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Abstract: In this study, we utilize Monte Carlo methods and the Dual Site-Bond Model (DSBM) to
simulate 3D nanoporous networks with various degrees of correlation. The construction procedure
is robust, involving a random exchange of sites and bonds until the most probable configuration
(equilibrium) is reached. The resulting networks demonstrate different levels of heterogeneity in the
spatial organization of sites and bonds. We then embark on a comprehensive multifractal analysis of
these networks, providing a thorough characterization of the effect of the exchanges of nanoporous
elements and the correlation of pore sizes on the topology of the porous networks. Our findings
present compelling evidence of changes in the multifractality of these nanoporous networks when
they display different levels of correlation in the site and bond sizes.

Keywords: 3D correlated nanoporous networks; multifractal analysis; dual site-bond model

1. Introduction

Natural or synthetic porous materials are characterized by their unique feature of
having hollow spaces or pores immersed in a solid or semi-solid matrix [1]. These pores
act as reservoirs for wetting fluids (air, water, nitrogen) and non-wetting fluids (petroleum,
mercury) [2]. The diverse physicochemical phenomena occurring within these hollow
spaces are determined by the characteristics of the pores, such as size, shape, or geometry;
interconnection; quantity and location; or spatial distribution. These unique characteristics,
in conjunction with the properties of the solid phase and the fluid dynamics within the
hollow space, confer upon porous materials their distinct properties, such as mass, density,
porosity, the volume of the pore space, pore surface area, roughness, permeability, and
tortuosity [3,4].

The porosity of a material is not always evident to the naked eye. In these cases,
techniques such as electron microscopy, nitrogen adsorption, helium pycnometer, mercury
porosimetry, X-ray diffraction, and nuclear magnetic resonance techniques [5–8] help to
explore the hollow space of materials. Organizations such as the International Union of Pure
and Applied Chemistry (IUPAC) [9,10] have proposed standardizing symbols and terms
and standardizing both characterization methodologies and how to present the information
obtained. In particular, IUPAC proposed the nitrogen adsorption–desorption protocol to
characterize porous materials. This protocol is essential for equipment manufacturers, as it
helps them implement the software (based on the theory associated with the description of
some textural properties of porous solid materials), which allows them to calculate values
such as pore size, pore size distribution function, pore volume, and surface area.
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Many real porous media are heterogeneous, with chemical impurities and crystalline
imperfections being significant causes of this heterogeneity. These factors lead to variations
in properties such as connectivity, symmetry, pore size, energy potentials, and vapor–solid
adsorption [1]. The irregular manifestation of these properties from one point to another
in the porous medium underscores the system’s complexity [3]. From the above, it is
deduced that the complexity of porous media has promoted the development of tools that
allow for investigation of each of their characteristics from different approaches. A crude
and simple way to represent porous media is through models. To do this, the initial and
oldest models considered the hollow space of a material as a set or bundle of indepen-
dent cylinders (or spheres) of various sizes that were not interconnected. Later, models
of one-dimensional, two-dimensional and three-dimensional networks were proposed.
These networks, often referred to as “lattices”, consist of interconnected “sites” (also called
“nodes”, “junctions”, “cavities”, and “hollow spheres”) and “bonds” (also called “capillar-
ies”, “channels”, “throats”, “necks”, “windows”, “hollow cylinders”, and “links”) were
proposed. For instance, 1D networks are characterized by the fact that the diameter along
their axis changes in an irregular manner (they are a linear chain of alternately connected
sites and bonds). In 2D networks, the difference lies in the way in which their porous
entities are connected (connectivity (C) is the mean number of bonds surrounding a site [11]
and measures the degree to which a porous structure is interconnected [4]); they can be
of the types tri-tetragonal (C = 2.66), hexagonal (C = 3), hexa-triangular (C = 6), di-
tetragonal (C = 3), triangular (C = 6), square (C = 4), tetra-triangular (C = 6.6), Bethe
(C = 3) [12,13], honeycomb (C = 3), and Kagomé network (C = 4) [14]. In the examples
above, the networks all share a common feature—symmetry. For instance, the hexagonal,
di-tetragonal, honeycomb, and Bethe networks all have a connectivity of three. However,
the differences in their topology, as well as the spatial arrangement of sites and bonds,
give them unique properties. It is important to note that, while networks can be irregular,
regular networks are more straightforward to study [1]. Finally, 3D networks are consid-
ered a set of hollow sites placed at the nodes of a lattice interconnected through hollow
cylindrical bonds.

