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Abstract: Settlement prediction based on monitoring data holds significant importance for engi-
neering maintenance of seawalls. In practical engineering, the volume of the collected monitoring
data is often limited due to the restrictions of devices and engineering budgets. Previous studies
have applied the fractional-order grey model to time series prediction under the situation of limited
data volume. However, the performance of the fractional-order grey model is easily affected by
the inappropriate settings of fractional order. Also, the model cannot make dynamic predictions
due to the characteristic of fixed step size. To solve the above problems, in this paper, the genetic
algorithm with enhanced search capabilities was employed to solve the premature convergence
problem. Additionally, to solve the problem of the fractional-order grey model associated with fixed
step size, the real-time tracing algorithm was introduced to conduct equal-dimensionally recursive
calculation. The proposed model was validated using monitoring data of four monitoring points at
Haiyan seawall in Zhejiang province, China. The prediction performance of the proposed model was
then compared with those of the fractional-order GM(1,1), integer-order GM(1,1), and fractal theory
model. Results indicate that the proposed model significantly improves the prediction performance
compared to other models.

Keywords: seawall; settlement prediction; genetic algorithm; fractional-order grey model; real-time
tracing algorithm

1. Introduction

Seawalls are commonly established atop foundations of deep soft soils whose physical
and mechanical features are distinctive, e.g., high compressibility, high water content, and
diminished strength, as well as specific rheological behavior [1,2]. These characteristics
lead to significant settlement during both the construction phase and post-construction
phase. The total subsidence may reach several meters and the consolidation settlement
period lasts more than 10 years [3–5]. The large vertical settlement on soft soil foundations
threatens the stability of seawalls, which greatly increases the risk of structural damage
and safety incidents. Therefore, predicting seawall settlement is essential to engineering
security operations and risk management.

Time series monitoring data record the historical behavior of seawalls, including its
structural characteristics and operational patterns [6,7] among which settlement is one of
the most crucial parameters. Predicting the settlement based on time series monitoring data
using mathematical algorithms forms a reliable approach for assessing the safety status
of the seawall [8,9]. At present, prediction methods commonly used in seawall settlement
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prediction based on monitoring data can be categorized into two groups: statistical meth-
ods and machine learning methods. Statistical methods such as the exponential curve
method [10], Asaoka method [11], and Poisson curve method [12] are established based on
the idea of data fitting using mathematical curves. Statistical models can not only quan-
tify the influence of each factor on data-varying tendencies, but also effectively describe
the characteristics of the data sequence including the distribution and correlation of data.
These models are usually established on the basis of certain assumptions such as normality,
independence, etc., which means that the accuracy and reliability of the model cannot
be guaranteed in the case where the assumptions are not met [13,14]. Machine learning
methods, such as wavelet theory [15], chaos theory [16], and neural networks [17], are
able to process massive and multidimensional datasets to solve nonlinear and complicated
problems. However, both statistical methods and machine learning methods are highly
reliant on the quantity and quality of data sequences, meaning that either poor data quality
or insufficient data quantity can lead to unsatisfactory prediction performance [15,18].

Insufficient data volume is a common issue in seawall settlement monitoring. In many
cases, the volume of monitoring data is fairly limited, and this is not an isolated occur-
rence [19,20]. The reasons are multifaceted; the number of monitoring devices installed on
the seawall may be insufficient to cover all critical areas, resulting in limited data avail-
ability. Even with adequate monitoring devices, the current technology may not support
high-density and high-precision monitoring, thereby restricting the monitoring frequency
and causing a shortage in data volume [21]. Further, due to the intricate environmental
conditions in coastal areas, environmental factors during critical periods such as storm
surges and floods can further impede the acquisition of monitoring data. The insufficient
amount of data in seawall monitoring is a significant issue as it may limit our comprehen-
sive evaluation of a seawall’s health condition and potential risks [22,23]. This issue can be
addressed in two aspects to ensure the accurate prediction of a seawall’s settlement based
on monitoring data. We can either increase the number of monitoring points or strengthen
the ability of data processing and analysis under the situation of limited data volume.

Most previous studies developed predictive models using monitoring data at a single
monitoring point. Using multi-point monitoring data prediction offers several advantages
over single-point data prediction, particularly in terms of robustness and ability to cap-
ture complex relationships [24,25]. First, multi-point monitoring data provides multiple
observations of the same phenomenon, reducing the impact of errors or noise from any
single point. Also, different data points can capture various aspects of the system, leading
to a more comprehensive understanding and improved prediction accuracy. It allows the
prediction model to be less sensitive to missing or erroneous data from individual sensors.
Therefore, multi-point prediction provides a solution to ensure the efficiency and accuracy
of seawall settlement displacement.

