ϱ+1 − (n − m)ϱ(n − m + 1 + ϱ)

]
,

(20)

where ϑ5(t, v) = x + p y z.
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By solving the above equations, we can obtain the solutions for the 5D constant-order
fractional Caputo hyperchaotic system.

3.2. Computational Techniques for Solving a 5D Variable-Order Fractional Caputo
Hyperchaotic System

Consider the 5D variable-order fractional Caputo hyperchaotic system, which is
given as follows:

LCV
0 Dϱ(t)

0 {x(t)} = y z − c v, x(0) = x0,
LCV
0 Dϱ(t)

0 {y(t)} = x − y, y(0) = y0,
LCV
0 Dϱ(t)

0 {z(t)} = 1 − x2, z(0) = z0, (21)
LCV
0 Dϱ(t)

0 {u(t)} = a x z + b u, u(0) = u0,
LCV
0 Dϱ(t)

0 {v(t)} = x + p y z, v(0) = v0,

where LC
0 Dϱ(t)

0 represents the Caputo fractional derivative with variable order.
To find the numerical solutions, consider the following equation:

LCV
0 Dϱ(t)

0 {S(t)} = f (t, S(t)), S(0) = S0, (22)

where, S(t) = {x(t), y(t), z(t), u(t), v(t)} and S(0) = {x(0), y(0), z(0), u(0), v(0)}.
Equation (22) is simplified as presented in [50] to obtain

S(t)− S(0) =
1

Γ(ϱ(t))

∫ t

0
f (w, S(w))(t − w)ϱ(t)−1dw. (23)

At t = tn+1, Equation (23) is formulated as follows:

S(tn+1)− S(0) =
1

Γ(ϱ(t))

n

∑
r=0

∫ tr+1

tr
f (w, S(w))(tn+1 − w)ϱ(t)−1dw. (24)

The function f (w, S(w)) is approximated using the two-step Lagrange polynomial
interpolation in an interval [tk, tk+1]

Mk(w) ≃
f (tξ , Sξ)

h
(w − tξ−1)−

f (tξ − 1, Sξ−1)

h
(S − tξ). (25)

Now, considering Equations (24) and (25), we have

Sn+1(t) = S0 +
1

Γ(ϱ(t))

n
∑

ξ=0

(
f (tξ ,Sξ )

h

∫ tξ+1
tξ

(t − tξ−1)(tξ+1 − t)ϱ(t)−1dt

− f (tξ−1,Sξ−1)
h

∫ tξ+1
tξ

(t − tξ)(tξ+1 − t)ϱ(t)−1dt
)

.
(26)

For ease of calculation, we define the following expressions:

Aϱ(t),ξ,1 = hϱ(t)+1 (n + 1 − ξ)ϱ(t) (n − ξ + 2 + ϱ(t)) − (n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
ϱ(t)(ϱ(t) + 1)

, (27)

Aϱ(t),ξ,2 = hϱ(t)+1 (n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))
ϱ(t)(ϱ(t) + 1)

. (28)
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From (26) and (27)

Sn+1(t) = S(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) f (tξ ,Sξ )

ϱ(t) (ϱ(t)+1)

(
(n + 1 − ξ)ϱ(t) × (n − ξ + 2 + ϱ(t))

−(n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)
− hϱ(t) f (tξ−1,yξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
.