As can be seen, porous networks are characterized by having intrinsic parameters,
such as dimensionality, connectivity, and topology. In general, the proposed models
consider the porous medium as a network of large spaces connected to smaller conduits
of specific geometries, thus reducing the degrees of freedom by discriminating many
fundamental physicochemical properties [4]. However, one of the benefits of modeling is
that “tailored models” can be proposed according to the application we wish to explore.
For example, Rodríguez et al. [15] used log-normal size distribution functions of sites
(cylindrical disks) and bonds (rectangular prisms) to construct a 2D correlated network.
In it, they simulated the growth of bubbles. In turn, Rojas et al. [16] used Gaussian twofold
distributions (spherical sites and cylindrical bonds) to construct three-dimensional cubic
porous networks (variable connectivity, C = 2 to 6). The phenomenon of nitrogen adsorption
and desorption was simulated on these heterogeneous networks.

On the other hand, fractal and multifractal analysis are valuable tools for describing
irregular shapes without a characteristic scale. Multifractal analysis is appropriate and
highly practical for image analysis. It can effectively capture and characterize the complex
scaling behaviors and local variations in inhomogeneous images. More specifically, esti-
mating local exponents or generalized fractal dimensions makes it possible to estimate the
complexity of images. In other words, with this information, it is possible to characterize
the inhomogeneous scaling properties of images, which are essential for understanding the
local and global irregularities of the image. In this way, numerous studies have used these
analysis techniques to describe various porous media and the processes that occur inside
them [17–20]. For example, the microstructure of bubbles inside gaseous porous sediments
has been characterized [17]; scanning electron microscopy images of human dentin have
been analyzed to find its porous structure by multifractal analysis [21]; and different fluid
displacement patterns inside 3D porous media have been found with information from
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techniques such as mercury porosimetry, nuclear magnetic resonance, electron microscopy,
and X-ray computed tomography [18].

In this work, we use the Monte Carlo [22] method and the Dual Site-Bond Model to
simulate constructing three 3D nanoporous networks with different degrees of correlation.
Random exchanges of their elements (sites and bonds) were performed in each 3D network,
which was built under the assumptions of the DSBM model. Throughout the simulation,
the structure of the networks changed (evolved) through different configurations until the
most probable (equilibrium) configuration was reached. In this way, each specific number
of network element exchanges (Monte Carlo steps) was recorded, obtaining a series of
12 intermediate networks for each configuration initially established. Then, a multifractal
analysis of the simulated network series was performed to evaluate the spatial organization
of these porous networks. We find that networks with moderate correlation tend to exhibit
greater changes in multifractality, while the higher the correlation, the more stable the
multifractality as the networks evolve.

The structure of the paper is as follows. In Section 2, we present the main aspects
of the methodology employed to simulate the networks, as well as a brief explanation of
the multifractal method used to characterize the networks. Next, in Section 3, we present
the results of different levels of multifractality observed in the simulated data. Finally,
we include our conclusions in Section 4.

