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Abstract: This paper is concerned with nonlocal fractional p-Laplacian Schrödinger–Hardy-type
equations involving concave–convex nonlinearities. The first aim is to demonstrate the L∞-bound for
any possible weak solution to our problem. As far as we know, the global a priori bound for weak
solutions to nonlinear elliptic problems involving a singular nonlinear term such as Hardy potentials
has not been studied extensively. To overcome this, we utilize a truncated energy technique and the
De Giorgi iteration method. As its application, we demonstrate that the problem above has at least
two distinct nontrivial solutions by exploiting a variant of Ekeland’s variational principle and the
classical mountain pass theorem as the key tools. Furthermore, we prove the existence of a sequence
of infinitely many weak solutions that converges to zero in the L∞-norm. To derive this result, we
employ the modified functional method and the dual fountain theorem.
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1. Introduction

Research on elliptic problems involving nonlocal fractional Laplacian or more general
integro-differential operators has gained attention due to their relevance in terms of pure
or applied mathematical theories that are used to illustrate some concrete phenomena,
such as the image process, minimal surfaces and the Levy process, quasi-geostrophic flows,
the thin obstacle problem, and multiple scattering. In addition, comprehensive studies on
this topic can be found in works such as [1–6].

Meanwhile, in recent years, considerable attention has been paid to the investiga-
tion of stationary problems related to singular nonlinearities, because they can be used
to describe a model for applied economical models and several physical phenomena;
see [7–9] for more comprehensive details and examples. Furthermore, some recent
papers [10–19] dealing with the existence and multiplicity of solutions to elliptic prob-
lems with singular coefficients have captured the attention of many mathematicians in the
past few decades.

In this paper, we are concerned with the Schrödinger–Hardy-type nonlinear equation
driven by the nonlocal fractional p-Laplacian as follows:

Lv(y) + b(y)|v|p−2v = µ
|v|p−2v
|y|sp + λa(y)|v|r−2v + θg(y, v) in RN , (1)

where s ∈ (0, 1), p ∈ (1,+∞), sp < N, and g : RN × R → R satisfies a Carathéodory
condition with superlinear nonlinearity and a, b are potential functions that is specified
later. Here, L is a nonlocal operator defined pointwise as

Lv(y) = 2
∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))K(y, z)dz for all y ∈ RN ,

where K : RN ×RN → (0, +∞) is a kernel function that fulfills the following conditions:

(L1) mK ∈ L1(RN ×RN), where m(y, z) = min{|y − z|p, 1};
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(L2) There exists a positive constant γ0 such that K(y, z) ≥ γ0|y − z|−(N+sp) for almost all
(y, z) ∈ RN ×RN and y ̸= z;

(L3) K(y, z) = K(z, y) for all (y, z) ∈ RN ×RN .

When K(y, z) = |y − z|−(N+sp), the operator L becomes the fractional p-Laplacian operator
(−∆)s

p defined as

(−∆)s
p v(y) = 2 lim

ε↘0

∫
RN\Bε(y)

|v(y)− v(z)|p−2 (v(y)− v(z))
|y − z|N+sp dz, y ∈ RN ,

where Bε(y) := {y ∈ RN : |y − z| ≤ ε}.
In this regard, the first aim of this paper is to provide the L∞-bound for any possible

weak solutions to Problem (1). As far as we know, the uniform boundedness of any possible
weak solutions to the nonlocal fractional p-Laplacian problems of Schrödinger type with
a singular coefficient such as Hardy potentials has not been studied extensively, and we
are only aware of the study in [20]. In [20], Choudhuri leveraged the bootstrap argument
known as the Moser iteration technique (for example, see [21,22]) as the main tool to obtain
an a priori bound of weak solutions to the homogeneous Dirichlet boundary value problem
of a fractional p-Kirchhoff type involving singular nonlinearity. In contrast to the approach
in [20], the De Giorgi iteration method and a truncated energy technique are utilized as
key tools; these were first suggested in [23]. This approach is based on the recent studies
in [16,24]. However, this elliptic equation of the fractional p-Laplacian involving Hardy
potential has more complex nonlinearities than the problem without such a potential and
thus requires more challenging analyses to be carried out carefully. In particular, our
approach is more useful than the Moser iteration technique as it is applicable to p-Laplacian
or double-phase problems involving the Hardy potential; see [16,24]. This is one of novelties
of this paper.

As its application, we demonstrate two multiplicity results of nontrivial weak solu-
tions to the Schrödinger–Hardy-type nonlinear equation driven by the nonlocal fractional
p-Laplacian. From a mathematical point of view, such elliptic problems with a singular co-
efficient have some technical difficulties because this operator is not homogeneous and the
energy functional does not guarantee the compactness condition of the Palais–Smale type.
In particular, it is not easy to show that the Palais–Smale-type sequence has the compactness
property in the desired function space because of the appearance of the Hardy potential. Re-
lated to this fact, the authors in [11,14,15,19] discussed the multiplicity results of solutions
by employing various critical point theorems in [25,26] without proving the Palais–Smale
compactness condition. The authors in [11] studied the existence of at least one nontrivial
weak solution to a nonlinear elliptic equation with a Dirichlet boundary condition:{

−∆pv = µ |v|p−2v
|y|p + λg(y, v) in Ω,

v = 0 on ∂Ω,
(2)

where λ > 0 and µ ≥ 0 are two real parameters, 1 < p < N, and h : Ω × RN → RN

is a Carathéodory function. Inspired by this paper, Khodabakhshi et al. [15] determined
the existence of at least three distinct generalized solutions when µ = −1 in (2). In this
case, we also cite the study in [14] for infinitely many solutions and the study in [19] for
the existence of three solutions to elliptic equations driven by p-Laplacian-like operators.
In this direction, concerning the elliptic problem involving the fractional p-Laplacian{

(−∆)s
p v(y) = µ |v|p−2v

|y|p + λg(y, v) in Ω,

v = 0 on ∂Ω,
(3)

the authors of [10] proved the existence of at least three solutions to Problem (3) with
µ = −1. Furthermore, based on the study in [13], which is a result in a local setting,
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they proved the existence of two solutions to Problem (3) with µ = 1 by demonstrating
the Palais–Smale compactness property, which is essential in applying the critical point
theorem in [27]. However, in this case, if we consider a standard argument, it is not
difficult to show this property for a Palais–Smale-type sequence because can we easily
show some topological properties for the energy functional corresponding to the principal
part in (3) with µ ≤ 0. Very recently, in a different approach from [10,11,13–15,19], Kim
and coworkers [17,18] presented several existence results for infinitely many solutions to
Kirchhoff–Hardy-type nonlinear elliptic problems as some extension of Problems (2) and (3)
when µ ≤ 0.

In this respect, as mentioned earlier, the present paper is dedicated to establishing two
multiplicity results of solutions to (1) when µ belongs to the interval (−∞, µ∗) for some
positive constant µ∗. The first is to prove the existence of at least two distinct nontrivial
solutions that belong to the L∞ space by exploiting a variant of the Ekeland variational
principle in [28] and the mountain pass theorem in [29] instead of the critical points
theorems in [25–27]. To this end, by analyzing the boundedness of a Palais–Smale-type
sequence and the Hardy inequality for the fractional Sobolev space, which is inspired by
recent papers in [12,16,30], we overcome the lack of compactness of the Euler–Lagrange
functional, which is the main difficulty. This is another novelty of this paper, which is
different from previous studies [10,11,13–15,19]. In [12], Fiscella provided an existence
result for at least one nontrivial solution to the Schrödinger–Kirchhoff-type fractional
p-Laplacian involving Hardy potentials:

(
a + b[v]p(θ−1)

s,p

)
(−∆)s

p v(y) + b(y)|v|p−2v = µ
|v|p−2v
|y|sp + λg(y, v) in RN ,

where a > 0, b ≥ 0, µ is a real parameter, and g is a continuous function verifying the
Ambrosetti–Rabinowitz condition in [29]. The main tool for obtaining this result is the
classical mountain pass theorem. The existence of at least one nontrivial solution to a
double-phase problem involving Hardy potential can be found in [30]. To obtain this,
he proved the Palais–Smale compactness condition using the cut-off function method.
Motivated by this work, the authors of [16] demonstrated several multiplicity results and a
priori bounds of nontrivial weak solutions to Kirchhoff–Schrödinger–Hardy-type nonlinear
problems with the p-Laplacian:

−K
(∫

RN
|∇v|p dy

)
div(|∇v|p−2∇v) + b(y)|v|p−2v = µ

|v|p−2v
|y|p + g(y, v) in RN ,

where 1 < p < p∗, K ∈ C(R+
0 ) is a real function, b : RN → (0, ∞) is a potential function

satisfying some conditions, and g : RN ×R → R is the Carathéodory function that does
not satisfy the Ambrosetti–Rabinowitz condition.

Finally, as an application of the L∞-bound for weak solutions, which is our first main
result, we derive the existence of a sequence of infinitely many small energy solutions
converging to 0 in L∞-norm. This is based on related studies [18,31–36] without the Hardy
potential; for the Hardy potential, see [18]. To the best of our knowledge, for nonlinear
elliptic problems with Hardy potentials, the L∞-bound for weak solutions converging to
zero has not been studied extensively, and we are only aware of the study in [18]. However,
even considering the Kirchhoff–Hardy-type nonlinear equations in [18], the present paper
obtains this multiplicity result for the case in which µ belongs to the interval (−∞, µ∗)
for a positive constant µ∗, which, in a sense, is an extension of the study in [18]. In this
respect, we combine the modified functional method with the dual fountain theorem as
in [18,32] to provide the final main result. For this reason, our approach is different from
previously related works [31,35,36] that used the global variational formulation given
in [37]. Moreover, our problem has a nonlocal operator and the Hardy potential, which
requires us to perform more complex analyses than those of [18,32,33].
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This paper is structured as follows: In Section 2, we review some necessary preliminary
knowledge for the fractional Sobolev spaces that we use throughout the paper. Section 3
demonstrates the L∞-bound for any possible weak solution to Problem (1). As its applica-
tion, in Section 4, we offer the existence of at least two nontrivial solutions belonging to
L∞-space by showing some auxiliary results related to Problem (1). Finally, we offer the
existence of a sequence of solutions converging to zero in the L∞-norm.

2. Preliminaries

In this section, we briefly present some definitions and essential properties of the
fractional Sobolev spaces to be used in the present paper. We let 0 < s < 1 < p < +∞ be
real numbers and p∗s be the fractional critical Sobolev exponent, that is,

p∗s :=

{ Np
N−sp if sp < N,

+∞ if sp ≥ N.

We define the fractional Sobolev space Ws,p(RN) as follows:

Ws,p(RN) :=
{

ψ ∈ Lp(RN) :
∫
RN

∫
RN

|ψ(y)− ψ(z)|p
|y − z|N+ps dydz < +∞

}
,

endowed with the norm

||ψ||Ws,p(RN) :=
(
||ψ||pLp(RN)

+ |ψ|pWs,p(RN)

) 1
p

,

where

||ψ||pLp(RN)
:=
∫
RN

b(y)|ψ(y)|p dy and |ψ|pWs,p(RN)
:=
∫
RN

∫
RN

|ψ(y)− ψ(z)|p
|y − z|N+ps dydz.

Then, Ws,p(RN) is a separable and reflexive Banach space. Also, space C∞
0 (RN) is dense in

Ws,p(RN), that is, Ws,p
0 (RN) = Ws,p(RN) (see, e.g., [38,39]).

Lemma 1 ([39,40]). Let 0 < s < 1 < p < +∞ be such that ps < N. Then, there exists a positive
constant C > 0 depending on s, p, and N such that

||ψ||Lp∗s (RN)
≤ C |ψ|Ws,p(RN)

for all ψ ∈ Ws,p(RN). Also, space Ws,p(RN) is continuously embedded in Lt(RN) for any
t ∈ [p, p∗s ]. Moreover, the embedding

Ws,p(RN) ↪→ Lt
loc(R

N)

is compact for t ∈ [p, p∗s ).