(29)

Hence, for the variable-order hyperchaotic system with a Caputo derivative, the
numerical solutions are as follows:

xn+1(t) = x(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) ϑ1(tξ ,xξ ,yξ ,zξ ,uξ ,vξ )

ϱ(t) (ϱ(t)+1) ×
(
(n + 1 − ξ)ϱ(t)

(n − ξ + 2 + ϱ(t))− (n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)

− hϱ(t) ϑ1(tξ−1,xξ−1,yξ−1,zξ−1,uξ−1,vξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
,

(30)

where ϑ1(t, x) = y z − c v.

yn+1(t) = y(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) ϑ2(tξ ,xξ ,yξ ,zξ ,uξ ,vξ )

ϱ(t) (ϱ(t)+1) ×
(
(n + 1 − ξ)ϱ(t)

(n − ξ + 2 + ϱ(t))− (n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)

− hϱ(t) ϑ2(tξ−1,xξ−1,yξ−1,zξ−1,uξ−1,vξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
,

(31)

where ϑ2(t, y) = x − y.

zn+1(t) = z(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) ϑ3(tξ ,xξ ,yξ ,zξ ,uξ ,vξ )

ϱ(t) (ϱ(t)+1) ×
(
(n + 1 − ξ)ϱ(t)

(n − ξ + 2 + ϱ(t))− (n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)

− hϱ(t) ϑ3(tξ−1,xξ−1,yξ−1,zξ−1,uξ−1,vξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
,

(32)

where ϑ3(t, z) = 1 − x2.

un+1(t) = u(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) ϑ4(tξ ,xξ ,yξ ,zξ ,uξ ,vξ )

ϱ(t) (ϱ(t)+1) ×
(
(n + 1 − ξ)ϱ(t)

(n − ξ + 2 + ϱ(t))− (n − r)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)

− hϱ(t) ϑ4(tξ−1,xξ−1,yξ−1,zξ−1,uξ−1,vξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
,

(33)

where ϑ4(t, u) = a x z + b u.

vn+1(t) = v(0) + 1
Γ(ϱ(t))

n
∑

ξ=0

(
hϱ(t) ϑ5(tξ ,xξ ,yξ ,zξ ,uξ ,vξ )

ϱ(t) (ϱ(t)+1) ×
(
(n + 1 − ξ)ϱ(t)

(n − ξ + 2 + ϱ(t))− (n − ξ)ϱ(t) (n − ξ + 2 + 2ϱ(t))
)

− hϱ(t) ϑ5(tξ−1,xξ−1,yξ−1,zξ−1,uξ−1,vξ−1)

ϱ(t) (ϱ(t)+1)

×
(
(n + 1 − ξ)ϱ(t)+1 − (n − ξ)ϱ(t) (n − ξ + 1 + ϱ(t))

))
,

(34)
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where ϑ5(t, v) = x + p y z.
By solving the above equations, we can obtain the solutions for the 5D variable-order

fractional Caputo hyperchaotic system.

4. Computational Techniques for Solving the 5D Constant- and Variable-Order
Fractional CF Hyperchaotic Systems

In this section, we compute the numerical solutions for the 5D constant-order fractional
CF hyperchaotic system and the 5D variable-order fractional CF hyperchaotic system.

To find the numerical solution for the 5D constant-order fractional CF hyperchaotic
system, we take into account the method proposed by Toufik and Atangana [51] and will
take into account the numerical method proposed by Perez et al. [49].

4.1. Numerical Solutions for Solving the 5D Constant-Order Fractional CF Hyperchaotic System

Consider the 5D constant-order fractional CF hyperchaotic system, which is as follows:

CF
0 Dϱ

0{x(t)} = y z − c v, x(0) = x0,
CF
0 Dϱ

0{y(t)} = x − y, y(0) = y0,
CF
0 Dϱ

0{z(t)} = 1 − x2, z(0) = z0, (35)
CF
0 Dϱ

0{u(t)} = a x z + b u, u(0) = u0,
CF
0 Dϱ

0{v(t)} = x + p y z, v(0) = v0,

where CFDϱ
t is the constant-order CF fractional derivative.

To obtain the numerical solutions, we consider the following equation:

CFDϱ
t S(t) = ϑ(t, S(t)), t ≥ 0, S(0) = S0, (36)

where S(t) = {x(t), y(t), z(t), u(t), v(t)} and S(0) = {x(0), y(0), z(0), u(0), v(0)}.