2. Methodology
2.1. Models

When describing a complex and intricate system, the most straightforward approach
is to propose a simple ideal model. This model should allow us to determine the most
significant capabilities of the system using a minimal number of basic parameters. In the
case of porous media, the model needs to be broad enough to encompass all the specifics
of a wide variety of porous materials. The basic parameters, such as the size distributions
of the hollow elements and connectivity, are crucial. They serve as the foundation from
which all other properties can be derived through the moments of these distributions (first
moment: mean radius; second moment: surface; third moment: porosity; fourth moment:
permeability) [23]. The nature of the porous medium largely determines the choice of pore
size distribution shape; it can be uniform, normal, inverse-power, or Gaussian [4,24,25].
The key concept to bear in mind is the idea of duality; that is, accessing the network’s large
hollows (sites) must be done from the small hollow passages (bonds).

A simple alternative model that describes the nature of porous media is the so-
called “Dual Site-Bond Model (DSBM)”, which was proposed by Mayagoitia et al. [26,27].
The DSBM is a discrete model that considers the spatial correlation among pore sizes, thus
allowing for the construction of pore networks with different structures. It is possible to
visualize the network as a collection of spheres (sites) and cylinders (bonds) of sizes RS
and RB, respectively, that are also alternately connected [28], and whose collections are
represented by their respective size distribution functions, FS(R) and FB(R), which must
be normalized and can be expressed in terms of the total number of porous elements of
each class: sites or bonds (Figure 1). Therefore, the probabilities of finding a site or bond of
size less than or equal to R can be represented as S(R) and B(R), respectively:

S(R) =
∫ R

0
FS(R)dR and B(R) =

∫ R

0
FB(R)dR. (1)

The DSBM also establishes that if we want to build a self-consistent porous network,
it is necessary to comply with the following Construction Principle (CP): “The size of a
site is greater than or equal to the size of the bonds to which it is connected or vice versa,
a given bond must have a size less than or equal to the size of the sites between which it is
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located” [29,30]. Based on this principle, it is possible to state two laws that guarantee that
the CP is satisfied throughout the porous network:

B(R)− S(R) ≥ 0, for all R. (2)

R
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Figure 1. Representation of porous media with different degrees of overlap (Ω ∈ [0, 1]) between site
(FS(R)) and bond (FB(R)) size distribution functions. (a,b) Uncorrelated (Ω = 0). (c,d) Correlated
(0 < Ω < 1). (e,f) Completely correlated (Ω −→ 1).

This first law (Equation (2)) implies that the distribution function of the sites must
always be located on the right or at most completely overlap with that of the bonds
(b1 ≤ s1 and b2 ≤ s2; see Figure 1). Even if there is an appropriate collection of sites and
bonds, that is, the first law is fulfilled both in size and in number, the CP can be violated
if there is a certain degree of overlap Ω (common area) between the two distributions
(Figure 1d,f), since there would be some bonds larger than some sites that, when incorrectly
assigned (connected to smaller sites), would automatically violate the CP. To avoid this
inconsistency, Mayagoitia et al. [26,27] proposed a correlation function ϕ(RS, RB) that
represents a topological correlation function between the sizes of sites and interconnected
bonds and implies that the event of finding a size RS for a site connected to an RB size bond
is not independent. In this way, the joint probability density, F(RS, RB), of finding a site with
size RS ∈ (RS, RS + dRS) connected to a bond with size RB ∈ (RB, RB + dRB) [31,32] is:

F(RS, RB) = FS(RS)FB(RB)ϕ(RS, RB), (3)

where the correlation function ϕ is introduced; if ϕ(RS, RB) = 1, the previous events would
be independent for all RS and RB. Then, the network would be built entirely randomly;
however, if ϕ(RS, RB) ̸= 1, the events would be correlated. The presence of correlation
leads to the second law:

F(RS, RB) = 0 for RS < RB. (4)

The second law (Equation (4)) implies that ϕ(RS, RB) = 0 is local and expresses the
fact that “the size of a site is greater than or equal to the size of the bonds to which it is
connected” [28]. The most plausible form of ϕ(RS, RB), that is, the one that allows the
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most significant degree of randomness in the construction of the porous network without
violating the CP, is the following [26]:

ϕ(RB, RS) =

exp

(
−

B(RS)∫
B(RB)

dB
B−S

)
B(RB)− S(RB)