Now, let us consider the space Ws,p
K (RN) defined as follows:

Ws,p
K (RN) :=

{
ψ ∈ Lp(RN) :

∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z) dydz < +∞
}

,

where a kernel function K : RN ×RN \ {(0, 0)} → (0,+∞) satisfies conditions (L1)–(L3).
By (L1), the function

(y, z) 7→ (ψ(y)− ψ(z))K
1
p (y, z) ∈ Lp(R2N)
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for any ψ ∈ C∞
0 (RN). Let us denote by Ws,p

K (RN) the completion of C∞
0 (RN) with respect

to the norm

||ψ||Ws,p
K (RN) :=

(
||ψ||pLp(RN)

+ |ψ|p
Ws,p

K (RN)

) 1
p

,

where
|ψ|p

Ws,p
K (RN)

:=
∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z) dydz.

Lemma 2 ([41]). Let 0 < s < 1 < p < +∞ be such that ps < N, and let K : RN × RN \
{(0, 0)} → (0, ∞) satisfy assumptions (L1)–(L3). If ψ ∈ Ws,p

K (RN), then ψ ∈ Ws,p(RN).
Moreover,

||ψ||Ws,p(RN) ≤ max{1, γ
− 1

p
0 }||ψ||Ws,p

K (RN),

where γ0 is given in (L2).

Next, we assume that the potential function b fulfills the condition

(V) b ∈ C(RN), infy∈RN b(y) > 0, and meas
{

y ∈ RN : b(y) ≤ b0
}
< +∞ for all b0 ∈ R.

On the linear subspace,

XK
s,b(RN) :=

{
ψ ∈ Lp(b,RN) :

∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z) dydz < +∞
}

,

we equip the norm

||ψ||XK
s,b(RN) :=

(
[ψ]

p
p,K + ||ψ||pLp(b,RN)

) 1
p

,

where

[ψ]
p
p,K :=

∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z) dydz and ||ψ||pLp(b,RN)
:=
∫
RN

b(y)|ψ|p dy.

Then, XK
s,b(RN) is continuously embedded into Ws,p(RN) as a closed subspace. Therefore,

(XK
s,b(RN), || · ||XK

s,b(RN)) is also a separable reflexive Banach space.

From Lemmas 1 and 2, we can offer the following consequence directly.

Lemma 3 ([41]). Let 0 < s < 1 < p < +∞ be such that ps < N, and let K : RN ×
RN \ {(0, 0)} → (0, ∞) satisfy assumptions (L1)–(L3). Then, there exists a positive constant
C0 = C0(s, p, N) such that for any ψ ∈ XK

s,b(RN) and 1 ≤ q ≤ p∗s ,

||ψ||pLq(RN)
≤ C0

∫
RN

∫
RN

|ψ(y)− ψ(z)|p
|y − z|N+ps dydz

≤ C0

γ0

∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z) dydz,

where γ0 is given in (L2). In addition, the space XK
s,b(RN) is continuously embedded in Lq(RN)

for any q ∈ [p, p∗s ] and the embedding

XK
s,b(RN) ↪→ Lq(RN)

is compact for q ∈ [p, p∗s ).

The following assertion is the fractional Hardy inequality, which is given in [42].
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Lemma 4. Let N ≥ 1, 0 < s < 1 ≤ p and let K : RN ×RN \ {(0, 0)} → (0, ∞) fulfil conditions
(L1)–(L3). Then, for any ψ ∈ XK

s,b(RN), when sp < N, and for any
ψ ∈ XK

s,b(RN)\{0}, when sp > N,

||ψ||pHp
:=
∫
RN

|ψ(y)|p

|y|sp dy ≤ cH

∫
RN

∫
RN

|ψ(y)− ψ(z)|p

|y − z|N+sp dydz

≤ cH
γ0

∫
RN

∫
RN

|ψ(y)− ψ(z)|pK(y, z)dydz,

where cH := cH(N, s, p) is a positive constant.

Throughout this paper, the kernel function K : RN × RN \ {(0, 0)} → (0, ∞) en-
sures assumptions (L1)–(L3). Moreover, ⟨·, ·⟩ denotes the pairing of XK

s,b(RN) and its
dual (XK

s,b(RN))∗.

3. Variational Setting and a Priori Bound of Solution

In this section, we present the variational framework related to the given problem and
then provide the L∞-bound of any possible solutions to (1) when µ belongs to the interval
(−∞, µ∗) for some positive constant µ∗.

Definition 1. Let 0 < s < 1 < p < +∞ be such that ps < N. We say that v ∈ XK
s,b(RN) is a

weak solution of Problem (1) if∫
RN

∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))(φ(y)− φ(z))K(y, z) dydz +
∫
RN

b(y)|v|p−2vφ dy

= µ
∫
RN

|v|p−2v
|y|sp φ dy + λ

∫
RN

a(y)|v|r−2vφ dy + θ
∫
RN

g(y, v)φ dy

for all φ ∈ XK
s,b(RN).

Let us define a functional Φs,p : XK
s,b(RN) → R by

Φs,p(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dydz +
1
p

∫
RN

b(y)|v|p dy.

Then, it is obvious that the functional Φs,p is well defined on XK
s,b(RN), Φs,p ∈ C1(XK

s,b(RN),R)
and its Fréchet derivative is given by, for any φ ∈ XK

s,b(RN),

⟨Φ′
s,p(v), φ⟩ =

∫
RN

∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))(φ(y)− φ(z))K(y, z) dydz

+
∫
RN

b(y)|v|p−2vφ dy.

Denoting G(y, t) =
∫ t

0 g(y, s) ds, we suppose that

(A1) 1 < r < p < q < p∗s and 0 ≤ a ∈ L∞(RN) ∩ L
p

p−r (RN).
(G1) g : RN ×R → R satisfies the Carathéodory condition and there exists a non-negative

function b ∈ L∞(RN) such that

|g(y, ξ)| ≤ b(y)|ξ|q−1

for all (y, ξ) ∈ RN ×R.
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Under assumptions (A1) and (G1), we define the functional Ψλ,µ : XK
s,b(RN) → R by

Ψλ,µ(v) =
µ

p

∫
RN

|v|p
|y|sp dy +

λ

r

∫
RN

a(y)|v|r dy + θ
∫
RN

G(y, v) dy.

Then, it follows that Ψλ,µ ∈ C1(XK
s,b(RN),R) and its Fréchet derivative is

〈
Ψ′

λ,µ(v), φ
〉

= µ
∫
RN

|v|p−2v
|y|sp φ dy + λ

∫
RN

a(y)|v|r−2vφ dy

+ θ
∫
RN

g(y, v)φ dy

for any v, φ ∈ XK
s,b(RN). Next, we define a functional Iµ,λ : XK

s,b(RN) → R by

Iµ,λ(v) = Φs,p(v)− Ψλ,µ(v).

Then, we know that the functional Iµ,λ ∈ C1(XK
s,b(RN),R) and its Fréchet derivative is

⟨I ′
µ,λ(v), φ⟩ =

∫
RN

∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))(φ(y)− φ(z))K(y, z) dydz

+
∫
RN

b(y)|v|p−2vφ dy − µ
∫
RN

|v|p−2v
|y|sp φ dy

− λ
∫
RN

a(y)|v|r−2vφ dy − θ
∫
RN

g(y, v)φ dy

for any v, φ ∈ XK
s,b(RN).

To obtain Theorem 1, which is our first main result, we need the following notable
Lemma introduced in (Lemma 2.2 [23]).

Lemma 5. Let {Zn}∞
n=1 be a sequence of positive numbers satisfying the recursion inequality

Zn+1 ≤ cτnZ1+δ
n , n = 0, 1, 2, · · ·

for some τ > 1, c > 0 and δ > 0. If Z0 ≤ min{1, c(−1)/δτ(−1)/δ2}, then Zn ≤ 1 for some
n ∈ N∪ {0}. Moreover,

Zn ≤ min
{

1, c(−1)/δτ(−1)/δ2
τ(−n)/δ

}
for any n ≥ n0, where n0 is the smallest n ∈ N ∪ {0} satisfying Zn ≤ 1. In particular, Zn → 0
as n → ∞.

Now, we show the regularity-type result via the De Giorgi iteration argument and the
localization method. The fundamental idea of the proof of this consequence follows from
the study in [16]; see also [33].

Theorem 1. We assume that (V), (A1), and (G1) hold. If v is a weak solution of Problem (1), then
there is a positive constant µ∗ > 0 such that v ∈ L∞(RN) and there are positive constants η, C
independent of v such that

||v||L∞(RN) ≤ C||v||ηLq(RN)

for any µ ∈ (−∞, µ∗), where µ appears in Problem (1).

Proof. Let Am = {y ∈ RN : v(y) > m}, Ãm = {y ∈ RN : −v(y) > m} for m > 0. We note
that |Am| and |Ãm| are finite for any m ∈ N, where | · | denotes the Lebesgue measure on
RN . Taking a test function u = (v − m)+ ∈ X(RN) in (1) and integrating over RN , we have
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∫
RN

∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))(u(y)− u(z))K(y, z) dydz +
∫
RN

b(y)|v|p−2vu dy

= µ
∫
RN

|v|p−2v
|y|sp u dy + λ

∫
RN

a(y)|v|r−2vu dy + θ
∫
RN

g(y, v)u dy.

Using inequality |α − β|γ−2(α − β)(α+ − β+) ≥ |α+ − β+|γ for all α, β, γ ∈ R with γ > 1
and (F1), we deduce from the last equality that∫

RN

∫
RN

|u(y)− u(z)|pK(y, z) dydz +
∫
Am

b(y)|v(y)|p−2v(v − m) dy

− µ
∫
Am

|v|p−2v
|y|sp (v − m) dy

≤ λ
∫
Am

a(y)|v|r−2v(v − m) dy + θ
∫
Am

g(y, v)(v − m) dy.

Let us set µ∗ = γ0cH
−1, where cH is given in Lemma 4 and γ0 is given in (L2).

Case 1. µ ∈ (0, µ∗).
Since v ≥ v − m > 0 on Am, by Lemma 4, we infer that∫

RN

∫
RN

|u(y)− u(z)|pK(y, z) dydz

+
∫
Am

b(y)|v|p−2v(v − m) dy − µ
∫
Am

|v|p−2v
|y|sp (v − m) dy

≥
∫
RN

∫
RN

|u(y)− u(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy − µ
∫
Am

|v|p
|y|sp dy

≥
∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy − µ
∫
Am

|v|p
|y|sp dy

≥
(

1 − µcH
γ0

)(∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy
)

. (4)

and thus, in accordance with (A1), (G1), and the Hölder inequality, we have(
1 − µcH

γ0

)(∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy
)

≤ λ
∫
Am

a(y)|v|r−2v(v − m) dy + θ
∫
Am

g(y, v)(v − m) dy

≤ λ||a||L∞(RN)

∫
Am

|v|r dy + θ||b||L∞(RN)

∫
Am

|v|q dy

≤
(
1 + mr−q)(λ||a||L∞(RN) + θ||b||L∞(RN)

) ∫
Am

|v|qdy. (5)

We put mn := m∗(2 − 1/2n), n = 0, 1, 2, · · · , with m∗ > 0 specified later and

Zn :=
∫
Amn

(v − mn)
q dy.

Since m∗ ≤ mn ≤ mn+1 ≤ 2m∗ for all n ∈ N, we have∫
Amn

(v − mn)
q dy ≥

∫
Amn+1

|v|q
(

1 − mn

mn+1

)q
dy ≥

∫
Amn+1

|v|q

2q(n+2)
dy

and therefore

Zn ≥
∫
Amn+1

|v|q

2q(n+2)
dy.
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Thus, ∫
Amn+1

|v|q dy ≤ ℓn+2
1 Zn, (6)

where ℓ1 := 2q > 1. For the Lebesgue measure of Amn+1 , we deduce that

∣∣Amn+1

∣∣ ≤ ∫
Amn+1

(
v − mn

mn+1 − mn

)q
dy ≤

∫
Amn

(
2n+1

m∗

)q

(v − mn)
q dy.