In addition, in engineering cases where a lack of monitoring data is already present,
employing mathematical methods to analyze and predict the existing dataset emerges
as the most practical, effective, and economical approach. Grey models, especially the
GM(1,1) model, exhibit significant advantages in tackling issues related to insufficient data
volume [26,27]. In the realm of grey theory, the grey system comprises known information
(white) and unknown or uncertain information (grey or black). Grey models use limited
and incomplete data to establish differential predictive models, thereby uncovering latent
patterns within the dataset [28–31]. Their core competency lies in making predictions with
relatively small amounts of data. Typically, only a few data points (four or more) are re-
quired to build a grey predictive model, effectively addressing the issues of scarce historical
data, incomplete series, and low reliability. In addition, grey models do not require strict
regularity in the distribution of sample data, further easing the data requirements.

While grey models possess these advantages, they also have limitations. For instance,
they may not be optimal for systems with clearly defined internal mechanisms, and may fall
into suboptimal solutions in predicting time series data with high volatility. Wu [32] found
that the GM(1,1) model exhibits considerable sensitivity to minor perturbations in data
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computation using matrix perturbation theory, resulting in significant interference with the
identification of model parameters. To address this issue, he proposed a fractional-order
grey model on the basis of the perturbation theory of least squares [33]. The fractional-
order grey model, as an extended grey prediction model, is exceptionally adept at handling
data sequences that exhibit volatile variations. By introducing fractional-order calculus
operators into a continuous grey model, it adeptly transforms original data sequences with
fluctuations into ones with heightened regularity, thereby optimizing the traditional grey
modeling mechanism and improving the modeling efficiency [34].

Although the fractional-order grey model exhibits advantages in handling complex
systems, its application to the prediction of seawall settlement with limited data volume
can still be constrained by system and data characteristics. As the fractional-order grey
model incorporates fractional-order derivatives and polynomial functions, the determi-
nation of its parameters becomes more complex, requiring the employment of specific
optimization methods to solve the coefficients of polynomial functions. For example, the
variable fractional order r obtained by commonly used intelligent algorithms involves
unavoidable randomness, which may increase the unitability of prediction results [35].
For example, the swarm optimization algorithm may obtain a local optimal solution in-
stead of a global optimal solution due to its high convergence speed [36]. The artificial
fish swarm algorithm is susceptible to premature convergence, that is, the algorithm may
converge to a suboptimal solution without adequately exploring the searching space [37].
Further, the fractional-order grey model cannot fit the time series data dynamically. Due
to the high sensitivity and compressibility characteristics of the soft soil foundation of
the seawall, and influenced by external factors such as tidal scouring, storm surges, and
construction disturbances, the settlement of the seawall exhibits dynamic variations at
small temporal scales [38]. Seawall settlement represents a real-time evolving process, but
the fractional-order grey model is limited to making predictions with a fixed step size based
on existing data [8,39]; therefore, the dynamic prediction of seawall settlement still needs
to be improved.

To solve the above two issues associated with the application of the fractional-order
grey model in seawall settlement prediction in the case of limited data volume, this study
aims to improve the fractional-order grey model by integrating other models. With this
objective in mind, a genetic algorithm [40] with enhanced search capabilities was used to
solve and optimize the fractional order r of the fractional-order grey model. Then, a real-
time tracing algorithm [41] was used to achieve the dynamic prediction. The monitoring of
the data of a seawall at the northern bank of the Qiantang River, China, was used to validate
the model. The performance of the proposed model was evaluated by comparison with the
fractional-order GM(1,1), integer-order GM(1,1), and fractal theory model, respectively.

This paper is organized as follows: Section 2 presents how the proposed model is
developed. Section 3 exhibits the information of the case study. Section 4 shows the
prediction results. Comparisons of the proposed model with other relative models are also
illustrated in this section. Section 5 presents the concluding remarks.

2. Model Development

This section presents the principles of the proposed model including the definitions,
modeling procedures, parameter settings, and implementation steps.