=

exp

(
−

S(RS)∫
S(RB)

dS
B−S

)
B(RS)− S(RS)

= ϕ(RS, RB). (5)

Equations (5) and (3) are now well-determined and illustrate that the degree of overlap
between FS(R) and FB(R) is related to the correlation function (correlation is understood
here as how sites and bonds are grouped or connected along the porous network as the
overlap of the size distribution functions changes without violating the CP). Figure 1a
schematizes a porous medium whose site and bond sizes are well-differentiated by the lack
of overlap (Ω = 0) between the distribution functions (Figure 1b). Using those sizes in
network construction could only result in an uncorrelated network. In contrast, Figure 1e
shows the extreme case, where the bonds are almost the same size as the sites, so the
overlap is almost complete (Ω ≈ 1) between the size distribution functions (Figure 1f).
Using those sizes in construction could only result in a highly correlated network. Finally,
Figure 1c shows the intermediate case where the size of the sites and bonds is variable (from
very small to very similar), so the size distribution functions (Figure 1d) partially overlap
(0 < Ω < 1). Using those sizes in network construction could only generate a moderately
correlated network. It is important to note that the degree of correlation in the porous media
is a complex and decisive factor that influences many capillary processes. For example,
a higher correlation can lead to a more rapid invasion of wetting or non-wetting fluids.
In contrast, a lower correlation favors delayed invasion or entrapment of fluids in the
porous medium [11,33].

2.2. 3D Correlated Nanoporous Network Simulations

Despite the prevalence of heterogeneity in real porous media, we have made a de-
liberate decision in this work to limit the study variables and model the porous medium
in the simplest way possible. This approach, which constructs the porous medium as a
regular network while maintaining the dual idea of porous elements and regularity in
connectivity, allows us to focus our research and ensures rigor in our analysis. The 3D
correlated nanoporous networks with constant connectivity (C = 6 in this work) were
constructed using the premises of the Dual Site-Bond Model (DSBM). For this, normalized
Gaussian functions were used to represent the pore-size distribution of sites (FS(R)) and
bonds (FB(R)). The nanopore-size ranges of FS(R) and FB(R) span from RS − 3σ to RS + 3σ
and RB − 3σ to RB + 3σ, respectively, where RS (RB) represents the mean value of the sites
(bonds), and σ is the standard deviation (σ = 1.5 nm in this work). Table 1 shows the
parameters of the Gaussian distributions used for the in silico construction of the NA, NB,
and NC nanoporous networks.

Table 1. Parameters of the two-fold Gaussian distributions used in constructing 3D correlated
nanoporous networks using the DSBM. Ω is the overlap between FB(R) and FS(R).

Network RB (nm) RS (nm) Ω

NA 22.5 24.0 0.62

NB 22.5 23.5 0.74

NC 22.5 23.2 0.82
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The simulated networks can be visualized as cubic lattices of L3 sites and C/2 × L3

bonds (L = 100 in this work). The sites were placed on the lattice nodes, and the bonds
were placed between them such that a site had six bonds surrounding it. Periodic boundary
conditions were considered for each of the external faces of the cubic network.

The algorithm used to simulate 3D nanoporous networks is the following [11]:

• From the collection of sites of size R represented by FS(R), L3 sites were randomly
sampled and placed on the nodes of the cubic lattice.

• From the collection of bonds of size R represented by FB(R), C/2 × L3 bonds were
randomly sampled and placed on the nodes of the cubic lattice.

• Inconsistencies or violations to the CP of the DSBM were accounted for in the initial
cubic lattice made up of the sites and bonds and were corrected through a random
exchange of its elements; that is, two sites were chosen at random from the network,
and an attempt was made to exchange from their nodal positions. The exchange
was carried out only when both sites were greater than or equal to all the bonds that
surrounded them (the CP of the DSBM is fulfilled). The same was done with the
bonds, except that the bonds had to be smaller than the sites surrounding them.

