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Abstract: In this paper, by replacing the exponential memory kernel function of a tabu learning
single-neuron model with the power-law memory kernel function, a novel Caputo’s fractional-order
tabu learning single-neuron model and a network of two interacting fractional-order tabu learning
neurons are constructed firstly. Different from the integer-order tabu learning model, the order of the
fractional-order derivative is used to measure the neuron’s memory decay rate and then the stabilities
of the models are evaluated by the eigenvalues of the Jacobian matrix at the equilibrium point of the
fractional-order models. By choosing the memory decay rate (or the order of the fractional-order
derivative) as the bifurcation parameter, it is proved that Hopf bifurcation occurs in the fractional-
order tabu learning single-neuron model where the value of bifurcation point in the fractional-order
model is smaller than the integer-order model’s. By numerical simulations, it is shown that the
fractional-order network with a lower memory decay rate is capable of producing tangent bifurcation
as the learning rate increases from 0 to 0.4. When the learning rate is fixed and the memory decay
increases, the fractional-order network enters into frequency synchronization firstly and then enters
into amplitude synchronization. During the synchronization process, the oscillation frequency of
the fractional-order tabu learning two-neuron network increases with an increase in the memory
decay rate. This implies that the higher the memory decay rate of neurons, the higher the learning
frequency will be.

Keywords: tabu learning; memory kernel function; fractional-order derivative; Hopf bifurcation;
synchronization

1. Introduction

The human brain is a network connected by billions of neurons through synapses. Excited
by external stimuli, the response of the brain is transmitted through the network in the form
of electrical signals. It is therefore of significant importance to study neurons firing to disclose
the function of the brain. To date, based on plenty of experiments and the experimental
data, many classical neuron models have been constructed, such as the Hodgkin–Huxley
(H-H) model [1,2], FitzHugh–Nagumo (FHN) model [3–5], Morris–Lecar (ML)model [6,7],
Hindmarsh–Rose (HR) model [8,9], Chay model [10], Rulkov model [11], and Izhikevich
model [12]. These models can emulate different neurons and display different neurodynamics,
such as resting states, periodic oscillations, and chaos. The different neurodynamics, as
mentioned earlier, play important roles in neural information encoding.

Tabu learning is the method of applying tabu search in neural networks to solve
optimization problems [13]. Based on the energy distribution around the current state,
tabu learning can avoid searched states and find new ones that are not searched, and then
the search efficiency can be improved. In tabu learning searches, the neurons need some
judgment and selection. This implies that the tabu learning neuron owns the memory. In
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existing models about tabu learning, the memory is described by the integration of state
variable [13,14].

Tabu learning single-neuron models are two-dimensional [13] and are studied widely
because of their simple mathematical structure [14–21]. Choosing the memory decay rate as
the bifurcation parameter, Hopf bifurcations are shown in tabu learning neurons [14,15,17,19].
In [20], by replacing the resistive self-connection synaptic weight with a memristive self-
connection synaptic weight, a memristive synaptic weight-based tabu learning neuron model
is proposed. In the memristive synaptic weight-based tabu learning neuron model, there are
infinitely many nonchaotic attractors composed of mono-periodic, multi-periodic, and quasi-
periodic orbits. Additionally, in [18], hidden attractors are discovered in a non-autonomous
tabu learning model with sinusoidal external excitation. Recently, based on the sinusoidal
activation function, reference [21] proposed a two-dimensional non-autonomous tabu learn-
ing single-neuron model which can generate a class of multi-scroll chaotic attractors with
parameters controlling the number of scrolls.

In the tabu learning single neuron models mentioned above, the exponential memory
kernel function e−αt is applied. Compared to the power-law memory kernel function t−α,
the exponential memory kernel function limits to zero more quickly as t → +∞. Therefore,
the exponential memory kernel function results in a lower memory capacity for the states.
As stated in [22], memory capacity is limited if the memory states are not truly persistent
over time. For improving memory capacity, it is reasonable to replace the exponential
memory kernel function of the neuron by the power-law memory kernel function. In
fact, the fractional-order derivative is defined in the power-law memory kernel function.
And it has been proven that the fractional-order derivative owns the memory effect and
is not a strictly local operator [23]. The order of the fractional-order derivative is related
to the memory loss or the “proximity effect” of some characteristics [24]. Then, in the
following discussion, the exponential memory kernel function of the neuron was replaced
by the power-law memory kernel function, and a novel Caputo’s fractional-order tabu
learning single-neuron model and a network of two interacting Caputo fractional-order
tabu learning neurons are proposed. In these new fractional-order models, the physical
meaning of the order of the fractional-order derivatives is the memory decay rate of
the neuron.