2.1. Establishment of the Fractional-Order Grey Model

The most commonly used grey model is the GM(1,1) model, which is an integer-order
accumulated generating sequence. Compared to the GM(1,1) model, the fractional-order
grey model exhibits greater robustness and has a better performance to cope with datasets
with limited volume, and its principles include the following steps [42,43]:
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Assuming that the sequence X(0) =
(

x(0)(1), x(0)(2), · · · x(0)(n)
)

is the original moni-

toring data and r ∈ R+, then the r-order accumulated generating sequence of X(0) can be
written as X(r) =

(
x(r)(1), x(r)(2), · · · x(r)(n)

)
, where

x(r)(k) =
k

∑
i=1

Γ(r + k − i)
Γ(k − i + 1)Γ(r)

x(0)(i), k = 1, 2, · · · , n. (1)

Γ(r) represents the Gamma function of order r, which is defined as

Γ(r) =
∫ ∞

0
e−ttr−1dt. (2)

The r-order cumulative generating sequence of X(0) can be written as
X(−r) =

(
x(−r)(1), x(−r)(2), · · · x(−r)(n)

)
, where

x(−r)(k) =
k−1

∑
i=0

Γ(r + 1)
Γ(i + 1)Γ(r − i + 1)

x(0)(k − i), k = 1, 2, · · · , n (3)

Then the first-order cumulative generating sequence of X(r) can be written as X(r−1) =(
x(r−1)(1), x(r−1)(2), · · · x(r−1)(n)

)
, where

x(r−1)(k) = (x(r))
(−1)

(k) = x(r)(k)− x(r)(k − 1), k = 2, 3, · · · , n (4)

The sequence Z(r) =
(

z(r)(2), z(r)(3), · · · z(r)(n)
)

can be generated by the close mean

value of the r-order accumulated generating sequence X(r), where

z(r)(k) =
x(r)(k) + x(r)(k − 1)

2
, k = 2, 3, · · · , n (5)

Then, the proposed model of the monitoring data is

x(r−1)(k) + az(r) = b (6)

The parameter â = [a, b]T can be estimated by the least square method:

â =
(

BTB
)−1

BTY (7)

where Y and B are

Y =


x(r−1)(2)
x(r−1)(3)
...
x(r−1)(n)

, B =


−z(r)(2)− 1
−z(r)(3)− 1
...
...
−z(r)(n)− 1

 (8)

Since

x(r−1)(k) = x(r)(k)− x(r)(k − 1)

=
k
∑

i=1

Γ(r + k − i)
Γ(k − i + 1)Γ(r)

x(0)(i)−
k−1
∑

i=1

Γ(r + k − i − 1)
Γ(k − i)Γ(r)

x(0)(i), k = 2, 3, · · · , n
(9)

then

z(r)(k) =

k
∑

i=1

Γ(r + k − i)
Γ(k − i + 1)Γ(r)

x(0)(i)

2
+

k−1
∑

i=1

Γ(r + k − i)
Γ(k − i + 1)Γ(r)

x(0)(i)

2
, k = 2, 3, · · · , n (10)
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Finally, Y and B can be obtained:

Y =



(r − 1)x(0)(1) + x(0)(2)
r(r − 1)

2
x(0)(1) + (r − 1)x(0)(2) + x(0)(3) + · · ·

...
n
∑

i=1

Γ(r + n − i)
Γ(n − i + 1)Γ(r)

x(0)(i)−
n−1
∑

i=1

Γ(r + n − i − 1)
Γ(n − i)Γ(r)

x(0)(i)


, (11)

B =



− x(r)(1) + x(r)(2)
2

1

− x(r)(2) + x(r)(3)
2

1
...

...

− x(r)(n − 1) + x(r)(n)
2

1


=



−1
2

[
(r + 1)x(0)(1) + x(0)(2)

]
1

−1
2

[
r(r + 3)

2
x(0)(1) + (r + 1)x(0)(2) + x(0)(3)

]
1

...
...

−1
2

[
n
∑

i=1

Γ(r + n − i)
Γ(n − i + 1)Γ(r)

x(0)(i)−
n−1
∑

i=1

Γ(r + n − i)
Γ(n − i + 1)Γ(r)

x(0)(i)
]

1


. (12)

dx(r)
dt + ax(r) = b is the whitenization equation of the FGM x(r−1)(k) + az(r) = b, and

therefore the time response function is

x̂(r)(k) =
(

x(0)(1)− b
a

)
e−a(k−1) +

b
a

, k = 2, 3, · · · , n (13)

Then, the restored monitoring data X̂(0) =
(

x̂(0)(1), x̂(0)(2), · · · x̂(0)(k)
)

can be ob-

tained, where x̂(0)(1) = x(0)(1), and

x̂(0)(k) =
(

x̂(r)
)−r

(k) =
k−1

∑
i=0

(−1)i Γ(r + 1)
Γ(i + 1)Γ(r − i + 1)

x̂(r)(k − i), k = 2, 3, · · · , n (14)