Using the method referenced in [50], we rewrite the above equation as follows:

S(t)− S(0) =
1 − ϱ

M(ϱ)
ϑ (t, S(t)) +

ϱ

M(ϱ)

∫ t

0
ϑ (w, S(w))dw. (37)

At time t = tn+1, Equation (37) becomes

S(tn+1)− S(0) =
1 − ϱ

M(ϱ)
ϑ(tn, S(tn)) +

ϱ

M(ϱ)

∫ tn+1

0
ϑ(w, S(w))dw. (38)

At time t = tn, Equation (37) can be used to obtain the following:

S(tn)− S(0) =
1 − ϱ

M(ϱ)
ϑ (tn−1, S(tn−1)) +

ϱ

M(ϱ)

∫ tn

0
ϑ (w, S(w))dw. (39)

From Equations (38) and (39), we can obtain the following:

S(tn+1) − S(tn) =
1 − ϱ

M(ϱ)
[ϑ (tn, S(tn)) − ϑ (tn−1, S(tn−1))] +

ϱ

M(ϱ)

∫ tn+1

tn

ϑ(w, S(w))dw. (40)

Lagrange polynomial interpolation on ϑ(w, S(w)) leads to the following:

ϑ (w, S(w)) =
w − tm−1

tm − tm−1
ϑ (tm, Stm) +

w − tm

tm−1 − tm
ϑ (tm−1, Stm−1). (41)
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Substituting ϑ (w, S(w)) in Equation (40), we can obtain the following:

Sn+1 − Sn = 1−ϱ
M(ϱ)

[ϑ (tn, S(tn))− ϑ (tn−1, S(tn−1))] +
ϱ

M(ϱ)∫ tn+1
tn

(
ϑ (tn ,Sn)

h (w − tn−1)− ϑ (tn−1,Sn−1)
h (w − tn)

)
dw.

(42)

Substituting h = tn − tn−1 and after solving this, we have

Sn+1 = S0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ (tn, S(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ(tn−1, S(tn−1)). (43)

Hence, the numerical solutions for the 5D constant-order fractional CF hyperchaotic
system are given as follows:

xn+1 = x0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ1(tn, x(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ1(tn−1, x(tn−1)), (44)

where, ϑ1(t, x) = y z − c v.

yn+1 = y0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ2(tn, y(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ2(tn−1, y(tn−1)), (45)

where, ϑ2(t, y) = x − y.

zn+1 = z0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ3(tn, z(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ3(tn−1, z(tn−1)), (46)

where, ϑ3(t, z) = 1 − x2.

un+1 = u0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ4(tn, u(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ4(tn−1, u(tn−1)), (47)

where, ϑ4(t, u) = a x z + b u.

vn+1 = v0 +

(
1 − ϱ

M(ϱ)
+

3h
2 M(ϱ)

)
ϑ5(tn, v(tn))−

(
1 − ϱ

M(ϱ)
+

ϱ h
2 M(ϱ)

)
ϑ5(tn−1, v(tn−1)), (48)

where, ϑ5(t, v) = x + p y z.

Solving the above equations, we can obtain the solutions for the 5D variable-order
fractional CF hyperchaotic system.

4.2. A Computational Method for Solving the 5D Variable-Order Fractional CF
Hyperchaotic System

Consider the 5D variable-order fractional CF hyperchaotic system, which is given
as follows:

CFV
0 Dϱ(t)

0 {x(t)} = y z − c v, x(0) = x0,
CFV
0 Dϱ(t)

0 {y(t)} = x − y, y(0) = y0,
CFV
0 Dϱ(t)

0 {z(t)} = 1 − x2, z(0) = z0, (49)
CFV
0 Dϱ(t)

0 {u(t)} = a x z + b u, u(0) = u0,
CFV
0 Dϱ(t)

0 {v(t)} = x + p y z, v(0) = v0,

where CFV
0 Dϱ(t)

0 is the variable-order CF fractional derivative.
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Now, to analyze the model, we first consider the following differential equation:

CFV
0 Dϱ(t)

0,t {S(t)} = ϑ(t, S(t)), S(0) = S0, (50)

where, S(t) = {x(t), y(t), z(t), u(t), v(t)} and S(0) = {x(0), y(0), z(0), u(0), v(0)}.