Thus, we have

|Amn+1 | ≤
ℓn+1

1

mq
∗
Zn. (7)

We note that 1 + mr−q
∗ ≤ 2(1 + m−q

∗ ). Then, it follows from Relations (5)–(7) that we obtain(
1 − µcH

γ0

)( ∫
Amn+1

∫
Amn+1

|v(y)− v(z)|pK(y, z) dydz

+
∫
Amn+1

b(y)|v|p−2v(v − mn+1) dy
)

≤
(

1 + mr−q
n+1

)(
λ||a||L∞(RN) + θ||b||L∞(RN)

) ∫
Amn+1

|v|qdy

≤
(

1 + mr−q
∗
)(

λ||a||L∞(RN) + θ||b||L∞(RN)

)
ℓn+2

1 Zn + |Amn+1 |

≤
(

1 + mr−q
∗
)(

λ||a||L∞(RN) + θ||b||L∞(RN)

)
ℓn+2

1 Zn +
ℓn+1

1

mq
∗
Zn

≤ ℓn
1Zn

[
2
(

1 + m−q
∗
)(

λ||a||L∞(RN) + θ||b||L∞(RN)

)
ℓ2

1 + ℓ1m−q
∗
]

≤ ℓn
1Zn

[
2
(

1 + m−q
∗
)(

λ||a||L∞(RN) + θ||b||L∞(RN)

)
ℓ2

1 + ℓ1m−q
∗ + 2ℓ1 + ℓ1m−q

∗
]

≤ 2
(

1 + m−q
∗
)[(

λ||a||L∞(RN) + θ||b||L∞(RN)

)
ℓ2

1 + ℓ1

]
ℓn

1Zn

= ℓ2ℓ
n
1Zn, (8)

where ℓ2 := 2(1 + m−q
∗ )C1 and C1 :=

(
λ||a||L∞(RN ) + θ||b||L∞(RN )

)
ℓ2

1 + ℓ1. We denote

q0 := q+p∗
2 and vn := (v − mn+1)+. Then, it follows from the Hölder inequality that

∫
Amn+1

vq
n dy ≤

(∫
RN

vq0
n dy

) q
q0 ∣∣Amn+1

∣∣ q0−q
q0

= ||vn||qLq0(RN)

∣∣Amn+1

∣∣1− q
q0

≤ Cq
imb||vn||qX

∣∣Amn+1

∣∣1− q
q0 , (9)

where Cimb is an imbedding constant of XK
s,b(RN ↪→ Lq0(RN). By (8) and the fact that

v ≥ vn = v − mn+1 > 0 on Amn+1 , we obtain

||vn||pXK
s,b(RN =

∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz +
∫
Amn+1

b(y)|vn|p dy

=
∫
Amn+1

∫
Amn+1

|vn(y)− vn(z)|pK(y, z) dydz +
∫
Amn+1

b(y)|vn|p dy

≤
∫
Amn+1

∫
Amn+1

|v(y)− v(z)|pK(y, z) dydz

+
∫
Amn+1

b(y)|v|p−2v(v − mn+1) dy
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≤ C2ℓ2ℓ
n
1Zn, (10)

where C2 :=
(

1 − µcH
γ0

)−1
. We deduce from (7), (9), and (10) that

Zn+1 =
∫
Amn+1

vq
n dy

≤ Cq
imb||(v − mn+1)+||

q
XK

s,b(RN

∣∣Amn+1

∣∣1− q
q0

≤ Cq
imb(C2ℓ2ℓ

n
1Zn)

q
p
∣∣Amn+1

∣∣1− q
q0

≤ Cq
imb

[
2C2(1 + m−q

∗ )C1ℓ
n
1Zn

] q
p

(
ℓn+1

1

mq
∗
Zn

)1− q
q0

= Cq
imb(2C2C1)

q
p
(

1 + m−q
∗
) q

p
ℓ

n q
p +(n+1)

(
1− q

q0

)
1 m

−q
(

1− q
q0

)
∗ Z

1− q
q0
+

q
p

n

≤ C3Cq
imb(2C2C1)

q
p ℓ

1− q
q0

1

(
1 + m

−q q
p

∗

)
m

−q
(

1− q
q0

)
∗ ℓ

n
(

1− q
q0
+

q
p

)
1 Z

1− q
q0
+

q
p

n

for a positive constant C3. We assert

Zn+1 ≤ ℓ3+

(
m

−q
(

1− q
q0

)
∗ + m

−q
(

1− q
q0
+

q
p

)
∗

)
ℓ

n(1+δ)
1 Z1+δ

n , n ∈ N∪ {0},

where ℓ3+ := C3Cq
imb(2C2C1)

q
p ℓ

1− q
q0

1 and δ = q
p − q

q0
. This implies

Zn+1 ≤ ℓ3+

(
m−α1∗ + m−α2∗

)
bnZ1+δ

n , (11)

where 0 < α1 := q
(

1 − q
q0

)
< α2 := q

(
1 − q

q0
+ q

p

)
and τ := ℓ1+δ

1 for any µ ∈ (0, µ∗).
Case 2. µ ∈ (−∞, 0].

From similar arguments to those in (4) and (5), we have∫
RN

∫
RN

|u(y)− u(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy

− µ
∫
Am

|v|p−2w
|y|sp (v − m) dy

≥
∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy

and thus ∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy

≤
(

1 + m1−q
)(

λ||a||L∞(RN) + ||b||L∞(RN)

) ∫
Am

|v|qdy.

This, together with an analogous argument to that in (8), yields that∫
Am

∫
Am

|v(y)− v(z)|pK(y, z) dydz +
∫
Am

b(y)|v|p−2v(v − m) dy ≤ ℓ2ℓ
n
1Zn,

where ℓ1 and ℓ2 are given in (8). This implies

||vn||pX =
∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz +
∫
Amn+1

b(y)|vn|p dy
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≤
∫
Amn+1

∫
Amn+1

|v(y)− v(z)|pK(y, z) dydz

+
∫
Amn+1

b(y)|v|p−2v(v − mn+1) dy

≤ ℓ2ℓ
n
1Zn.

Using an argument analogous to that used to derive (11), we attain

Zn+1 ≤ ℓ3−
(

m−α1∗ + m−α2∗
)

τnZ1+δ
n , (12)

where ℓ3− := C3Cq
imb(2C1)

q
p ℓ

1− q
q0

1 for any µ ∈ (−∞, 0].

Applying Lemma 5 with (11) and (12), we deduce that

Zn =
∫
RN

(v − mn)
q
+ dy → 0 as n → ∞, (13)

provided that

Z0 ≤ min
{

1, ℓ
− 1

δ
3

(
m−α1∗ + m−α2∗

)− 1
δ
τ
− 1

δ2

}
,

where ℓ3 is either ℓ3+ or ℓ3−. We note that for a large enough m∗, Z0 ≤ 1 since |Am∗ | → 0
as m∗ → ∞. Moreover, we observe that

Z0 =
∫
Am∗

(v − m∗)
q dy ≤

∫
RN

vq
+ dy. (14)

Meanwhile, ∫
RN

vq
+ dy ≤ ℓ

− 1
δ

3

(
m−α1∗ + m−α2∗

)− 1
δ
τ
− 1

δ2

is equivalent to

m−α1∗ + m−α2∗ ≤ ℓ−1
3 τ− 1

δ

(∫
RN

vq
+ dy

)−δ

. (15)

Moreover, 
2m−α1∗ ≤ ℓ−1

3 τ− 1
δ

(∫
RN

vq
+ dy

)−δ

,

2m−α2∗ ≤ ℓ−1
3 τ− 1

δ

(∫
RN

vq
+ dy

)−δ

is equivalent to 
m∗ ≥ (2ℓ3)

1
α1 τ

1
δα1

(∫
RN

vq
+ dy

) δ
α1

,

m∗ ≥ (2ℓ3)
1

α2 τ
1

δα2

(∫
RN

vq
+ dy

) δ
α2

.

Hence, by choosing

m∗ = max

{
(2ℓ3)

1
α1 τ

1
δα1

(∫
RN

vq
+ dy

) δ
α1

, (2ℓ3)
1

α2 τ
1

δα2

(∫
RN

vq
+ dy

) δ
α2

}
,

we obtain Inequality (15). Combining this and (14), we derive Relation (13). Since mn ↑ 2m∗,
Relation (13) and the Lebesgue dominated convergence theorem imply that∫

RN
(v − 2m∗)

q
+ dy = 0.
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Therefore, (v − 2m∗)+ = 0 almost everywhere in RN and hence ess supx∈RN v(x) ≤ 2m∗.
By replacing v with −v and Am with Ãm, we have analogously that v is bounded from
below. Therefore,

||v||L∞(RN) ≤ C4 max

{(∫
RN

|v|q dy
) δ

α1
,
(∫

RN
|v|q dy

) δ
α2

}
,

where C4 is a positive constant independent of v. The proof is complete.

4. Applications

As an application of Theorem 1, we demonstrate two multiplicity results of nontrivial
weak solutions to the Schrödinger–Hardy-type nonlinear equation driven by the nonlocal
fractional p-Laplacian. First, we present useful auxiliaries that play a decisive role in
proving the existence of at least two distinct nontrivial solutions to (1). The proof of the
following assertion can be regarded as a modification of those of Lemma 5 in [33].

Lemma 6. We assume that (V), (A1), and (G1) hold and the following is satisfied:

(G2) G(y, ξ) ≥ 0 for all (y, ξ) ∈ RN × R and lim|ξ|→∞
G(y,ξ)
|ξ|p = ∞ uniformly for almost all

y ∈ RN .

Then, for any θ > 0, we have the following:

(i) There are constants λ∗ > 0 and µ∗ > 0 such that, for any λ ∈ (0, λ∗) and for any
µ ∈ (−∞, µ∗), we can choose R > 0 and 0 < τ < 1 such that Iµ,λ(v) ≥ R for all
v ∈ XK

s,b(RN) with ||v||XK
s,b(RN) = τ.

(ii) There exists an element ϕ in XK
s,b(RN), ϕ > 0 such that Iµ,λ(ζϕ) → −∞ as ζ → +∞.

(iii) There is an element ψ in XK
s,b(RN), ψ > 0 such that Iµ,λ(ζψ) < 0 for all ζ → 0+.

Proof. Let us show Condition (i). Through Lemma 1, there is a constant d1 > 0 such
that ||v||Lγ(RN) ≤ d1||v||XK

s,b(RN) for p ≤ γ < p∗s . We assume that ||v||XK
s,b(RN) < 1. We set

µ∗ = γ0cH
−1, where cH and γ0 are given in Lemma 4 and (L2), respectively. First, we

consider the case µ ∈ (0, µ∗). Then, it follows from (A1), (G1), and Lemma 3 that

Iµ,λ(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

G(y, v) dy

≥ 1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)
−

θ||b||L∞(RN)

q
||v||qLq(RN)

≥ 1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µcH
γ0 p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz

− λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)
−

θ||b||L∞(RN)

q
||v||qLq(RN)

≥
(

1
p
− µcH

γ0 p

) ∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)
−

θ||b||L∞(RN)

q
||v||qLq(RN)
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≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)

− θd1

q
||b||L∞(RN)||v||

q
XK

s,b(RN)

≥
[(

1
p
− µcH

γ0 p

)
− λd2

r
||v||r−p

XK
s,b(RN)

− θd3

q
||v||q−p

XK
s,b(RN)

]
||v||p

XK
s,b(RN)

(16)

for positive constants d2 and d3.
On the other hand, we consider the case for µ ∈ (−∞, 0]. Then, we obtain

Iµ,λ(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

G(y, v) dy

≥ 1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)
−

θ||b||L∞(RN)

q
||v||qLq(RN)

≥ 1
p
||v||p

XK
s,b(RN)

− λd1

r
||a||

L
p

p−r (RN)
||v||rXK

s,b(RN)
− θd1

q
||b||L∞(RN)||v||

q
XK

s,b(RN)

≥
(

1
p
− λd2

r
||v||r−p

XK
s,b(RN)

− θd3

q
||v||q−p

XK
s,b(RN)

)
||v||p

XK
s,b(RN)

. (17)

Let us define the function fλ : (0, ∞) → R by

fλ(ξ) =
λd2

r
ξr−p +

θd3

q
ξq−p.