To begin with, by choosing the memory decay rate (i.e., the order of the fractional-
order derivative) as a bifurcation parameter, it is proved that Hopf bifurcation occurs in the
Caputo’s fractional-order tabu leaning single-neuron model. Secondly, the dynamics of the
network of two interacting Caputo’s fractional-order tabu learning neurons is discussed.
With a lower memory decay rate, the fractional-order network showed tangent bifurcation
as the learning rate increased from 0 to 0.4. Then, when the learning rate was fixed, the
network entered into frequency synchronization firstly and then the amplitudes of two
neurons gradually became consistent as the memory decay rate increased from 0 to 1. This
study shows that the memory decay rate, i.e., the order of the fractional-order derivative,
has a significant impact on the dynamics of fractional-order tabu learning neuron models.

The paper is organized as follows. The Caputo’s fractional-order tabu learning single-
neuron model and the network of two interacting Caputo’s fractional-order tabu learning
neurons are proposed in Section 2. In Section 3, the stabilities of the models are evaluated
by the eigenvalues of the Jacobian matrix at the equilibrium point. In Section 4, numerical
simulations of the fractional-order models are shown. Finally, conclusions are drawn in
Section 5.

2. Preliminaries and Fractional-Order Tabu Learning Models
2.1. Preliminaries on Fractional-Order Systems

First, the α-order (0 < α < 1) integral is defined by [23] as

0 Iα
t x(t) =

1
Γ(α)

∫ t

0

x(τ)
(t − τ)1−α

dτ (1)
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where Γ(z) =
∫ ∞

0 e−ssz−1ds is the Gamma function. Corresponding to the fractional-order
integral, there is a fractional-order derivative which has several different definitions such as
Grunwald–Letnikov’s derivative, Caputo’s derivative, and Riemann-Liouville’s derivative.
In this study, Caputo’s derivative is employed. The α−order (0 < α < 1) derivative is
defined as

C
0 Dα

t f (t) =
1

Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α

dτ (2)

where f ′(τ) is the first-order derivative of function f (τ). The integration in Equation (2)
indicates that the Caputo’s derivative is non-local. Consequently, a fractional-order mathe-
matical model can contain the memory of system variables.

For the stability analysis of a fractional-order mathematical model, the following
lemma is needed [25].

Lemma 1. The fractional-order system

C
0 Dα

t X = f (X) (3)

is asymptotically stable at the equilibrium point E0 = (x0
1, x0

2, · · · , x0
n) if all the eigenvalues λ of

the Jacobian matrix ME0 satisfy the condition:

| arg(λ)| > (απ)/2 (4)

where arg(λ) is the argument of λ, X = (x1, x2, · · · , xn)T , f (X) = ( f1(X), f2(X), · · · , fn(X))T

and fi(X) = fi(x1, x2, · · · , xn), i = 1, 2, · · · , n.

2.2. A Fractional-Order Tabu Learning Single-Neuron Model

A classical tabu learning single-neuron model is described by [15] as{
u̇ = −x + a f (u) + J,

J̇ = −αJ − β f (u).
(5)

where u is the action potential of the neuron, J is the tabu learning variable, f (u) is the
activation function, and a is the self-connection strength of the neuron. In model (5), the
tabu learning variable J is computed by

J(t) = −β
∫ t

0
eα(τ−t) f (u(τ))dτ (6)

where α > 0 is the memory decay rate and β > 0 is the learning rate. As t → +∞, the
exponential memory kernel function e−t limits to zero more quickly than the power-law
memory kernel function t−α. That is to say, with the exponential memory kernel function
e−t, the memory capacity of the neuron is not truly persistent over time and so neurons will
begin to relearn states that have been learned but forgotten. To make the memory time long
enough, the exponential kernel function e−t in Equation (6) is replaced by the power-law
kernel function t−α. By doing so, the tabu learning variable J is computed by

J(t) = −β
∫ t

0
(τ − t)α f (u(τ))dτ = −β

∫ t

0
(t − τ)−α f (u(τ))dτ (7)

Equation (7) can be rewritten as

J(t) = −β
∫ t

0

f (u(τ))
(t − τ)1−(1−α)

dτ = −βΓ(1 − α)
1

Γ(1 − α)

∫ t

0

f (u(τ))
(t − τ)1−(1−α)

dτ (8)
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Referring to Equation (1), the tabu learning variable J can be described as

J(t) = −βΓ(1 − α)0 I(1−α)
t f (u(t)) (9)

Based on the following relationship,

C
0 Dα

t (0 Iα
t x(t)) = x(t) (10)

we can obtain

C
0 D1−α

t J(t) = −βΓ(1 − α) f (u(t)) (11)

Then, a novel fractional-order tabu learning single neuron model is proposed as follows:{ C
0 D1−α

t u = −u + a f (u) + J,

C
0 D1−α

t J = −βΓ(1 − α) f (u).
(12)

where α(0 < α < 1) is the memory decay rate and β > 0 is the learning rate.