• Once there were zero CP violations, a series of network transitions (“shake the net-
work”) were performed as many times as necessary, going through different possible
network configurations, until the most probable configuration (equilibrium) was
reached. The network was “relaxed” by randomly exchanging its elements (the ex-
change of porous entities is a crucial process, carried out only when the CP is not
violated in each exchange attempt). For this, a Monte Carlo Step (MCS) was defined
as L3 + C/2 × L3 exchange attempts of network elements (sites and bonds). Each
specific number of network element exchanges (MCSs) was recorded, obtaining a
series of 12 subsequent networks (NA − i, NB − i, and NC − i) for each initially es-
tablished configuration (NA, NB, and NC). The letter i is an index representing a
specific network configuration generated according to MCSs, i.e., i ∈ {1, 2, 3, ..., 12, 13}.
Table 2 presents the MCS values used to generate different network configurations
as randomly as possible. In this study, the determination of sizes of the nanoporous
elements (sites and bonds), the selection of the nanoporous elements, and the selection
of the nodal positions of the lattice for exchanges between the elements were all car-
ried out randomly. This was achieved by generating an algorithm of pseudo-random
numbers [11,22].

Table 2. Number of attempts to exchange nanoporous elements (MCSs) to achieve different con-
figurations of the NA, NB, and NC networks. The random exchange of elements transforms these
networks into the specific configurations NA − i, NB − i, and NC − i, respectively. i is the letter used
to identify the network number within a set of networks with the same RB and RS values.

i MCS i MCS i MCS

1 0 6 60,000 11 300,000

2 5000 7 80,000 12 400,000

3 10,000 8 100,000 13 500,000

4 20,000 9 150,000

5 40,000 10 200,000

2.3. Two-Dimensional MF-DFA (2D MF-DFA)

The following five steps describe the two-dimensional version of the multifractal
detrended fluctuation analysis (MF-DFA) [34,35].

Step 1. Consider a self-similar surface represented by X(i,j), with i = 1, 2, 3, ..., M
and j = 1, 2, 3, ..., N. Let be Xm,n the partition of the surface into Ms × Ns disjoint square
segments of size s × s, where Ms = ⌊M/s⌋ and Ns = ⌊N/s⌋. Each segment is denoted by
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Xm,n = Xm,n(i, j) with Xm,n(i, j) = X(u + i, v + j) for 1 ≤ i, j ≤ s, where u = (m − 1)s and
v = (n − 1)s. Given that M and N are not multiples of the length s, we ignore X’s last parts
(at the end of the right and bottom).

Step 2. For each segment Xm,n, the cumulative sum um,n(i, j) is defined as:

um,n(i, j) =
i

∑
k1=1

j

∑
k2=1

{
Xm,n(k1, k2)− X

}
, (6)

where X is the average of the entire surface X(i, j). This step is included to avoid a
monotonic behavior in the cumulative sum.

Step 3. For each sub-surface um,n, we compute a local trend ũm,n by fitting it with a
linear bi-variate polynomial function:

ũm,n(i, j) = ai + bj + c, (7)

where a, b, and c are parameters that can be determined. Generally, it is possible to
consider higher-order polynomials for the fitting function [36]. Next, the residual matrix is
defined as follows:

ϵm,n(i, j) = um,n(i, j)− ũm,n(i, j). (8)

The detrended fluctuation function F(m, n, s) of the segment Xm,n is:

F2(m, n, s) =
1
s2

s

∑
i=1

s

∑
j=1

ϵ2
m,n(i, j). (9)

Step 4. When q is non-zero, the generalized detrended fluctuation function of order q,
denoted by Fq(s), is computed as follows:

Fq(s) =

{
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

[
F(m, n, s)

]q
}1/q

. (10)

For the case q = 0, the generalized detrended fluctuation function is [34]:

F0(s) = exp

{
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

ln
[
F(m, n, s)

]}
. (11)

Step 5. Finally, for multifractal surfaces, Fq(s) follows a scaling power law:

Fq(s) ∼ sh(q), (12)

where h(q) is the Hölder exponent [37]. In multifractal formalism [38], the partition function
is responsible for capturing the (multi)fractal properties by using the mass function τ(q),
which is a nonlinear function of q [38,39]. For each q-value, we can obtain the τ(q) function
through the following expression [34]:

τ(q) = qh(q)− D f , (13)

where D f is the fractal dimension of the geometric support of the multifractal measure
(D f = 2 in this work) [34,38]. From τ(q) (Equation (13)), we can obtain the generalized
dimension Dq, the singularity strength function α(q), and the multifractal spectrum f (α)
via the Legendre transform [34,37–39]:

Dq = τ(q)/(q − 1), (14)

α = dτ/dq, and f (α) = qα − τ(q). (15)
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We consider the following quantities to characterize the multifractality:

• Width of the spectrum: distance between the maximum and minimum singularity
strength:

∆α = αmax − αmin, (16)

where f (αmax) ≈ f (αmin).
• Main singularity strength α∗:

f (α∗) = max{ f (α)}. (17)

• The support, information, and correlation dimensions:

D0 , D1, and D2. (18)

3. Results and Discussions

We constructed three unique 3D nanoporous networks (NA, NB, and NC) with
different levels of correlation using L3 sites, C/2 × L3 bonds (L = 100), and the parameters
from Table 1. The resulting normalized size distribution functions, FS(R) and FB(R), are
shown in Figure 2. The only difference between the three networks was the overlap (Ω)
between the size distribution functions (Figure 2). Figure 3 shows three snapshots of
each network for different stages in the evolution. We observe that the networks exhibit
topological changes as the number of MCSs increases. Each topology state is essentially
due to the number of exchanges carried out on the network elements, i.e., the number
of MCSs (see Table 2). In particular, the NA network, constructed with low overlap
between site and bond distributions, exhibits significant topological changes as they evolve
(Figure 3a1–a3). Instead, we observe that the NB and NC networks undergo slight changes
in their topological structure as they evolve (see panels b1–b3 and c1–c3 of Figure 3).

(b)(a) (c)

Figure 2. Size distribution functions of bonds (red line) and sites (blue line) for the 3D correlated
nanoporous networks constructed using the Monte Carlo method and considering the parameters
in Table 1: (a) NA (ΩNA = 0.62), (b) NB (ΩNB = 0.74), and (c) NC (ΩNC = 0.82).

This higher correlation favors a “size segregation effect”, whereby larger sites and
bonds form regions of larger elements. In contrast, smaller elements come together to
form regions of small entities. As explained above, this effect becomes more critical as Ω
increases [40]. It is evident that the role of overlap (ΩNC > ΩNB > ΩNA) is pivotal, as it
directly influences the size of the “size segregation patches”, making them more significant.
It can also be noted in Figure 3 that the greater the number of exchanges of porous elements,
the more the regrouping of porous entities of similar sizes is favored.

The multifractal spectrum, a tool that provides crucial information about pore size
distribution and spatial arrangement [41], is a fundamental component of our research.
We employ the 2D MF-DFA method to characterize the heterogeneity observed in the
3D nanoporous networks. This method, which involves analyzing slices of the network
in two dimensions, allows us to capture the complex spatial distribution of the pores.
Figure 4 illustrates our procedure for the network NA − 1 case. Our analysis considers
slices perpendicular to the three Cartesian axes, generating 100 images per axis and 300
for each network (see panels a and b1–b3 in Figure 4). We then constructed each image’s
fluctuation function F(s) across different scales s. The scaling behaviors, characterized
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by the local exponent h(q) for different q values, are shown in panels c1–c3 of Figure 4.
From this information, the principal representative magnitudes of the multifractal analysis
were calculated, and their mean values (on the images or slices obtained from the three
Cartesian axes) were considered for the characterization of the 3D networks.