Then, it is immediately clear that fλ admits a local minimum at point ξ0 =
(

λqd2(p−r)
rθ3(q−p)

) 1
q−r

and so
lim

λ→0+
fλ(ξ0) = 0.

Thus, it follows from (16) and (17) that there is a positive constant λ∗, such that for each
λ ∈ (0, λ∗) and for any µ ∈ (−∞, µ∗) we can choose R > 0 and small enough τ > 0 such
that Iµ,λ(v) ≥ R > 0 for any v ∈ XK

s,b(RN) with ||v||XK
s,b(RN) = τ.

Next, we prove Statement (ii). By (G2), for any C0 > 0, there is a constant ξ0 > 0
such that

G(y, ξ) ≥ C0|ξ|p (18)

for |ξ| > ξ0 and for almost all y ∈ RN. We take φ ∈ XK
s,b(RN) \ {0}. Then, Relation (18) yields

Iµ,λ(ζφ) =
1
p

∫
RN

∫
RN

ζ p|φ(y)− φ(z)|pK(y, z) dydz +
1
p

∫
RN

b(y)|ζφ|p dy

− µ

p

∫
RN

|ζφ|p

|y|sp dy − λ

r

∫
RN

a(y)|ζφ|r dy − θ
∫
RN

G(y, ζφ) dy

≤ ζ p
(

1
p

∫
RN

∫
RN

|φ(y)− φ(z)|pK(y, z) dydz +
1
p

∫
RN

b(y)|φ|p dy

− µ

p

∫
RN

|φ|p

|y|sp dy − θC0

∫
RN

|φ|p dy
)

for sufficiently large ζ > 1. If C0 is large enough, then we arrive at Iµ,λ(ζφ) → −∞ as
ζ → ∞. Hence, the functional Iµ,λ is unbounded from below.
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Finally, (iii) remains to be shown. We choose ψ ∈ XK
s,b(RN) such that ϕ > 0. For suffi-

ciently small ζ > 0, from (G2), we obtain

Iµ,λ(ζϕ) =
1
p

∫
RN

∫
RN

ζ p|ϕ(y)− ϕ(z)|pK(y, z) dydz +
1
p

∫
RN

b(y)|ζϕ|p dy

− µ

p

∫
RN

|ζϕ|p

|y|sp dy − λ

r

∫
RN

a(y)|ζϕ|r dy − θ
∫
RN

G(y, ζϕ) dy

≤ ζ p

p

( ∫
RN

∫
RN

|ϕ(y)− ϕ(z)|pK(y, z) dydz +
∫
RN

b(y)|ϕ|p dy

− µ
∫
RN

|ϕ|p

|y|sp dy
)
− λζr

r

∫
RN

a(y)|ϕ|r dy.

Since r < p, it follows that Iµ,λ(ζϕ) < 0 as ζ → 0+. This completes the proof.

Now, we prove that the energy functional Iµ,λ ensures the Cerami condition
((C)-condition for brevity), i.e., any sequence {vn}n∈N ⊂ XK

s,b(RN) such that

{Iµ,λ(vn)}n∈N is bounded and ||I ′
µ,λ(vn)||X∗

s (RN)(1 + ||vn||XK
s,b(RN)) → 0 as n → ∞

has a convergent subsequence. The basic idea of the proofs of the following consequences
follows analogous arguments to those in [12]; see also [16].

Lemma 7. Let 0 < s < 1 < p < +∞ with ps < N. We assume that (A1) and (G1) hold and that

(G3) there exist ν > p and M > 0 such that

g(y, t)t − νG(y, t) ≥ 0 for all y ∈ RN and |t| ≥ M

is satisfied. Then, for any λ, θ > 0 and for any µ ∈ (0, µ∗), the functional Iµ,λ satisfies the
(C)-condition, where µ∗ is given in Lemma 6.

Proof. Let {vn}n∈N be a (C)-sequence in XK
s,b(RN), i.e.,

sup
n∈N

|Iµ,λ(vn)| ≤ C1 and
〈
I ′

µ,λ(vn), vn

〉
= o(1) → 0, as n → ∞, (19)

where C1 is a positive constant. From condition (V) and the same argument as in [43], we
arrive at (

1
p
− 1

ν

) ∫
RN

b(y)|vn|pdy − θC5

∫
{|vn |≤M}

(|vn|p + b(y)|vn|q)dy

≥ 1
2

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|pdy − C0 (20)

for any positive constant C5 and for some positive constant C0.
From (20), (A1), (G1), and (G3) and for any µ ∈ (0, µ∗),

C1 + 1 ≥ Iµ,λ(vn)−
1
ν

〈
I ′

µ,λ(vn), vn

〉
=

1
p

∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz +
1
p

∫
RN

b(y)|vn|p dy

− µ

p

∫
RN

|vn|p
|y|sp dy − λ

r

∫
RN

a(y)|vn|r dy − θ
∫
RN

G(y, vn) dy

− 1
ν

∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz − 1
ν

∫
RN

b(y)|vn|p dy
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+
µ

ν

∫
RN

|vn|p
|y|sp dy +

λ

ν

∫
RN

a(y)|vn|r dy +
θ

ν

∫
RN

g(y, vn)vn dy

≥
(

1
p
− 1

ν

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

+

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|p dy +
θ

ν

∫
RN

(g(y, vn)vn − νG(y, vn)) dy

− µ

(
1
p
− 1

ν

) ∫
RN

|vn|p
|y|sp dy − λ

(
1
r
− 1

ν

) ∫
RN

a(y)|vn|r dy

≥
(

1
p
− 1

ν

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

+

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|p dy +
θ

ν

∫
{|vn |≤M}

(g(y, vn)vn − νG(y, vn)) dy

+
θ

ν

∫
{|vn |≥M}

(g(y, vn)vn − νG(y, vn)) dy

− µ

(
1
p
− 1

ν

) ∫
RN

|vn|p
|y|sp dy − λ

(
1
r
− 1

ν

) ∫
RN

a(y)|vn|r dy

≥
(

1
p
− 1

ν

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

+

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|p dy − θC5

∫
{|vn |≤M}

(|vn|p + b(y)|vn|q)dy

− cHµ

γ0

(
1
p
− 1

ν

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

− λ

(
1
r
− 1

ν

) ∫
RN

a(y)|vn|r dy

≥
(

1
p
− 1

ν

)(
1 − cHµ

γ0

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

+
1
2

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|p dy − λ

(
1
r
− 1

ν

) ∫
RN

a(y)|vn|r dy − C0

≥ min
{

1 − cHµ

γ0
,

1
2

}( 1
p
− 1

µ

)
||vn||pXK

s,b(RN)

− λ

(
1
r
− 1

ν

)
d1||a||

L
p

p−r (RN)
||vn||rXK

s,b(RN)
− C0, (21)

where d1 is given in Lemma 6. Hence, we know that

C1 + 1 + λ

(
1
r
− 1

ν

)
d1||a||

L
p

p−r (RN)
||vn||rXK

s,b(RN)
+ C0

≥ min
{

1 − cHµ

γ0
,

1
2

}( 1
p
− 1

µ

)
||vn||pXK

s,b(RN)
. (22)

Next, we consider the case for µ ∈ (−∞, 0]. From an analogous argument to that
in (21), it follows that

K1 + 1 ≥ Iµ,λ(vn)−
1
µ

〈
I ′

µ,λ(vn), vn

〉
≥
(

1
p
− 1

ν

) ∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz

+

(
1
p
− 1

ν

) ∫
RN

b(y)|vn|p dy − µ

(
1
p
− 1

ν

) ∫
RN

|vn|p
|y|sp dy

+
θ

ν

∫
RN

(g(y, vn)vn − νG(y, vn)) dy



Fractal Fract. 2024, 8, 426 16 of 31

≥ 1
2

(
1
p
− 1

µ

)
||vn||pXK

s,b(RN)
− λ

(
1
r
− 1

ν

)
d1||a||

L
p

p−r (RN)
||vn||rXK

s,b(RN)
− K̃0.

Hence, we know that

K1 + 1 + λ

(
1
r
− 1

ν

)
d1||a||

L
p

p−r (RN)
||vn||rXK

s,b(RN)
+ K̃0 ≥ 1

2

(
1
p
− 1

µ

)
||vn||pXK

s,b(RN)
. (23)

Therefore, from (22) and (23), we can state that {vn}n∈N is bounded in XK
s,b(RN).

From Lemmas 3 and 4 and the reflexivity of XK
s,b(RN), there exists a subsequence, still

denoted by {vn}n∈N, and v ∈ XK
s,b(RN) such that

vn ⇀ v in XK
s,b(RN), vn ⇀ v in Lp(RN , |y|−sp),

vn → v a.e. in RN , vn → v in Lν(RN), ||vn − v||Hp → ℓ (24)

for any v ∈ [p, p∗s ) as n → ∞. Then, the sequence{
|vn(y)− vn(z)|p−2(vn(y)− vn(z))K(y, z)

1
p′
}

n∈N

is bounded in Lp′(RN ×RN), as well as almost everywhere in RN ×RN

Bn(y, z) := |vn(y)− vn(z)|p−2(vn(y)− vn(z))K(y, z)
1
p′

→ B(y, z) := |v(y)− v(z)|p−2(v(y)− v(z))K(y, z)
1
p′ as n → ∞.

Thus, proceeding, if necessary, to a further subsequence, we infer that Bn ⇀ B in Lp′(RN ×
RN) as n → ∞. Furthermore, |vn|p−2vn ⇀ |v|p−2v in Lp′(b,RN). Hence, since (y, z) 7→
|φ(y)− φ(z)| · |y − z|−(n+ps)/p ∈ Lp(RN ×RN) and φ ∈ Lp(b,RN), we assert that for any
φ ∈ XK

s,b(RN),∫
RN

∫
RN

|vn(y)− vn(z)|p−2(vn(y)− vn(z))(φ(y)− φ(z))K(y, z) dydz

→
∫
RN

∫
RN

|v(y)− v(z)|p−2(v(y)− v(z))(φ(y)− φ(z))K(y, z) dydz (25)

and ∫
RN

b(y)|vn(y)|p−2vn(y)φ(y) dy →
∫
RN

b(y)|v(y)|p−2v(y)φ(y) dy (26)

as n → ∞.
On the other hand, sequence |vn(y)|p−2vn(y)

|y|
sp
p′


n∈N

is bounded in Lp′(RN), as well as almost everywhere in RN

|vn(y)|p−2vn(y)

|y|
sp
p′

→ |v(y)|p−2v(y)

|y|
sp
p′

as n → ∞.

By (24), we have
|vn|p−2vn ⇀ |v|p−2v in Lp′(RN , |y|−sp),

so that

lim
n→∞

∫
RN

|vn|p−2vn

|y|sp φ dy =
∫
RN

|v|p−2v
|y|sp φ dy (27)
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for any φ ∈ XK
s,b(RN).