2.2. Fractional-Order Optimization Using Genetic Algorithm

The selection of the order r in the fractional-order grey model significantly affects the
prediction accuracy. To avoid a local optimal solution problem and premature convergence
problem, a genetic algorithm was used to calculate the fractional order r. By starting with a
diverse initial population of potential solutions, the genetic algorithm helps in exploring
multiple regions of the solution space simultaneously, preventing the algorithm from
converging too quickly on a suboptimal solution. This diversity ensures a broad search
space and increases the likelihood of finding a global optimum. In addition, the genetic
algorithm selects individuals based on their fitness, which is related to the accuracy of the
fractional-order grey model in settlement prediction. By favoring higher fitness solutions,
the algorithm incrementally improves the model parameters [44,45].

The mean relative error (MRE) of the prediction results can be computed using
Equation (15).

min f (r) =
1

n − 1

n

∑
k=2

∣∣∣x(0)(k)− x̂(0)(k)
∣∣∣

x(0)(k)
, r ∈ R+. (15)

The minimum of the average relative error is solved using the genetic algorithm to
determine the optimal fractional order r. Figure 1 shows the working principles of the
genetic algorithm. Detailed procedures of genetic algorithm refer to [44–47].
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2.3. Equal-Dimensionally Recursive Calculation Using the Real-Time Tracing Algorithm

To achieve a dynamic prediction of seawall settlement, the real-time tracing algorithm
is used to complete the above-introduced fractional grey model based on a genetic algo-
rithm. The real-time tracing algorithm plays a crucial role in overcoming the limitations
of the fractional-order grey model related to fixed step size by dynamically adjusting the
model parameters in response to new data. The fractional-order grey model relies on a
fixed step size that can limit its accuracy and responsiveness to changes in the data; the
real-time tracing algorithm adapts the step size based on the latest data points, and thus
updates the fractional order and other parameters in real-time. This allows the model to
quickly adapt to new patterns and trends in the data and ensures that the model remains
relevant and accurate over time.

The real-time tracing algorithm is applied in equal-dimensionally recursive calculation.
Suppose that the time series is {xi|i = 1 : n}, and the samples of {xi|i = 1 : n} after sample
n {xn+1, xn+2, . . . , xn+m} are the values to be predicted using the measured monitoring
values {x1, x2, . . . , xn}. Assuming that the prediction step length is m, the first m samples
of the time series {xm+1, xm+2, . . . , xn+m} are discarded after the last m values are achieved,
and then the newly obtained m measured data are added to the original time series to form
a new time series. Finally, the above calculations can be repeated until the dimension of
the data columns remains unchanged. To fully exploit the valuable information from the
seawall monitoring data, this study adopted a single-step prediction approach, where m is
set to 1. The schematic of the real-time tracing algorithm is illustrated in Figure 2.
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3. Case Study

To validate the proposed model, the Haiyan seawall, which is located on the north
bank of the Qiantang River in Zhejiang province, China, was used as a case study. The total
length of the seawall is around 11 km. Figure 4a,b show the geographic location and the
air-view of the Haiyan seawall, respectively.
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Figure 4. The (a) geographic location and (b) air-view of the Haiyan seawall.