(a1) (a2) (a3)

(b3)(b2)(b1)

(c1) (c2) (c3)

Figure 3. 3D networks constructed using a Monte Carlo method. Random exchanges of sites and
bonds cause changes in configurations. Large pores (sites and bonds) are in red, medium-sized
pores are in yellow, and tiny pores are in blue. (a1,a2,a3) correspond to (NA-1, NA-8, NA-12),
respectively, (b1,b2,b3) represent (NB-1, NB-8, NB-12), respectively, and (c1,c2,c3) are (NC-1, NC-8,
NC-12), respectively.

In Figure 5, we show the results of the multifractal analysis for all the networks
described in Tables 1 and 2. We found that the multifractal spectra exhibit a wide range of
values of local exponents α, for which f (α) displays different levels (convex shape) with a
clearly defined maximum. The function f (α) ranges from 0 to 2, which is to be expected
since we are analyzing two-dimensional objects.

For NA networks (Figure 5a), we observe changes in the multifractal spectrum as
the MCS increases, i.e., the range of scaling exponents (αmin < α < αmax) for which a
fractal dimension f (α) exists shifts to the right, suggesting that the structure becomes
more regular. Notably, for the network index i > 5, the spectra tend to be increasingly
overlapping (similar range), indicating that the distribution of the porous elements shows
a saturation level from this value onward. The above is confirmed by the behavior of the
local Hurst exponent (h(q)) in Figure 5b, where it is observed to be a monotonic decreasing
function of q, and its value increases as the simulation evolves. In contrast, for the NB
networks, a slight shift of the spectrum to the right is identified as the network index
increases (Figure 5c,d), while for NC networks, no changes in the spectra are identified
as the number of permutations increases (Figure 5e,f). Our results show that, for the
set of simulated networks with the lowest overlap between the distributions (Ω = 0.62),
the local exponents α are sensitive to the changes originated by the random exchanges
of the elements. In contrast, the fractal dimensions associated with these local exponents



Fractal Fract. 2024, 8, 424 10 of 15

display a similar behavior (almost identical convex shape). On the other hand, when the
overlap increases (Ω = 0.82), the local exponent does not show sensitivity to increasing
element exchanges, even when the number of MCSs is large.
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Figure 4. A representative porous network (a) and three slices perpendicular to the three Cartesian
axes resulted in three images (panels (b1–b3)). The log2–log2 plot of generalized detrended fluctuation
function vs. scale s (panels (c1–c3)) for the images shown in (b1–b3) and q values within the interval
[−20, 20]. Here, the slope of the linear regression of each curve represents the scaling exponent or
Hölder’s exponent h(q).
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To strengthen our analysis of the multifractality associated with nanoporous networks,
we analyze the behavior of the generalized dimensions for three cases: the fractal or capacity
dimension D0, the information dimension D1, and the correlation dimension D2. Figure 6
shows the behavior of these dimensions regarding the network index for the three series of
networks with different overlapping Ω values. For D0, the three series of networks exhibit
the same value (D0 ≈ 2) for the space-filling capacity and are independent of the time
evolution or the number of Monte Carlo Steps (MCSs). The evolution of D1 is depicted
in Figure 6b for the three series of networks. For the networks with the lowest overlap
(NA), the dimension of the information grows from a value close to 1 to saturate at a value
close to 1.6 when the number of MCSs is large. On the other hand, both networks (NB
and NC) maintain a constant value (DNB

1 ≈ 1.7, DNC
1 ≈ 1.8) in the information dimension,

indicating that the level of uniformity in the distribution of sites and bonds remained
almost constant. It should be noted that, throughout the evolution, the highest value of
the information dimension corresponds to the NC networks, followed by the NB and
NA networks. A similar behavior is observed for D2, but with lower values in the three
series of networks and a greater separation between their values along the evolution (see
Figure 6c). These results for the correlation dimension mean that the dimensionality of
the space occupied by sites and bonds undergoes essential changes when the networks
come from configurations with lower overlap (Ω = 0.62) compared to cases where the
overlap is higher (Ω = 0.82). Also, we remark that the generalized dimensions follow a
clear descending order so that D0 > D1 > D2 is satisfied, which confirms the multifractal
character of the networks and their evolutions.
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Figure 6. Evolution of the generalized dimensions Dq. (a) Fractal Dimension Support (q = 0).
(b) Information Dimension (q = 1). (c) Correlation Dimension (q = 2).