From (25), (26), and (27), we derive that

lim
n→∞

∫
RN

∫
RN

|vn(y)− vn(z)|p−2(vn(y)− vn(z))(v(y)− v(z))K(y, z) dydz = [v]pp,K (28)

and

lim
n→∞

∫
RN

b(y)|vn|p−2vnv dy = ||v||pLp(b,RN)
, lim

n→∞

∫
RN

|vn|p−2vn

|y|sp v dy =
∫
RN

|v|p
|y|sp dy. (29)

By also considering Lemma 3, (24), Assumptions (A1) and (G1), and the Hölder inequality,
we obtain ∣∣∣∣∫RN

a(y)|vn|r−2vn(vn − v)dy
∣∣∣∣ ≤ ||a||

L
p

p−r (RN)
||vn − v||rLp(RN) → 0 (30)

and ∣∣∣∣∫RN
g(y, vn)(vn − v)dy

∣∣∣∣ ≤ ∫
RN

b(y)|vn|q−1|vn − v|dy

≤ ||b||L∞(RN)||vn||q−1
Lq(RN)

||vn − v||Lq(RN) → 0 (31)

as n → ∞. Furthermore, using (24) and (25) and the Brézis and Lieb lemma in Theorem 1 [44],
we obtain

[vn]
p
p,K − [vn − v]pp,K = [vn]

p
p,K + o(1),

||vn||pLp(b,RN)
− ||vn − v||pLp(b,RN)

= ||v||pLp(b,RN)
+ o(1) (32)

and
||vn||pHp

− ||vn − v||pHp
= ||v||pHp

+ o(1) (33)

as n → ∞. Thus, by (19), (28)–(33), we obtain

o(1) =
〈
I ′

µ,λ(vn), vn − v
〉

=
∫
RN

∫
RN

|vn(y)− vn(z)|pK(y, z) dydz +
∫
RN

b(y)|vn|p−2vn(vn − v) dy

−
∫
RN

∫
RN

|vn(y)− vn(z)|p−2(vn(y)− vn(z))(v(y)− v(z))K(y, z) dydz

− µ
∫
RN

|vn|p−2vn

|y|sp (vn − v)dy − λ
∫
RN

a(y)|vn|r−2vn(vn − v) dy

− θ
∫
RN

g(y, vn)(vn − v) dy + o(1)

≥ [vn]
p
p,K + ||vn||pLp(b,RN)

− [v]pp,K − ||v||pLp(b,RN)

− µ

(∫
RN

|vn|p
|y|p dy −

∫
RN

|v|p
|y|p dy

)
+ o(1)

≥ ||vn||pXK
s,b(RN)

− ||v||p
XK

s,b(RN)
− µ(||vn||pHp

− ||v||pHp
) + o(1)

≥ ||vn − v||p
XK

s,b(RN)
− µ(||vn − v||pHp

) + o(1) (34)

as n → ∞. Hence, it follows from (24) that

||vn − v||p
XK

s,b(RN)
≤ µ||vn − v||pHp

+ o(1)

= µℓ+ o(1) (35)
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as n → ∞. Now assume, for contradiction, that ℓ > 0. Then, from Lemma 4, (35), and the
fact that µ < γ0

cH
, we have

lim
n→∞

[vn − v]pp,K ≤ lim
n→∞

||vn − v||p
XK

s,b(RN)

≤ µ lim
n→∞

||vn − v||pHp

<
γ0

cH
lim

n→∞
||vn − v||pHp

≤ lim
n→∞

[vn − v]pp,K,

which is impossible. Therefore, ℓ = 0; so, by (35), we have vn → v in XK
s,b(RN). This

completes the proof.

The following lemma, which is a variant of the Ekeland variational principle, plays a
decisive role in obtaining our first main consequence.

Lemma 8 ([28]). Let E be a Banach space and x0 be a fixed point of E . We suppose that F : E →
R∪ {+∞} is a lower semi-continuous function, not identically +∞, bounded from below. Then,
for every ε > 0 and y ∈ E such that

F(y) < inf
E

F + ε,

and every λ > 0, there is a point z ∈ E such that

F(z) ≤ F(y), ||z − x0||E ≤ (1 + ||y||E )(eλ − 1),

and
F(x) ≥ F(z)− ε

λ(1 + ||z||E )
||x − z||E for all x ∈ E .

With the help of Lemmas 6–8, we are in a position to derive our first major result.
The proof is completely the same as that of Theorem 1 in [33].

Theorem 2. We assume that (V), (A1), and (G1)–(G3) hold. Then, there is a constant λ∗ > 0
such that for any λ ∈ (0, λ∗) and for any µ ∈ (−∞, µ∗), Problem (1) has at least two different
nontrivial solutions in XK

s,b(RN) that belong to L∞-space, where µ∗ is given in Lemma 6.

Proof. By means of Lemmas 6 and 7, we choose positive numbers λ∗ and µ∗ such that
Iλ,µ has a mountain pass geometry and the (C)-condition for any λ ∈ (0, λ∗) and for
any µ ∈ (−∞, µ∗). The mountain pass theorem derives that Iµ,λ has a critical point
v0 ∈ XK

s,b(RN) with Iµ,λ(v0) = δ > 0 = Iµ,λ(0). Thus, Problem (1) admits a nontrivial
weak solution v0. By virtue of Lemma 6, for a fixed λ ∈ (0, λ∗) and µ ∈ (−∞, µ∗),
we can choose R > 0 and 0 < τ < 1 such that Iµ,λ(v) ≥ R if ||v||XK

s,b(RN) = τ. Let

us denote δ := infu∈Bτ
Iµ,λ(u), where Bτ := {v ∈ XK

s,b(RN) : ||v||XK
s,b(RN) < τ} with a

boundary ∂Bτ . Then, it follows from (16) and Lemma 6 (3) that −∞ < δ < 0. Putting
0 < ϵ < infu∈∂Bτ

Iµ,λ(u)− δ, invoking to Lemma 8, there is an element vϵ ∈ Bτ such thatIµ,λ(vϵ) ≤ δ + ϵ,
Iµ,λ(vϵ) < Iµ,λ(u) + ϵ

1+||vϵ ||XK
s,b(R

N )
||u − vϵ||XK

s,b(RN)
(36)

for all u ∈ Bτ with u ̸= vϵ. We set

Îµ,λ(u) = Iµ,λ(u) +
ϵ

1 + ||vϵ||XK
s,b(RN)

||u − vϵ||XK
s,b(RN).
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Because Iµ,λ(vϵ) ≤ δ + ϵ < infu∈∂Bτ
Iµ,λ(u) we determine that vϵ ∈ Bτ . From these facts,

we know that vϵ is a local minimum of Îµ,λ. Now, by taking u = vϵ + tv for v ∈ B1 with
small enough t > 0, from (36), we deduce

0 ≤
Îµ,λ(vϵ + tv)− Îµ,λ(vϵ)

t
=

Iµ,λ(vϵ + tv)− Iµ,λ(vϵ)

t
+

ϵ

1 + ||vϵ||XK
s,b(RN)

||v||XK
s,b(RN).

Therefore, letting t → 0+, we obtain〈
I ′

µ,λ(vϵ), v
〉
+

ϵ

1 + ||vϵ||XK
s,b(RN)

||v||XK
s,b(RN) ≥ 0.

Substituting −v for v in the argument above, we derive

−
〈
I ′

µ,λ(vϵ), v
〉
+

ϵ

1 + ||vϵ||XK
s,b(RN)

||v||XK
s,b(RN) ≥ 0.

Thus, we know
(1 + ||vϵ||XK

s,b(RN))
∣∣∣〈I ′

µ,λ(vϵ), v
〉∣∣∣ ≤ ϵ||v||XK

s,b(RN)

for any v ∈ B1. Hence, we infer

(1 + ||vϵ||XK
s,b(RN))||I

′
µ,λ(vϵ)||XK

s,b(RN)∗ ≤ ϵ. (37)

Combining (36) with (37), we can choose a sequence {vn}n∈N ⊂ Bτ such that{
Iµ,λ(vn) → δ as n → ∞,
(1 + ||vn||XK

s,b(RN))||I ′
µ,λ(vn)||XK

s,b(RN)∗ → 0 as n → ∞.
(38)

Thus, {vn}n∈N is a bounded Cerami sequence in XK
s,b(RN). According to Lemma 7, {vn}n∈N

admits a subsequence {vnk}k∈N such that vnk → v1 in XK
s,b(RN) as k → ∞. With the

aid of this and (38), we determine that Iµ,λ(v1) = δ and I ′
µ,λ(v1) = 0. Hence, v1 is a

nontrivial solution of Problem (1) with Iµ,λ(v1) < 0, which is different from v0. As a result,
in accordance with Theorem 1, Problem (1) allows for at least two different nontrivial
solutions in XK

s,b(RN), which belong to L∞-space. The proof is completed.

Finally, we demonstrate the existence of a sequence of infinitely many weak solutions
to problem (1) which converges to 0 in the L∞-norm. This requires the following additional
conditions for g:

(G4) There is a constant ξ0 > 0 such that g(y, ξ) is odd in ξ ∈ (−ξ0, ξ0) and pG(y, ξ)−
g(y, ξ)ξ > 0 for almost all y ∈ RN and for 0 < |ξ| < ξ0;

(G5) lim|ξ|→0
g(y,ξ)
|ξ|p−2ξ

= +∞ uniformly for all y ∈ RN .

Using the dual fountain theorem as the main tool, we consider the following decom-
position lemma to obtain our final result. Let E be a separable and reflexive Banach space.
Then, it is known (see [45,46]) that there are {en}n∈N ⊆ E and {h∗n}n∈N ⊆ E∗ such that

E = span{en : n = 1, 2, · · · }, E∗ = span{h∗n : n = 1, 2, · · · }

and

〈
h∗i , ej

〉
=

{
1 if i = j

0 if i ̸= j.

Let us denote En = span{en}n∈N, Yn =
⊕n

k=1 Ek, and Zn =
⊕∞

k=n Ek.
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Lemma 9 (Dual Fountain Theorem [47]). We assume that (E , || · ||) is a Banach space, and
H ∈ C1(E ,R) is an even functional. If there is n0 > 0 so that, for each n ≥ n0, there exist
βn > αn > 0, the following hold:

(D1) inf{H(ϖ) : ϖ ∈ Zn, ||ϖ|| = βn} ≥ 0;
(D2) σn := max{H(ϖ) : ϖ ∈ Yn, ||ϖ|| = αn} < 0;
(D3) ψn := inf{H(ϖ) : ϖ ∈ Zn, ||ϖ|| ≤ βn} → 0 as n → ∞;
(D4) H fulfills the (C)∗c -condition for every c ∈ [ψn0 , 0),

then H admits a sequence of negative critical values ψn < 0 satisfying ψn → 0 as n → ∞.

Definition 2. We suppose that (E , || · ||) is a real reflexive and separable Banach space,
H ∈ C1(E ,R), c ∈ R. We say that H fulfills the (C)∗c -condition (with respect to Yn) if any
sequence {vn}n∈N ⊂ E for which vn ∈ Yn, for any n ∈ N,

H(vn) → c and ||(H|Yn)
′(vn)||E∗(1 + ||vn||E ) → 0 as n → ∞,

has a subsequence converging to a critical point of H.

Let us introduce the following auxiliary results, which are useful in proving our
final consequence.

Lemma 10. If (G1) holds and

pG(y, t)− g(y, t)t > 0 for all y ∈ RN and for t ̸= 0, (39)

then we have
Iµ,λ(v) =

〈
I ′

µ,λ(v), v
〉
= 0 if and only if v = 0. (40)

Proof. Let Iµ,λ(v) =
〈
I ′

µ,λ(v), v
〉
= 0. Then, we see that

0 = −pIµ,λ(v)

= −
∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz −
∫
RN

b(y)|v|p dy

+ µ
∫
RN

|v|p
|y|sp dy +

pλ

r

∫
RN

a(y)|v|r dy + θp
∫
RN

G̃(y, v) dy (41)

≥ −
∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz −
∫
RN

b(y)|v|p dy

+ µ
∫
RN

|v|p
|y|sp dy + λ

∫
RN

a(y)|v|r dy + θ
∫
RN

pG(y, v) dy

and 〈
I ′

µ,λ(v), v
〉
=
∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
∫
RN

b(y)|v|p dy

− µ
∫
RN

|v|p
|y|sp dy − λ

∫
RN

a(y)|v|r dy − θ
∫
RN

G(y, v) dy = 0. (42)

It follows from Relations (41) and (42) that∫
RN

(pG(y, v)− g(y, v)v) dy ≤ 0.