The Haiyan seawall is a vertical dike with a soil–rock mixed structure with revetments
on both sides. The study area is mainly intertidal with flat terrain. The studied seawall is
built on silty soft soil with an average thickness of 25.0 m, and it is reinforced by plastic
drainage boards. Figure 5 exhibits the distribution of the soil layers and monitoring points.
The foundation boarding is arranged in a plum blossom pattern, with a horizontal range
of 36.0 m, a depth of 15.0 m, and an interval of plastic drainage boards of 1.2 m. It can be
seen from the figure that the foundation includes five layers: silt layer, mucky clay layer,
mucky silty clay layer, clay layer, and silty clay layer. The settlement monitoring data used
in this study was collected at the maximum settlement section Z7+000, which includes four
monitoring points SS5, SS6, SS7, and SS8. As the four monitoring points are selected, the
prediction involves using various data points collected from multiple sources or sensors
over time to predict future values. Multipoint data can capture complex interactions
and dependencies between different variables, leading to more accurate and insightful
predictions. These monitoring points are located at 1 m, 5.5 m, 9.4 m, and 14 m under the
foundation, respectively. We used the JG86 type electromagnetic induction instrument to
monitor the settlement of the seawall, which consists of a settlement measuring tube and
magnetic rings. A settlement magnetic ring is placed every 3 to 4 m along the settlement
measuring tube. During the construction loading period, monitoring was conducted once
every 3 days.
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Figure 6 shows the time variation in settlement at the selected four monitoring points
at section Z7+000. Overall, the monitoring data of each of these four selected points exhibit
a nonlinear upward dynamic increasing trend. Furthermore, since seawall settlement
primarily stems from the consolidation of the foundation soil, the settlement curve displays
rapid growth at its initial stages followed by a slower progression. As the depth of the
monitoring points increases, the change in settlement gradually increases. The settlement
of monitoring point SS8 ranged within 40 mm; however, the settlement of monitoring point
SS5 reached up to 200 mm. This is because the soil properties change with the increase
in depth, for example, the transition from looser surface soil to denser subsurface soil.
This change may increase the compressibility of the deeper soil layers, resulting in greater
settlement under the same external force. Additionally, the deeper soil layers are subjected
to a greater weight from the overlying soil layers (i.e., vertical stress). The increased stress
can cause the voids between soil particles to be compressed, thereby making the settlement
more serious. Furthermore, settlement is a process that develops over time. In some cases,
the settlement of deeper soil layers may gradually increase due to time-dependent effects
such as soil consolidation and creep.
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4. Results and Discussions

This section presents the prediction results and intermediate calculation of the pro-
posed model. In addition, the prediction performance of the proposed model is compared
to other related methods including the fractional-order GM(1,1) model, the integer-order
GM(1,1) model, and fractal theory. The proposed model does not require high computer
specifications. A basic configuration, such as Intel Core i5 CPU, 8 GB RAM, and 256 GB
SSD, is sufficient.

4.1. Intermediate Calculation and Prediction Results

Since the modelling processes for data at each monitoring point are the same, set-
tlement at monitoring point SS5 was selected as an example to exhibit the intermediate
calculation of the proposed model. It was a data sequence containing 20 numbers, wherein
15 of them were selected as fitting data, while the remaining 5 served as testing data.

The initial order was set to 1, to make the fractional-order GM(1,1) model equivalent
to the integer-order GM(1,1) model. The initial order 1 was encoded as a binary string
to generate the initial population. The genetic algorithm was employed with the control
parameters including a population size M of 21, crossover probability Pc of 0.75, and
mutation probability Pm of 0.01, and then the evolution was carried out for 50 generations.

The evolution curve with respect to the genetic generations is depicted in Figure 7.
The results show that the average relative error reached its minimum (i.e., 5.934) at the 38th
generation, corresponding to the optimal fractional order of 0.641.



Fractal Fract. 2024, 8, 423 10 of 19
Fractal Fract. 2024, 8, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Evolution of fractional order r and f (r). 

Calculated by the fractional-order grey model, the time response function can be ob-
tained: 

( )(0.641) 0.012( 1)ˆ = 5283.07 +5291.67kx k e− −− .  

The optimal fractional orders were incorporated into the fractional-order grey model 
using the real-time tracing algorithm, and then the settlement of the seawall can be pre-
dicted. The monitored and predicted settlement at monitoring point SS5 as well as their 
residual are shown in Table 1. In general, the relative residual between the monitored data 
and predicted data is fairly small. 

Table 1. The monitored and predicted settlement at monitoring point SS5. 

Time Monitored Data Predicted Data Residual Relative Residual 
3 8.6  8.6  0 0 
6 52.1  65.3  −13.24  −0.254  
9 99.6  89.7  9.87  0.099  

12 110.5  99.7  10.84  0.098  
15 119.1  107.9  11.16  0.094  
18 120.6  115.4  5.20  0.043  
21 129.5  126.4  3.09  0.024  
24 132.5  129.1  3.36  0.025  
27 134.0  135.7  −1.73  −0.013  
30 139.1  142.2  −3.13  −0.023  
33 147.4  148.7  −1.32  −0.009  
36 146.1  150.2  −4.12  −0.028  
39 148.5  151.8  −3.26  −0.022  
42 161.6  163.4  −1.78  −0.011  
45 171.6  165.1  6.52  0.038  
48 176.9  166.2  10.67  0.060  
51 185.7  187.8  −2.12  −0.011  
54 194.3  197.9  −3.59  −0.018  
57 205.1  203.1  1.99  0.010  
60 208.1  210.5  −2.38  −0.011  

Figure 8 illustrates the time evolution of the predicted and monitored settlement at 
each monitoring point. The red points denote the predicted data, and the black points 

Figure 7. Evolution of fractional order r and f (r).