Using the method described in [50], the above equation is rewritten as follows:

S(t)− S(0) =
1 − ϱ(t)
M(ϱ(t))

ϑ(t, S(t)) +
ϱ(t)

M(ϱ(t))

∫ t

0
f (w, S(w))dw. (51)

Equation (51) at time t = tn+1 is provided as follows:

S(tn+1)− S(0) =
(2 − ϱ(t)) (1 − ϱ(t))

2
ϑ(tn, S(tn)) +

(2 − ϱ(t))ϱ(t)
2

∫ tn+1

0
ϑ(t, S(t))dt, (52)

and, at time t = tn is

S(tn)− S(0) =
(2 − ϱ(t)) (1 − ϱ(t))

2
ϑ(tn−1, S(tn−1)) +

(2 − ϱ(t))ϱ(t)
2

∫ tg

0
ϑ(t, S(t))dt. (53)

From (53) and (52), we have

S(tn+1) = S(tn) +
(2−ϱ(t)) (1−ϱ(t))

2 × [ϑ(tn, S(tn))− ϑ(tn−1, S(tn−1))]

+ ϑ(t) (2−ϑ(t))
2

∫ tn+1
tn

ϑ(t, S(t))dt,
(54)

where, ∫ tn+1

tn
ϑ(t, S(t))dt =

3 h
2

ϑ(tn, Sn)−
h
2

ϑ(tn−1, Sn−1). (55)

The following equation provides the numerical solution of Equation (50).

Sn+1 = Sn +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ(tn, Sn)

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ(tn−1, Sn−1).

(56)

Proceeding as above, the numerical solutions for the 5D variable-order fractional
chaotic system with a CF derivative are presented as follows:

xn+1(t) = xn +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ1(tn, xn(t), yn(t), zn(t), un(t), vn(t))

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ1(tn−1, xn−1(t), yn−1(t), zn−1(t), un−1(t), vn−1(t)),

(57)

where ϑ1(t, x) = y z − c v.

yn+1(t) = yn +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ2(tn, xn(t), yn(t), zn(t), un(t), vn(t))

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ2(tn−1, xn−1(t), yn−1(t), zn−1(t), un−1(t), vn−1(t)),

(58)

where ϑ2(t, y) = x − y.

zn+1(t) = zn +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ3(tn, xn(t), yn(t), zn(t), un(t), vn(t))

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ3(tn−1, xn−1(t), yn−1(t), zn−1(t), un−1(t), vn−1(t)),

(59)

where ϑ3(t, z) = 1 − x2.

un+1(t) = un +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ4(tn, xn(t), yn(t), zn(t), un(t), vn(t))

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ4(tn−1, xn−1(t), yn−1(t), zn−1(t), un−1(t), vn−1(t)),

(60)

where ϑ4(t, u) = a x z + b u.
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vn+1(t) = vn +
[
(2−ϱ(t)) (1−ϱ(t))

2 + 3 h
4 (2 − ϱ(t))ϱ(t)

]
ϑ5(tn, xn(t), yn(t), zn(t), un(t), vn(t))

−
[
(2−ϱ(t)) (1−ϱ(t))

2 + h
4 (2 − ϱ(t))ϱ(t)

]
ϑ5(tn−1, xn−1(t), yn−1(t), zn−1(t), un−1(t), vn−1(t)),

(61)

where ϑ5(t, v) = x + p y z.
Solving the above equations, we can obtain the solutions for the 5D variable-order

fractional CF hyperchaotic system.
The next section presents the simulations used to understand the chaotic behavior

of the 5D constant- and variable-order fractional CF hyperchaotic systems using phase
portraits and 3D graphs.