Consequently, Assumption (39) implies that v = 0. The converse is clear from the definition
of Iµ,λ.
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Remark 1. By (G4) and (G5), for any C2 > 0, there exists ξ2 ∈ (0, min{ξ1, 1}) such that

G(y, ξ) ≥ C2|ξ|p for a.e. y ∈ RN and all |ξ| < ξ2. (43)

We fix ξ3 ∈ (0, ξ2/2) and let φ ∈ C1(R,R) be such that φ is even, φ(ξ) = 1 for |ξ| ≤ ξ3,
φ(ξ) = 0 for |ξ| ≥ 2ξ3, |φ′(ξ)| ≤ 2/ξ3, and φ′(ξ)ξ ≤ 0. We then define the modified function
g̃ : RN ×R → R as

g̃(y, ξ) :=
∂

∂ξ
G̃(y, ξ),

where
G̃(y, ξ) := φ(ξ)G(y, ξ) + (1 − φ(ξ))η|ξ|p (44)

for some fixed η ∈
(

0, min
{

1
p , 1

qCp
p,imb

})
with Cp,imb being the imbedding constant for the

imbedding E ↪→ Lp(RN). Then, there exists a positive constant ξ2 and g̃ ∈ C1(RN ×R,R) such
that g̃(y, ξ) is odd in ξ,

pG̃(y, ξ)− g̃(y, ξ)ξ ≥ 0 for almost all y ∈ RN and all ξ ∈ R (45)

and
pG̃(y, ξ)− g̃(y, ξ)ξ = 0 iff ξ ≡ 0 or |ξ| ≥ 2ξ2. (46)

In view of Remark 1, let us define the modified energy functional Ĩµ,θ : X → R by

Ĩµ,θ(v) := Φ(v)− Ψ̃µ,θ(v),

where

Ψ̃µ,θ(v) =
µ

p

∫
RN

|v|p
|y|sp dy +

λ

r

∫
RN

a(y)|v|r dy + θ
∫
RN

G̃(y, v) dy.

Then, it is clear that Ĩµ,θ ∈ C1(X,R) is an even functional.

Lemma 11. We assume that (V), (A1), (G1), (G4), and (G5) hold. Then, for any λ > 0 and for
any µ ∈ (0, µ∗), there exists an interval Γ such that Ĩµ,θ is coercive for every θ ∈ Γ, where µ∗ is
given in Lemma 6.

Proof. Let v ∈ XK
s,b(RN) with ||v||XK

s,b(RN) ≥ 1. We set Λ1 := {y ∈ RN : |v(y)| ≤ ξ3},

Λ2 := {y ∈ RN : ξ3 ≤ |v(y)| ≤ 2ξ3}, and Λ3 := {y ∈ RN : 2ξ3 ≤ |v(y)|}, where ξ3 is
given in Remark 1. Let us consider µ ∈ (0, µ∗). Since µ < γ0cH

−1, taking into account
Lemma 4, (G1), (44), and the definition of φ, we have

Ĩµ,θ(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
||v||rLp(RN) − θ

∫
Λ1

|G(y, v)| dy

− θ
∫

Λ2

φ(v)|G(y, v)|+ (1 − φ(v))η|v|p dy − θ
∫

Λ3

η|v|p dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)

− θ
∫

Λ1∪Λ2

|G(y, v)| dy − θ
∫

Λ2∪Λ3

η|v|p dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)
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− θ
∫

Λ1∪Λ2

||b||L∞(RN)

q
|v|q dy − θ

∫
Λ2∪Λ3

η|v|p dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

) ∫
RN

|v|p dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

)
||v||pLp(RN)

≥
[(

1
p
− µcH

γ0 p

)
− θ

(
||b||L∞(RN)

q
+ η

)
Cp,imb

]
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)
, (47)

where Cm,imb is an imbedding constant of XK
s,b(RN) ↪→ Lm(RN) for any m with p ≤ m < p∗.

Also, if µ ∈ (−∞, 0], then it follows in a similar way to in (47) that

Ĩµ,θ(v) ≥
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≥
[

1
p
− θ

(
||b||L∞(RN)

q
+ η

)
Cp,imb

]
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
Cr

p,imb||v||
r
XK

s,b(RN)
. (48)

We set

Γ1 =

(
0,

q(γ0 − µcH)

pγ0(||b||L∞(RN) + qη)Cp,imb

)
and

Γ2 =

(
0,

q
p(||b||L∞(RN) + qη)Cp,imb

)
.

Therefore, we arrive through (47) and (48) that the functional Ĩµ,λ is coercive in XK
s,b(RN),

that is, Ĩµ,λ(v) → ∞ as ||v||XK
s,b(RN) → ∞ for any µ ∈ (−∞, µ∗) and for any θ ∈ Γ, where Γ

is either Γ1 or Γ2.

Lemma 12. We assume that (V), (A1), (G1), (G4), and (G5) hold. Then, for any λ > 0 and for
any µ ∈ (0, µ∗), the functional Ĩµ,θ ensures the (C)c-condition for every θ ∈ Γ, where Γ and µ∗

are given in Lemma 6 and Lemma 11, respectively.

Proof. For any c ∈ R, we let {vn}n∈N be a (C)c-sequence in XK
s,b(RN) satisfying (19).

From the coercivity of Ĩµ,θ , we infer the sequence {vn}n∈N is bounded in XK
s,b(RN) and

thus {vn}n∈N has a weakly convergent subsequence in XK
s,b(RN). Without loss of

generality, we suppose that

vn ⇀ v0 in XK
s,b(RN) as n → ∞.
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So, there is a subsequence, still denoted by {vn}n∈N, and a function v0 in XK
s,b(RN) such

that (24) is satisfied. By the definition of φ and (G1), we deduce that

|g̃(y, ξ)| ≤ C1

(
b(y)|ξ|q−1 + ηp|ξ|p−1

)
(49)

for a positive constant C1. Due to (24) and (49), we obtain∣∣∣∣∫RN
g̃(y, vn)(vn − v0)dy

∣∣∣∣
≤ C1

∫
RN

(
b(y)|vn|q−1 + ηp|vn|p−1

)
|vn − v0|dy

≤ C1

(
||b||L∞(RN)||vn||q−1

Lq(RN)
||vn − v0||Lq(RN) + ηp||vn||p−1

Lp(RN)
||vn − v0||Lp(RN)

)
→ 0 (50)

as n → ∞. From analogous arguments to those in Lemma 7, we state that vn → v0 in
XK

s,b(RN) as n → ∞.

Lemma 13. Let us denote
χκ,n = sup

||u||=1,u∈Gn

||u||Lκ(RN)

and
χn = max{χq,n, χp,n}. (51)

Then, χn → 0 as n → ∞ (see [47]).

With the help of Theorem 1 and Lemmas 10–12 and Remark 1, we are in a position to
demonstrate our final main assertion.

Theorem 3. We assume that (V), (A1), (G1), (G4), and (G5) hold. Then, for any λ > 0 and for
any µ ∈ (0, µ∗), Problem (1) has a sequence of nontrivial solutions {vn}n∈N in XK

s,b(RN) whose
Ĩµ,θ(vn) → 0 and ||vn||L∞(RN) → 0 as n → ∞ for every θ ∈ Γ, where µ∗ and Γ are given in
Lemma 6 and Lemma 11, respectively.

Proof. If all conditions (D1)–(D4) of Lemma 9 are ensured, then for any µ ∈ (0, µ∗) and
for every θ ∈ Γ, Ĩµ,θ admits a sequence of negative critical values cn for satisfying cn → 0
as n → ∞. This, together with Lemma 12, yields that for any {vn}n∈N ∈ XK

s,b(RN) with
Ĩµ,θ(vn) = cn and ||Ĩ ′

µ,θ(vn)||XK
s,b(R

N )∗
= 0, we know that the sequence {vn}n∈N is a (C)0-

sequence of Ĩµ,θ and {vn}n∈N admits a convergent subsequence. Thus, up to a subsequence,
still denoted by {vn}n∈N, we have vn → v in XK

s,b(RN) as n → ∞. From Lemma 10 and
Remark 1, we infer that zero is the only critical point with zero energy and {vn}n∈N has to
converge to zero in XK

s,b(RN); so, ||vn||Lm(RN) → 0 as n → ∞ for any m with p ≤ m ≤ p∗.
In accordance with Theorem 1, any weak solution ω of (1) belongs to space L∞(RN) and
there exist positive constants η, C independent of ω such that

||ω||L∞(RN) ≤ C||ω||ηLq(RN)
.

From this fact, we know ||vn||L∞(RN) → 0, and thus, by Lemma 10 and Remark 1 again, we
arrive at ||vn||L∞(RN) ≤ ξ3 for large n. Hence, {vn}n∈N with large enough n is a sequence of
weak solutions to (1), as desired. From this point of view, we check that all conditions of
Lemma 9 hold.

(D1): By (G5), (44), and the definition of φ,∣∣∣G̃(y, ξ)
∣∣∣ ≤ |G(y, ξ)|+ η|ξ|p (52)
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for almost all y ∈ RN and for all ξ ∈ R. Let χn < 1 for large enough n. First, let us consider
µ ∈ (0, µ∗). Then, it follows from (52) that for any v ∈ XK

s,b(RN) with ||v||XK
s,b(RN) ≥ 1,

Ĩµ,θ(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r

∫
RN

a(y)|v|r dy

− θ
∫
RN

(|G(y, v)|+ η|v|p) dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
||v||rLp(RN)

− θ
∫
RN

|G(y, v)| dy − θη
∫
RN

|v|p dy

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
||v||rLp(RN)

− θ
∫
RN

||b||L∞(RN)

q
|v|q dy − θηχ

p
n||v||

p
XK

s,b(RN)

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
||v||rLp(RN)

−
θ||b||L∞(RN)

q
||v||qLq(RN)

− θηχ
p
n||v||

p
XK

s,b(RN)

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
χr

n||v||rXK
s,b(RN)

−
θ||b||L∞(RN)

q
χ

q
n||v||

q
XK

s,b(RN)
− θηχ

p
n||v||

p
XK

s,b(RN)

≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
χr

n||v||rXK
s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

)
χ

p
n||v||

q
XK

s,b(RN)
(53)

for large enough n. Let us choose

β1,n =

[
θ

(
||b||L∞(RN)

q
+ η

)
2γ0 pχ

p
n

γ0 − µcH

] 1
p−2q

(54)

and let v ∈ Zn with ||v||XK
s,b(RN) = β1,n > 1 for sufficiently large n. Since µ ∈ (0, µ∗) and

β1,n → ∞ as n → ∞, there exists n0 ∈ N such that

Ĩµ,θ(v) ≥
(

1
p
− µcH

γ0 p

)
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
χr

n||v||rXK
s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

)
χ

p
n||v||

q
XK

s,b(RN)

≥
(

1
2p

− µcH
2γ0 p

)
β

p
1,n

− 1
r
||a||

L
p

p−r (RN)

[(
||b||L∞(RN)

q
+ η

)
2θγ0 p

γ0 − µcH

] r
p−2q

χ
2r(p−q)

p−2q
n
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≥ 0

for all n ∈ N with n ≥ n0.
On the other hand, if µ ∈ (−∞, 0] and ||v||XK

s,b(RN) ≥ 1, then it follows from (G1),

the definition of χn, and similar arguments to those in (53) that

Ĩµ,θ(v) ≥
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≥ 1
p
||v||p

XK
s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
χr

n||v||rXK
s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

)
χ

p
n||v||

q
XK

s,b(RN)
(55)

for sufficiently large n. We choose

β2,n =

(
2pθ

(
||b||L∞(RN)

q
+ η

)
χ

p
n

) 1
p−2q

. (56)

Then, we know limn→∞ β2,n = ∞. Let v ∈ Zn with ||v||XK
s,b(RN) = β2,n > 1 for large enough

n. Then, using (55), we choose an n0 ∈ N such that

Ĩµ,θ(v) ≥
1
p
||v||p

XK
s,b(RN)

− θ

(
||b||L∞(RN)

q
+ η

)
χ

p
n||v||

q
XK

s,b(RN)

− 1
r
||a||

L
p

p−r (RN)
χr

n||v||rXK
s,b(RN)

≥ 1
2p

β
p
2,n −

1
r
||a||

L
p

p−r (RN)

(
2pθ

(
||b||L∞(RN)

q
+ η

)) r
p−2q

χ
2r(p−q)

p−2q
n

≥ 0

for all n ∈ N with n ≥ n0.
Let βn be either β1,n or β2,n , which is given in (54) and (56), respectively. Then,

we conclude
inf{Iµ,θ(v) : v ∈ Zn, ||v||XK

s,b(RN) = βn} ≥ 0

for any µ ∈ (−∞, µ∗).