Calculated by the fractional-order grey model, the time response function can be obtained:

x̂(0.641)(k) = −5283.07e−0.012(k−1) + 5291.67.

The optimal fractional orders were incorporated into the fractional-order grey model
using the real-time tracing algorithm, and then the settlement of the seawall can be pre-
dicted. The monitored and predicted settlement at monitoring point SS5 as well as their
residual are shown in Table 1. In general, the relative residual between the monitored data
and predicted data is fairly small.

Table 1. The monitored and predicted settlement at monitoring point SS5.

Time Monitored Data Predicted Data Residual Relative Residual

3 8.6 8.6 0 0
6 52.1 65.3 −13.24 −0.254
9 99.6 89.7 9.87 0.099

12 110.5 99.7 10.84 0.098
15 119.1 107.9 11.16 0.094
18 120.6 115.4 5.20 0.043
21 129.5 126.4 3.09 0.024
24 132.5 129.1 3.36 0.025
27 134.0 135.7 −1.73 −0.013
30 139.1 142.2 −3.13 −0.023
33 147.4 148.7 −1.32 −0.009
36 146.1 150.2 −4.12 −0.028
39 148.5 151.8 −3.26 −0.022
42 161.6 163.4 −1.78 −0.011
45 171.6 165.1 6.52 0.038
48 176.9 166.2 10.67 0.060
51 185.7 187.8 −2.12 −0.011
54 194.3 197.9 −3.59 −0.018
57 205.1 203.1 1.99 0.010
60 208.1 210.5 −2.38 −0.011

Figure 8 illustrates the time evolution of the predicted and monitored settlement at
each monitoring point. The red points denote the predicted data, and the black points
denote the monitored data. This comparison provides valuable insights into the accuracy
and reliability of the prediction model. In detail, the data sequence at each monitoring point
comprises 20 data points. Among these, the first 15 data points were chosen for fitting the
model, meaning they were used to calibrate the model’s parameters and ensure it accurately
reflects the monitored settlement. The remaining 5 data points, set aside as testing data,
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served to validate the model’s predictive capabilities on unseen data. It can be seen from
the figure that the monitored data aligns remarkably well with the predicted data, not only
for the fitting dataset but also for the testing dataset. This strong correlation indicates that
the prediction model possesses a high degree of accuracy and is capable of generalizing
well to unknown data. By comparing the predicted values with the actual monitored values,
we can evaluate the accuracy of our prediction model and understand the relation between
different monitoring points. The monitored settlement at monitoring points SS5 and SS6
over time shows a smooth curve. The monitored settlement at monitoring points SS7 and
SS8 displays different characteristics compared to SS5 and SS6, where the fluctuations
during day 5 to day 20 are more obvious. The specific reasons are analyzed as follows: The
primary reason for the settlement of the seawall situated on soft soil foundations is the
step-by-step loading during the construction of the embankment. The loading causes the
gradual expulsion of water and air from between the soil particles, reducing the voids in the
soft soil. As a result, the entire foundation undergoes systematic deformation. The surface
layer of the seawall foundation consists of about 50 cm of silt. Unlike the underlying soft
soil, the silt has a very high water content and low structural strength. During the initial
half-month period of the project, the silt would have been squeezed out to the sides along
with the construction loading process, resulting in significant instantaneous settlement.
Due to construction constraints, the monitoring instruments took samples with an interval
of 3 days. This resulted in poor trend consistency in the collected settlement data, making
it difficult for current models to accurately fit the data from day 5 to day 20.
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Figure 9 illustrates the time evolution of the relative residual of the predicted and
monitored settlement at each monitoring point. The relative residual is below 0.1 for all
four monitoring points, which suggests that the model is capable of capturing the general
trends and behaviors of the settlement process, regardless of specific local conditions. This
global accuracy is crucial for providing a comprehensive understanding of the settlement
phenomenon and for making informed decisions regarding potential risks and mitigation
measures. In addition, the relative residual exhibits some fluctuations at the initial stage.
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The fluctuations in the relative residual during the initial stage likely indicates that the
model is still adjusting to the initial conditions and data. This could be due to the inherent
uncertainty in the initial measurements or the model’s parameters being set to approximate
values. Over time, as more data is collected and the model is able to learn from these
observations, the fluctuations tend to decrease, indicating the model’s ability to adapt and
improve its predictions. Even though the evolution curve of the relative residual of these
four monitoring points are similar globally, the fluctuations of monitoring points SS5 and
SS6 are more obvious than those of monitoring points SS7 and SS8. The relative residual
globally reflects the prediction accuracy. Prediction accuracy for seawall settlement can
vary at different monitoring points due to several factors related to both the characteristics
of the site and the limitations of the prediction model. Different monitoring points are
located on varying soil types, each with unique properties such as compressibility and
permeability. These properties significantly influence settlement behavior. In addition, the
distribution of loads on the seawall, including static and dynamic loads from waves, tides,
and human activity, may differ across monitoring points, affecting settlement rates. Thus,
the historical data used for training the model vary in quality and quantity across different
monitoring points, affecting the model’s ability to learn accurate patterns. For the model’s
prediction ability itself, as the interactions between different influencing factors (e.g., soil
properties, environmental conditions) are complex and non-linear, the present model may
not capture these interactions accurately.
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4.2. The Evaluation Criteria of Prediction Performance