4.3. Simulations

We now perform the simulations for the 5D constant and variable order Caputo and
CF hyperchaotic systems. The simulations are performed at fractional order ϱ = 0.899.
The parameters a, b, c, andp take the values 1, 0.3, 0.006, and 1, respectively, and the initial
values are taken as x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2 [44].

4.4. Discussion

• In Figure 1, the phase portraits illustrating the behavior of the 5D constant- and
variable-order fractional hyperchaotic systems with the Caputo derivative are pre-
sented.

• Figures 2–4 present the 3D graphs used to illustrate the behavior of the 5D constant-
and variable-order fractional hyperchaotic systems with Caputo derivative.

• In Figures 5 and 6, the phase portraits illustrating the behavior of the 5D constant- and
variable-order fractional hyperchaotic systems with the CF derivative are given.

• Figures 7–9 present the 3D graphs illustrating the behavior of the constant- and
variable-order fractional hyperchaotic systems with the CF derivative.

A difference can be observed between the dynamics of the behavior of the solution of
the hyperchaotic system with constant order and the dynamics of the solution’s behavior
with the variable order. We observe that when the order of the fractional derivative varies
with respect to time, the intrinsic dynamics of the hyperchaotic system are captured more
effectively as compared to the constant-order fractional hyperchaotic system. This shows
that the variable-order hyperchaotic system provides a more comprehensive analysis and
better understanding of the chaotic behavior of the system compared to the constant-
order system.

Further, in Figures 1–9, we can observe a difference in the chaotic behavior of the
hyperchaotic system with two different fractional derivatives (Caputo and CF). We observe
that due to the exponential kernel in the CF derivative, we see more complexity in the
chaotic behaviour of the fractional hyperchaotic system with the CF derivative as compared
to the fractional hyperchotic system with the Caputo derivative.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Comparison between the phase portrait behavior of constant- and variable-order fractional
Caputo 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1, x(0) = 0.1,
y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-y plane phase portrait at constant fractional
order 0.899; (b) x-y plane phase portrait at variable fractional order 0.899; (c) x-z plane phase portrait
at constant fractional order 0.899; (d) x-z plane phase portrait at variable fractional order 0.899;
(e) y-z plane phase portrait at constant fractional order 0.899; (f) y-z plane phase portrait at variable
fractional order 0.899.



Fractal Fract. 2024, 8, 421 13 of 23

(a) (b)

(c) (d)

(e) (f)