(D2): We note that || · ||L∞(RN), || · ||Lp(RN) and || · ||XK
s,b(RN) are equivalent on Yn. Then,

there are constants ϱ̃1,n > 0 and ϱ̃2,n > 0 such that

ϱ̃1,n||v||L∞(RN) ≤ ||v||XK
s,b(RN) ≤ ϱ̃2,n||v||Lp(RN) (57)

for any v ∈ Yn. From (G4) and (G5), for any C3 > 0, there exists ξ3 ∈ (0, ξ2/2) such that

G(y, ξ) ≥
C3ϱ̃

p
2,n

p
|ξ|p (58)

for almost all y ∈ RN and all |ξ| ≤ ξ3. We choose αn := min{ 1
2 , ξ3ϱ̃1,n} for all n ∈ N.

Then, we determine that ||v||L∞(RN) ≤ ξ3 for v ∈ Yn with ||v||XK
s,b(RN) = αn, and thus

G̃(y, v) = G(y, v).
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First, we consider µ ∈ (0, µ∗). Then, we determine by (57) and (58) that

Ĩµ,θ(v) =
1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− µ

p

∫
RN

|v|p
|y|sp dy − λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≤ 1
p

∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− θ
∫
RN

C3ϱ̃
p
2,n

p
|v|p dy

≤ 1
p
||v||p

XK
s,b(RN)

−
θC3ϱ̃

p
2,n

p
||v||pLp(RN)

≤ 1
p
||v||p

XK
s,b(RN)

− θC3

p
||v||p

XK
s,b(RN)

≤ p − θC3

p
α

p
n (59)

for any v ∈ Yn with ||v||XK
s,b(RN) = αn.

Next, if µ ∈ (−∞, 0], we have

Ĩµ,θ(v) ≤
(

1
p
− µcH

γ0 p

) ∫
RN

∫
RN

|v(y)− v(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|v|p dy

− λ

r

∫
RN

a(y)|v|r dy − θ
∫
RN

∣∣∣G̃(y, v)
∣∣∣ dy

≤ p − θC3

p
α

p
n. (60)

If we choose a large enough C3 such that 1 < θC3, then, through (59) and (60),

σn = max{Ĩµ,θ(v) : v ∈ Yn, ||v||XK
s,b(RN) = αn} < 0

for any µ ∈ (−∞, µ∗). If necessary, we can replace n0 with a larger value, so that βn > αn > 0
for all n ≥ n0.

(D3): Let βn be either β1,n or β2,n, which is given in (54) and (56), respectively. Be-
cause Yn ∩ Zn ̸= ∅ and 0 < αn < βn, we have ψn ≤ σn < 0 for all n ≥ n0. Let v ∈ Zn
with ||v||XK

s,b(RN) = 1 and 0 < t < βn. With a similar argument to that in (53), we have, for

any µ ∈ (0, µ∗),

Ĩµ,θ(tv) =
1
p

∫
RN

∫
RN

|tv(y)− tv(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|tv|p dy

− µ

p

∫
RN

|tv|p
|y|sp dy − 1

r

∫
RN

a(y)|tv|r dy − θ
∫
RN

∣∣∣G̃(y, tv)
∣∣∣ dy

≥
(

1
p
− µcH

γ0 p

)
||tv||p

XK
s,b(RN)

− 1
r

∫
RN

a(y)|tv|r dy − θ
∫
RN

∣∣∣G̃(y, tv)
∣∣∣ dy

≥ −1
r

βr
1,n

∫
RN

a(y)|v|r dy − θ
∫
RN

(|G(y, tv)|+ η|tv|p) dy

≥ −1
r

βr
1,n||a||

L
p

p−r (RN)
||v||rLp(RN)

− θ
∫
RN

G(y, tv) dy − θη
∫
RN

|tv|p dy



Fractal Fract. 2024, 8, 426 27 of 31

≥ −1
r

βr
1,n||a||

L
p

p−r (RN)
||v||rLp(RN)

−
θ||b||L∞(RN)

q

∫
RN

|tv|q dy − θη
∫
RN

|tv|pdy

≥ −1
r

βr
1,n||a||

L
p

p−r (RN)
||v||rLp(RN)

−
θ||b||L∞(RN)

q
β

q
1,n

∫
RN

|v|q dy − θηβ
p
1,n

∫
RN

|v|p dy

≥ −1
r
||a||

L
p

p−r (RN)
βr

1,nχr
n −

θ||b||L∞(RN)

q
β

q
1,nχ

q
n − θηβ

p
1,nχ

p
n, (61)

where χn is given in (51). Hence, from this and the definition of β1,n, we infer

0 > ψn ≥ −
||a||

L
p

p−r (RN)

r
βr

1,nχr
n −

θ||b||L∞(RN)

q
β

q
1,nχ

q
n − θηβ

p
1,nχ

p
n

≥ −
||a||

L
p

p−r (RN)

r

[(
||b||L∞(RN)

q
+ η

)
2θγ0 p

γ0 − µcH

] r
p−2q

χ
2r(p−q)

p−2q
n

−
θ||b||L∞(RN)

q

[(
||b||L∞(RN)

q
+ η

)
2θγ0 p

γ0 − µcH

] q
p−2q

χ
2q(p−q)

p−2q
n

− θη

[(
||b||L∞(RN)

q
+ η

)
2θγ0 p

γ0 − µcH

] p
p−2q

χ
2p(p−q)

p−2q
n . (62)

On the other hand, we let µ ∈ (−∞, 0]. Then, it follows from a similar proceeding to
that in (61) that

Ĩµ,θ(tv) ≥
1
p

∫
RN

∫
RN

|tv(y)− tv(z)|pK(y, z) dy dz +
1
p

∫
RN

b(y)|tv|p dy

− 1
r

∫
RN

a(y)|tv|r dy − θ
∫
RN

∣∣∣G̃(y, tv)
∣∣∣ dy

≥ −||a||
L

p
p−r (RN)

trχr
n||v||rXK

s,b(RN)
−

θ||b||L∞(RN)

q
tqχ

q
n||v||

q
XK

s,b(RN)

≥ −||a||
L

p
p−r (RN)

βr
2,nχr

n −
θ||b||L∞(RN)

q
β

q
2,nχ

q
n

for large enough n. This, together with the definition of β2,n, yields

0 > ψn ≥ −
||a||

L
p

p−r (RN)

r
βr

2,nχr
n −

θ||b||L∞(RN)

q
β

q
2,nχ

q
n − θηβ

p
2,nχ

p
n

≥ −
||a||

L
p

p−r (RN)

r

[
2pθ

(
||b||L∞(RN)

q
+ η

)] r
p−2q

χ
2r(p−q)

p−2q
n

−
θ||b||L∞(RN)

q

[
2pθ

(
||b||L∞(RN)

q
+ η

)] q
p−2q

χ
2q(p−q)

p−2q
n

− θη

[
2pθ

(
||b||L∞(RN)

q
+ η

)] p
p−2q

χ
2p(p−q)

p−2q
n . (63)



Fractal Fract. 2024, 8, 426 28 of 31

Because p < q and χn → 0 as n → ∞, we conclude by (62) and (63) that

ψn = {Ĩµ,θ(v) : v ∈ Zn, ||v||XK
s,b(RN) ≤ βn} → 0

as n → ∞ for any µ ∈ (0, µ∗).
(D4): Let c ∈ R and let the sequence {vn}n∈N in XK

s,b(RN) be such that vn ∈ Yn for
any n ∈ N,

Ĩµ,θ(vn) → c and ||(Ĩµ,θ |Yn)
′(vn)||(XK

s,b(RN))∗(1 + ||vn||XK
s,b(RN)) → 0 as n → ∞.

Since Ĩµ,θ is coercive for any µ ∈ (0, µ∗) and for every θ ∈ Γ, by Lemma 11 it follows that
{vn}n∈N is bounded in XK

s,b(RN) for every θ ∈ Γ. So, there is a subsequence, still denoted
by {vn}n∈N, and a function v in Ĩµ,θ such that (24) is satisfied.

To finish this proof, we prove that vn → v in XK
s,b(RN) as n → ∞ and also that v is a

critical point of Ĩµ,θ . As XK
s,b(RN) =

⋃
n∈NYn, for n ∈ N, we can choose un ∈ Yn such that

un → v as n → ∞. Hence, we know we have

⟨Ĩ ′
µ,θ(vn), vn − v⟩ = ⟨(Ĩµ,θ |Yn)

′(vn), vn − un⟩+ ⟨(Ĩµ,θ |Yn)
′(wn), un − v⟩.

Since (Ĩµ,θ |Yn)
′(vn) → 0, un → v and vn − un → 0 in Yn as n → ∞, we have

⟨Ĩ ′
µ,θ(vn), vn − v⟩ → 0 as n → ∞.

This, together with (19) and (28)–(33), yields Relation (34). From similar arguments to
Lemma 7, we can state that vn → v as n → ∞. In addition, we have Ĩ ′

µ,θ(vn) → Ĩ ′
µ,θ(v) as

n → ∞. Let us show that v is a critical point of Ĩµ,θ . In fact, we let n0 ∈ N be fixed and take
any u ∈ Yn0 . For n ≥ n0, we have

⟨Ĩ ′
µ,θ(v), u⟩ = ⟨Ĩ ′

µ,θ(v)− Ĩ ′
µ,θ(vn), u⟩+ ⟨Ĩ ′

µ,θ(vn), u⟩

= ⟨Ĩ ′
µ,θ(v)− Ĩ ′

µ,θ(vn), u⟩+ ⟨(Ĩµ,θ |Yn)
′(vn), u⟩,

so, passing the limit on the right side of the equation above, as n → ∞, we arrive at

⟨Ĩ ′
µ,θ(v), u⟩ = 0 for all u ∈ Yn0 .

As n0 is taken arbitrarily and
⋃

n∈NYn is dense in XK
s,b(RN), we have Ĩ ′

µ,θ(v) = 0, as claimed.

Hence, we arrive at vn → v in XK
s,b(RN) as n → ∞, and v is also a critical point of Ĩµ,θ .

Accordingly, we know that the functional Ĩµ,θ assures the (C)∗c -condition for any µ ∈ (0, µ∗)
and for every θ ∈ Γ. Condition (D4) is proved. The proof is complete.

5. Conclusions

The present paper is devoted to deriving the multiplicity and a priori bounds of solu-
tions to the Schrödinger–Hardy-type nonlinear equation driven by the nonlocal fractional
p-Laplacian. As far as we know, the uniform boundedness of any possible weak solutions
to Schrödinger-type nonlocal fractional p-Laplacian problems with a singular coefficient,
such as Hardy potentials, has not been studied extensively, and we are only aware of the
study in [20]. However, our approach to obtain this regularity result is different from that
in [20] because we employ the De Giorgi iteration method and a truncated energy technique.
By applying these methods, we provide two multiplicity results of nontrivial weak solu-
tions to our problem. To obtain these results, we consider a different approach to those in
previous related studies [10,11,13–15,19,31,35,36]. More precisely, in contrast to the papers
in [10,11,13–15,19], we show the existence of at least two distinct nontrivial solutions which
belong to the L∞-space by exploiting a variant of the Ekeland variational principle and the
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mountain pass theorem instead of the critical point theorems in [25–27]. By combining the
modified functional method with the dual fountain theorem as in [18,32], we derive the
existence of a sequence of infinitely many small-energy solutions that converge to zero in
the L∞-space. This approach is different from previously related works [31,35,36] that use
the global variational formulation given in [37]. These are the novelties of this paper.