Figure 7a provides insight into the evolution of the singularity strength α∗, i.e., the ex-
ponent with the most significant presence in the network. This exponent exhibits behavior
similar to that observed for the generalized dimensions (see Figure 6b,c), revealing that net-
works constructed with the lowest overlap (NA) are the most sensitive to random element
exchanges or MCSs. It should be noted that, throughout the simulation, α∗NA < α∗NB < α∗NC
is valid, which confirms that networks with high overlapping distributions lead to con-
figurations with a higher level of regularity compared to the case where the correlation
is lower. Regarding the width of the ∆α spectrum (Figure 7b), we observe that the NB
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networks exhibit the largest width throughout almost the entire evolution, followed by the
NA and the NC, with the width for the NC being slightly smaller. However, at the end of
the evolution (i = 13), the NA network reaches a greater width than those corresponding
to NB and NC.
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Figure 7. (a) Evolution of the main singularity strength α∗. (b) Evolution of the multifractal spectrum
width ∆α.

4. Conclusions

In this manuscript, we have presented the in silico construction of 3D correlated
nanoporous networks using Monte Carlo methods and under the premises of the DSBM.
Our simulations of these networks have shown that the random exchange of porous
elements (sites and bonds) causes the following effects on network topology: (i) in low-
correlated networks, significant changes in the pore structure occur in the initial stages of
the exchange; i.e., the dynamics of exchanges tends to form small clusters of porous ele-
ments of similar sizes (increases persistence); (ii) in highly correlated networks, from their
initial construction, they are highly structured and are formed with massive clusters com-
posed of elements of similar sizes. Thus, the exchange of their elements does not affect the
topology, since the porous elements are always found in domains of similar sizes during
their exchange. On the other hand, the multifractal analysis has shown that the conditions
imposed by the level of overlap (or correlation) between the size distribution functions
of the sites and the bonds are decisive for reaching configurations where different levels
of heterogeneity are observed. When the correlation is relatively high, the multifractal
spectra remain unchanged throughout the evolution, indicating the network is insensitive
to element exchanges, whereas when the correlation is lower, the spectra exhibit shifts
toward more persistence, showing heterogeneity distinct from the high-correlation case.
Unlike other techniques for characterizing the porous structure of materials, multifractal
analysis has made it possible to characterize nanoporous networks at different spatial scales.
Multifractal analysis can identify the spatial variations inherent to the structures employing
local densities and can concentrate the results of the behaviors in the multifractal spectrum.
These results provide quantification of the presence of local and global irregularities (varia-
tions) present in a non-homogeneous porous structure with different levels of correlation,
which is not easy to infer by traditional physical methods such as nitrogen adsorption [9,10],
scanning electron microscopy [42,43], or mercury porosimetry [44].

The results presented here align with previous studies on the levels of multifrac-
tality observed in porous systems [41,45–48] and could improve our understanding of
capillary processes [49] and fluid flow in porous media [20,48]. For example, in the Hg
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intrusion–retraction process, the shape of its curves could be expected to be similar in
highly-correlated networks (NC). However, in low-correlated networks (NA), despite
having the same size distribution functions, the spatial distribution of the pores is very
different. This different topology could significantly impact the Hg invasion–retraction
processes and the amount of Hg entrapped in the porous structure [11]. Our methodology,
which includes 2D MF-DFA, a robust statistic that ensures more detailed characterization,
has allowed us to examine pore networks from a multifractal perspective, and we have
glimpsed crucial features and changes in spatial organization.
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