Figure 2. Three-dimensional graphs showing a comparison between constant- and variable-order
fractional Caputo 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1, x(0) = 0.1,
y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-y-z plane representation at constant
fractional order 0.899; (b) x-y-z plane representation at variable fractional order 0.899; (c) x-y-v
plane representation at constant fractional order 0.899; (d) x-y-v plane representation at variable
fractional order 0.899; (e) x-z-u plane representation at constant fractional order 0.899; (f) x-z-u plane
representation at variable fractional order 0.899.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Three-dimensional graphs showing a comparison between constant- and variable-order
fractional Caputo 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1,
x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-z-v plane representation for
constant-order Caputo derivative; (b) x-z-v plane representation for variable-order Caputo derivative;
(c) y-z-u plane representation for constant-order Caputo derivative; (d) y-z-u plane representation for
variable-order Caputo derivative; (e) y-z-v plane representation for constant-order Caputo derivative;
(f) y-z-v plane representation for variable-order Caputo derivative.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Three-dimensional graphs showing a comparison between constant- and variable-order
fractional Caputo 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1,
x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) z-u-v plane representation for
constant-order Caputo derivative; (b) z-u-v representation for variable-order Caputo derivative;
(c) x-y-u representation for constant-order Caputo derivative; (d) x-y-u representation for variable-
order Caputo derivative; (e) x-u-v representation for constant-order Caputo derivative; (f) x-u-v
representation for variable-order Caputo derivative.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison between the phase portraits of constant- and variable-order fractional CF
5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1, x(0) = 0.1, y(0) = 0.1,
z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-y plane phase portrait at constant fractional order 0.899;
(b) x-y plane phase portrait at variable fractional order 0.899; (c) x-z plane phase portrait at constant
fractional order 0.899; (d) x-z plane phase portrait at variable fractional order 0.899; (e) x-v plane
phase portrait at constant fractional order 0.899; (f) x-v plane phase portrait at variable fractional
order 0.899.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparison between the phase portraits of constant- and variable-order fractional CF
5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1, x(0) = 0.1, y(0) = 0.1,
z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) y-z plane phase portrait at constant fractional order 0.899;
(b) y-z plane phase portrait at variable fractional order 0.899; (c) y-v plane phase portrait at constant
fractional order 0.899; (d) y-z plane phase portrait at variable fractional order 0.899; (e) z-v plane
phase portrait at constant fractional order 0.899; (f) z-v plane phase portrait at variable fractional
order 0.899.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Three-dimensional graphs showing a comparison between constant- and variable-
order fractional CF 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1,
x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-y-z representation for constant-
order CF derivative; (b) x-y-z representation for variable-order CF derivative; (c) x-y-u represen-
tation for constant-order CF derivative; (d) x-y-u representation for variable-order CF derivative;
(e) x-y-v representation for constant-order CF derivative; (f) x-y-v representation for variable-order
CF derivative.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Three-dimensional graphs showing a comparison between constant- and variable-
order fractional CF 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1,
x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) y-z-u representation for constant-
order CF derivative; (b) y-z-u representation for variable-order CF derivative; (c) y-z-v represen-
tation for constant-order CF derivative; (d) y-z-v representation for variable-order CF derivative;
(e) z-u-v representation for constant-order CF derivative; (f) z-u-v representation for variable-order
CF derivative.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Three-dimensional graphs showing a comparison between constant- and variable-
order fractional CF 5D hyperchaotic systems with ϱ = 0.899, a = 1, b = 0.3, c = 0.006, p = 1,
x(0) = 0.1, y(0) = 0.1, z(0) = 0.2, u(0) = 0.1, and v(0) = 0.2: (a) x-z-u representation for constant-
order CF derivative; (b) x-z-u representation for variable-order CF derivative; (c) x-z-v represen-
tation for constant-order CF derivative; (d) x-z-v representation for variable-order CF derivative;
(e) x-u-v representation for constant-order CF derivative; (f) x-u-v representation for variable-order
CF derivative.

5. Conclusions

In this study, we examined both the constant- and variable-order fractional 5D hyper-
chaotic systems using the Caputo and CF derivatives. Numerical solutions for all four cases
are presented in Sections 3 and 4, along with the simulations. Figures 1–4 show the chaotic
behavior of the 5D constant- and variable-order Caputo fractional hyperchaotic systems at
fractional order ϱ = 0.8999. Figures 5–9 illustrate the same for the CF fractional systems.
By observing the figures, we conclude that the simulations highlight differences between
constant- and variable-order Caputo and CF derivatives. Varying the fractional order with
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respect to t adds complexity to the chaotic behavior. As we examined the hyperchaotic
system with two different fractional derivatives (Caputo and CF), our results demonstrate
that the selection of fractional derivative markedly influences the chaotic behavior of the
system. We observe that the CF derivative provides a more profound insight into the
complexity of the 5D hyperchaotic system compared to the Caputo derivative. The expo-
nential kernel in the CF derivative induces extensive interactions, leading to an intricate
and unpredictable behavior. We also observe that hyperchaotic systems with a variable-
order fractional derivative enable a more comprehensive analysis of the chaotic regions
as compared to hyperchaotic systems with constant-order fractional derivatives. Hence, a
hyperchaotic system with a variable-order fractional derivative deepens the understanding
of the system’s dynamics.
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