Furthermore, a new direction of research in strong relation is the investigation of the
fractional p(·)-Laplacian with the Hardy potential as follows:

M
(
[v]s,p(·,·)

)
Lv(y) + b(y)|v|p(y)−2w = µ

|v|p(y)−2v

|y|sp(y)
+ λg(y, v) in RN , (64)

where

[v]s,p(·,·) :=
∫
RN

∫
RN

|v(y)− v(z)|p(y,z)

p(y, z)|y − z|N+sp(y,z)
dy dz

and the operator L is defined by

Lv(y) = 2 lim
ε↘0

∫
RN\Bε(y)

|v(y)− v(z)|p(y,z)−2 (v(y)− v(z))
|y − z|N+sp(y,z)

dy, y ∈ RN ,

where s ∈ (0, 1) and Bε(y) := {z ∈ RN : |y− z| ≤ ε}. Furthermore, the Kirchhoff coefficient
M : [0, ∞) → R+ fulfills the following requirements:

(M1) M ∈ C(R+) fulfills infζ∈R+ M(ζ) ≥ τ0 for a positive constant τ0;
(M2) There exists a positive constant ϑ ≥ 1 such that

ϑM(ζ) = ϑ
∫ ζ

0
M(η)dη ≥ M(ζ)ζ

for ζ ≥ 0.

To the best of our knowledge, there are no results on the existence of solutions to
the fractional p(·)-Laplacian with the Hardy potential due to the absence of the fractional
Hardy inequality in variable Lebesgue space. However, the authors of [48] obtained
the Hardy–Leray inequality and related various inequalities in variable Lebesgue spaces.
An analysis of the results in [48] should yield some results regarding the existence of
solutions to Problem (64).

Funding: This research received no funding.

Data Availability Statement: All data are included in the manuscript.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publica-
tion of this paper.

Use of AI Tools Declaration: The author declares that he did not use Artificial Intelligence (AI) tools
in the creation of this article.

References
1. Bertoin, J. Levy Processes Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1996.
2. Bjorland, C.; Caffarelli, L.; Figalli, A. A Non-local gradient dependent operators. Adv. Math. 2012, 230, 1859–1894. [CrossRef]
3. Caffarelli, L. Nonlocal equations, drifts and games. In Nonlinear Partial Differential Equations Abel Symposia; Springer: New York,

NY, USA, 2012; Volume 7, pp. 37–52.
4. Gilboa, G.; Osher, S. Nonlocal operators with applications to image processing. Multiscale Model. Simul. 2008, 7, 1005–1028.

[CrossRef]
5. Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [CrossRef]
6. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2003, 339,

1–77. [CrossRef]
7. Diaz, J.I. Nonlinear Partial Differential Equations and Free Boundaries, V. I. Elliptic Equations. Res. Notes Math. 1985, 1, 106.

http://doi.org/10.1016/j.aim.2012.03.032
http://dx.doi.org/10.1137/070698592
http://dx.doi.org/10.1016/S0375-9601(00)00201-2
http://dx.doi.org/10.1016/S0370-1573(00)00070-3


Fractal Fract. 2024, 8, 426 30 of 31

8. Diaz, J.I.; Morel, J.M.; Oswald, L. An elliptic equation with singular nonlinearity. Comm. Partial. Differ. Equ. 1987, 12, 1333–1344.
[CrossRef]

9. Nachman, A.; Callegari, A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl.
Math. 1980, 38, 275–281. [CrossRef]

10. Achour, H.; Bensid, S. Existence results for singular elliptic problem involving a fractional p-Laplacian. Fract. Calc. Appl. Anal.
2023, 26, 2361–2391. [CrossRef]

11. Ferrara, M.; Bisci, G.M. Existence results for elliptic problems with Hardy potential. Bull. Sci. Math. 2014, 138, 846–859. [CrossRef]
12. Fiscella, A. Schrödinger-Kirchhoff-Hardy p-fractional equations without the Ambrosetti-Rabinowitz condition. Discrete Contin.

Dyn. Syst. Ser. S 2020, 13, 1993–2007.
13. Khodabakhshi, M.; Afrouzi, G.A.; Hadjian, A. Existence of infinitely many weak solutions for some singular elliptic problems.

Complex Var. Elliptic Equ. 2018, 63, 1570–1580. [CrossRef]
14. Khodabakhshi, M.; Aminpour, A.M.; Afrouzi, G.A.; Hadjian, A. Existence of two weak solutions for some singular elliptic

problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2016, 110, 385–393. [CrossRef]
15. Khodabakhshi, M.; Hadjian, A. Existence of three weak solutions for some singular elliptic problems. Complex Var. Elliptic Equ.

2018, 63, 68–75. [CrossRef]
16. Kim, Y.-H.; Ahn, J.-H.; Lee, J.; Zeng, S. Multiplicity and a-priori bounds of solutions to Kirchhoff-Schrödinger-Hardy type

equations involving the p-Laplacian. Discret. Contin. Dyn. Syst.-S 2024, submitted.
17. Kim, Y.-H.; Na, H.Y. Multiplicity of solutions to non-local problems of Kirchhoff type involving Hardy potential. AIMS Math.

2023, 8, 26896–26921. [CrossRef]
18. Kim, Y.-H.; Park, C.Y.; Zeng, S. Infinitely many small energy solutions to the p-Laplacian problems of Kirchhoff type with Hardy

potential. Discrete Contin. Dyn. Syst. Ser. S 2024. . [CrossRef]
19. Liu, J.; Zhao, Z. Existence of triple solutions for elliptic equations driven by p-Laplacian-like operators with Hardy potential

under Dirichlet-Neumann boundary conditions. Bound. Value Probl. 2023, 2023, 3. [CrossRef]
20. Choudhuri, D. Existence and Hölder regularity of infinitely many solutions to a p Kirchhoff type problem involving a singular

nonlinearity without the Ambrosetti–Rabinowitz (AR) condition. Z. Angew. Math. Phys. 2021, 72, 36. [CrossRef]
21. Drábek, P. Nonlinear eigenvalue problem for p-Laplacian in RN . Math. Nachr. 1995, 173, 131–139. [CrossRef]
22. Drábek, P.; Kufner, A.; Nicolosi, F. Quasilinear Elliptic Equations with Degenerations and Singularities; de Gruyter: Berlin, Germany, 1997.
23. Vergara, V.; Zacher, R. A priori bounds for degenerate and singular evolutionary partial integro-differential equations. Nonlinear

Anal. 2010, 73, 3572–3585. [CrossRef]
24. Ahn, J.-H.; Kim, I.H.; Kim, Y.-H.; Zeng, S. Existence results and L∞-bound of solutions to Kirchhoff-Schrödinger-Hardy type

equations involving double phase operators. submitted.
25. Ricceri, B. A general variational principle and some of its applications. J. Appl. Math. Comput. 2000, 113, 401–410. [CrossRef]
26. Ricceri, B. A further three critical points theorem. Nonlinear Anal. 2009, 71, 4151–4157. [CrossRef]
27. Bonanno, G. Relations between the mountain pass theorem and local minima. Adv. Nonlinear Anal. 2012, 1, 205–220. [CrossRef]
28. Bae, J.-H.; Kim, Y.-H. Critical points theorems via the generalized Ekeland variational principle and its application to equations of

p(x)-Laplace type in RN . Taiwanese J. Math. 2019, 23, 193–229. [CrossRef]
29. Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381.

[CrossRef]
30. Fiscella, A. A double phase problem involving Hardy potentials. Appl. Math. Optim. 2022, 85, 45. [CrossRef]
31. Ho, K.; Winkert, P. Infinitely many solutions to Kirchhoff double phase problems with variable exponents. Appl. Math. Lett. 2023,

145, 108783. [CrossRef]
32. Kim, Y.-H.; Jeong, T.-J. Multiplicity Results of Solutions to the Double Phase Problems of Schrödinger-Kirchhoff Type with

Concave-Convex Nonlinearities. Mathematics 2024, 12, 60. [CrossRef]
33. Kim, Y.-H. Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with

Concave-Convex Nonlinearities in RN . Mathematics 2020, 8, 1792.. [CrossRef]
34. Lee, J.I.; Kim, Y.-H. Multiplicity of Radially Symmetric Small Energy Solutions for Quasilinear Elliptic Equations Involving

Nonhomogeneous Operators. Mathematics 2020, 8, 128. [CrossRef]
35. Tan, Z.; Fang, F. On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 2012, 75,

3902–3915.
36. Wang, Z.-Q. Nonlinear boundary value problems with concave nonlinearities near the origin. NoDEA Nonlinear Differ. Equ. Appl.

2001, 8, 15–33. [CrossRef]
37. Heinz, H.P. Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems. J. Differ. Equ.

1987, 66, 263–300. [CrossRef]
38. Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 2003.
39. Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573.

[CrossRef]
40. Perera, K.; Squassina, M.; Yang, Y. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr.

2016, 289, 332–342. [CrossRef]

http://dx.doi.org/10.1080/03605308708820531
http://dx.doi.org/10.1137/0138024
http://dx.doi.org/10.1007/s13540-023-00194-9
http://dx.doi.org/10.1016/j.bulsci.2014.02.002
http://dx.doi.org/10.1080/17476933.2017.1397137
http://dx.doi.org/10.1007/s13398-015-0239-1
http://dx.doi.org/10.1080/17476933.2017.1282949
http://dx.doi.org/10.3934/math.20231377
http://dx.doi.org/10.3934/dcdss.2024041
http://dx.doi.org/10.1186/s13661-023-01692-8
http://dx.doi.org/10.1007/s00033-020-01464-9
http://dx.doi.org/10.1002/mana.19951730109
http://dx.doi.org/10.1016/j.na.2010.07.039
http://dx.doi.org/10.1016/S0377-0427(99)00269-1
http://dx.doi.org/10.1016/j.na.2009.02.074
http://dx.doi.org/10.1515/anona-2012-0003
http://dx.doi.org/10.11650/tjm/181004
http://dx.doi.org/10.1016/0022-1236(73)90051-7
http://dx.doi.org/10.1007/s00245-022-09847-2
http://dx.doi.org/10.1016/j.aml.2023.108783
http://dx.doi.org/10.3390/math12010060
http://dx.doi.org/10.3390/math8101792
http://dx.doi.org/10.3390/math8010128
http://dx.doi.org/10.1007/PL00001436
http://dx.doi.org/10.1016/0022-0396(87)90035-0
http://dx.doi.org/10.1016/j.bulsci.2011.12.004
http://dx.doi.org/10.1002/mana.201400259


Fractal Fract. 2024, 8, 426 31 of 31

41. Xiang, M.Q.; Zhang, B.L.; Ferrara, M., Existence of solutions for Kirchhoff type problem involving the non-local fractional
p-Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [CrossRef]

42. Frank, R.L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 2008, 255,
3407–3430. [CrossRef]

43. Kim, I.H.; Kim, Y.-H. Infinitely many small energy solutions to nonlinear Kirchhoff-Schrödinger equations with the p-Laplacian.
Bull. Malays. Math. Sci. Soc. 2024, 47, 99. [CrossRef]

44. Brezis, H.; Lieb, E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals. Proc. Am. Math.
Soc. 1983, 88, 486–490. [CrossRef]

45. Fabian, M.; Habala, P.; Hajék, P.; Montesinos, V.; Zizler, V. Banach Space Theory: The Basis for Linear and Nonlinear Analysis; Springer:
New York, NY, USA, 2011.

46. Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; World Scientific Publishing Co. Pte. Ltd.:
Singapore, 2017.

47. Hurtado, E.J.; Miyagaki, O.H.; Rodrigues, R.S. Existence and multiplicity of solutions for a class of elliptic equations without
Ambrosetti-Rabinowitz type conditions. J. Dyn. Diff. Equ. 2018, 30, 405–432. [CrossRef]

48. Cruz-Uribe, D.; Suragan, D. Hardy-Leray inequalities in variable Lebesgue spaces. J. Math. Anal. Appl. 2024, 530, 127747.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jmaa.2014.11.055
http://dx.doi.org/10.1016/j.jfa.2008.05.015
http://dx.doi.org/10.1007/s40840-024-01694-4
http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3
http://dx.doi.org/10.1007/s10884-016-9542-6
http://dx.doi.org/10.1016/j.jmaa.2023.127747

	Introduction
	Preliminaries
	Variational Setting and a Priori Bound of Solution
	Applications
	Conclusions
	References