The prediction performance of the prediction model is evaluated by calculating the
coefficient of determination (R2), the mean relative error (MRE), the mean squared error
(MSE), and the root mean squared error (RMSE) of the predicted results. These indexes
express the extent of prediction error by measuring the deviation between the predicted
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data αi and the monitored data βi. The expression of MRE is shown in equation 15, and the
expressions of R2, MSE, and RMSE are as follows:

R2 = 1 −

n
∑

i=1
(αi − βi)

n
∑

i=1

(
αi − βi

) , (16)

MSE =
1
n

n

∑
i=1

(αi − βi)
2, (17)

RMSE =

√
1
n

n

∑
i=1

(αi − βi)
2 (18)

Table 2 exhibits the evaluation criteria including the R2, MRE, MSE, and RMSE of
the proposed model at each monitoring point. The R2, which is a measure of how much
the data points are spread out from their mean, is greater than 0.8 for both the testing
dataset and the fitting dataset, which implies the model is robust and can be validated. The
high R2 suggests that the model explains a large portion of the variation in the dependent
variable, indicating a good fit. The low values of MRE, MSE, and RMSE further confirm the
model’s accuracy in predicting the target variable. These evaluation criteria collectively
demonstrate the model’s reliability and effectiveness.

Table 2. The evaluation criteria of the proposed model at each monitoring point.

Monitoring
Points

Fitting Data Testing Data

R2 MRE MSE RMSE R2 MRE MSE RMSE

SS5 0.974 5.577 46.452 6.585 0.820 0.779 2.791 4.999
SS6 0.971 5.671 22.731 4.606 0.853 1.140 2.603 3.261
SS7 0.977 0.091 12.755 3.570 0.853 0.759 0.501 0.952
SS8 0.878 13.432 5.292 2.222 0.818 1.730 0.309 0.606

4.3. Comparison of the Proposed Model with Other Relevant Models

To better evaluate the performance of the proposed model, we compared its prediction
accuracy with the fractional-order GM(1,1), integer-order GM(1,1), and fractal theory model.
The integer-order GM(1,1) is a widely used grey model which relies on the principle of
differential equations and exponential smoothing to generate predictions. The fractal
theory model provides a framework for modeling complex processes that exhibit self-
similarity across different scales, so as to capture the inherent hierarchical patterns in the
data sequence. The fractional-order GM(1,1) is a generalization of the traditional integer-
order grey model, which introduces the concept of fractional-order calculus to improve
the flexibility and accuracy of the model. By allowing the order of differentiation and
integration to be non-integer, the fractional-order model can better capture complex and
non-linear dynamics in data.

Figure 10 shows the time evolution of fitting and predicting results of seawall set-
tlement at the selected monitoring points using these four different models. Firstly, it is
noteworthy that all these four models demonstrate a certain level of accuracy in fitting
the historical data and predicting future seawall settlement trends, the curve trend of the
predicted value aligns precisely with the actual curve. This indicates that the predicted
curve generated through each model is rational and logical, and each model has captured
essential elements of the system dynamics.
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Figure 10. Time evolution of fitting and predicting results of seawall settlement at the selected
monitoring points using the four selected models: (a) SS5, (b) SS6, (c) SS7, (d) SS8.

Figure 11 shows the time evolution of the relative residual of the four models for
each monitoring point. The relative residuals of all four models are very small. Most are
located within the range of −0.1 to 0.1. It can be seen that the proposed model shows a
tighter fit to the monitoring data compared with the other three models, indicating a higher
degree of accuracy. This can be evidenced by a narrower confidence interval or a high
coefficient of determination between the predicted and monitored data. In addition, for
all four prediction models, the relative residual exhibits some fluctuations at the initial
stage. The relative residual refers to the difference between the predicted value and the
actual value, normalized or scaled in a way that makes it easier to compare across different
data points or time periods. These fluctuations in the relative residual at the initial stage
may result from several reasons: First, the initial period does not have enough data points
to accurately capture the trends, which may lead to higher errors and fluctuations in the
relative residuals. Second, the models need initialization before they can start making
accurate predictions. During this initial phase, the models might not be fully calibrated.
Third, there might be external factors, such as measurement errors, which introduce noise
and uncertainty into the predictions.

When discussing the performance of prediction models, it is important to consider
not only how the models behave at different stages but also the overall accuracy. Figure 12
compares the coefficients of determination R2 of the fitting and testing data for these four
models, which represent an overall evaluation of the prediction performance. Using the
datasets of all the monitoring points, the proposed model outperforms the other three
models. The comparisons demonstrate that the proposed model exhibits superior predictive
power, especially in capturing the nonlinearities and complexities of seawall settlement
over time under the situation of limited data volume. Seawall settlement is affected by
many factors including soil properties and hydrological conditions. A model that can
accurately predict such complex processes is valuable for risk management. In addition,
the R2 calculated using fitting data is higher than that calculated using testing data for all
these four models. It is a common observation that when the model is evaluated on testing
data, which is independent of the training data, its performance tends to be lower. This is
because the testing data contains additional uncertainty and variability that the model has
not encountered during training.
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Figure 13 compares the MRE of the proposed model with the fractional-order GM(1,1),
integer-order GM(1,1), and fractal theory model. A lower MRE indicates higher accuracy
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and better performance of the model. The proposed model exhibits a lower MRE than
the other models for all monitoring points. This suggests that it is able to more accu-
rately capture the underlying dynamics in the data sequence, leading to more reliable and
accurate predictions.
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5. Conclusions

As the performance of the fractional-order grey model is easily affected by the inap-
propriate setting of the fractional order, and considering the limited data volume and the
nonlinear characteristics of seawall settlement monitoring data, this paper proposed an
improved fractional-order grey model for seawall settlement prediction by integrating a
genetic algorithm and the real-time tracing algorithm. First, the genetic algorithm with
enhanced search capabilities was employed to solve the premature convergence problem.
Then, to solve the problem of the fractional-order grey model associated with fixed step
sizes, the real-time tracing algorithm was introduced to conduct equal-dimensionally recur-
sive calculation. The proposed model was validated using monitoring data of the Haiyan
seawall in Zhejiang province, China. The prediction performance of the proposed model
was compared with those of the fractional-order GM(1,1), integer-order GM(1,1), and
fractal theory model, demonstrating its superior performance compared to other methods
such as the fractional-order GM(1,1) model, the integer-order GM(1,1) model, and fractal
theory model.

The proposed model effectively predicts seawall settlement trends and can be extended
to address prediction challenges in other fields with limited data volume. The significance
of this finding lies in its practical implications. A reliable settlement prediction model is
crucial in various engineering applications, such as construction projects, where precise
forecasting of ground movements is essential for safety and stability. The high degree of
fit between the predicted and monitored data suggests that the model can be trusted to
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provide accurate settlement predictions, thereby enhancing the safety and efficiency of
related projects.

While the current model shows promising results, there are still opportunities for
improvement. For example, its relatively high time complexity poses some disadvantages
in terms of computation time (computational complexity of the proposed model with other
models are shown in Table 3). Additionally, the model could be further refined by incor-
porating additional influencing factors, such as soil properties, groundwater conditions,
or changes in loading conditions. Also, this paper took multi-point monitoring data into
account in the prediction model, which helps to provide a comprehensive understanding of
the trends of seawall settlement comparing to single-point prediction. However, one disad-
vantage of the current study is that the correlation among different monitoring points is not
entered. Considering the correlation among each monitoring point would be interesting
for further studies.

Table 3. Computational complexity of the proposed model with other models.

Models The Proposed Model The fractional-Order
GM(1,1)

Integer-Order
GM(1,1)) Fractal Theory

Variable
number of
parameters

6 (including fractional-order
r, population size M,

crossover probability Pc,
mutation probability Pm,

typical number of iterations,
predicted length m)

1 (fractional-order r) 0
1 (including

fractal
dimension D)

Calculating
time 12 s 3 s 1 s 5 s
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