2.3. A Fractional-Order Coupled Tabu Learning Two-Neuron Model

In this section, a network of two interacting fractional-order tabu learning neurons
with the lower memory decay rate α is constructed as follows:

C
0 D1−α

t u1 = −0.1u1 + T11 f (u1) + T12 f (u2) + J1,
C
0 D1−α

t u2 = −0.1u2 + T21 f (u1) + T22 f (u2) + J2,

C
0 D1−α

t J1 = −βΓ(1 − α) f (u1),

C
0 D1−α

t J2 = −βΓ(1 − α) f (u2).

(13)

where the learning rate β > 0 is changed in the interval (0, 1], the activation function
f (ui) = tanh(5ui), i = 1, 2, and the weight matrix Q between two neurons is

Q =

(
T11 T12
T21 T22

)
=

(
0.1 0.5
−1 2

)
(14)

The classical integer-order model corresponding to model (13) is displayed in [15].

3. Dynamics of the Fractional-Order Models
3.1. Stability Analysis of Model (12)

If f (u) = 0 has the root of u = u0, model (12) has an equilibrium point E = (u0, u0).
The Jacobian matrix M at E is

M =

[
a f ′(u0)− 1 1
−βΓ(1 − α) f ′(u0) 0

]
(15)

The characteristic equation of matrix M is

λ2 − m1λ + m2 = 0

where m1 = a f ′(u0)− 1, m2 = βΓ(1 − α) f ′(u0). The eigenvalues of matrix M are

λ1 =
1
2
(m1 +

√
m2

1 − 4m2), λ2 =
1
2
(m1 −

√
m2

1 − 4m2)

The eigenvalues λi(i = 1, 2) changed with the parameters m1, m2 are displayed in Table 1,
where ℜ(λ) is the real part of the eigenvalue λ.
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Table 1. The eigenvalue λ.

Parameters m1 < 0 m1 = 0 m1 > 0

m2 < 0 λ1 < 0, λ2 > 0 λ1 > 0, λ2 < 0 λ1 > 0, λ2 < 0

m2 = 0 λ1 = 0, λ2 = m1 < 0 λ1 = λ2 = 0 λ1 = m1 > 0, λ2 = 0

m2 > 0, m2
1 − 4m2 ≥ 0 λ1 < 0, λ2 < 0 / λ1 > 0, λ2 > 0

m2 > 0, m2
1 − 4m2 ≤ 0

ℜ(λ1) = ℜ(λ2) =
(1/2)m1

ℜ(λ1) = ℜ(λ2) = 0 ℜ(λ1) = ℜ(λ2) =
(1/2)m1

Remark 1. (1) If ℑ(λ) = 0 ( ℑ(λ) is the imaginary part of λ), λ is a real number. As λ < 0,
one has | arg(λ)| = π > π/2 > (απ)/2 (0 < α < 1); as λ > 0, one has | arg(λ)| = 0 <
(απ)/2 (0 < α < 1).
(2) If ℑ(λ) ̸= 0, it is easy to know tan(arg(λ)) = ℑ(λ)/ℜ(λ). Then as ℜ(λ) < 0, one has
| arg(λ)| > π/2 > (απ)/2 (0 < α < 1); as ℜ(λ) > 0, one has | arg(λ)| < π/2.

By the location of eigenvalue λ on the complex plain, the stability of model (12) can be
evaluated as following:
Case 1. As m2 < 0, shown in Table 1, two eigenvalues are real numbers and one of them is in
the positive real axis of the complex plane, i.e., there is | arg(λ)| = 0 < (απ)/2 (0 < α < 1).
So as m2 < 0, model (12) at the equilibrium point E is unstable for any m1.
Case 2. As m2 = βΓ(1 − α) f ′(u0) = 0, due to α > 0 and β > 0, one has f ′(u0) = 0. Thus,
m1 = a f ′(u0)− 1 = −1 < 0, λ1 = 0 and λ2 = −1 < 0. So, as m2 = 0, model (12) at the
equilibrium point E is stable.
Case 3. As m2 > 0 and m1 < 0, two eigenvalues are negative real numbers. And | arg(λ)| =
π > (απ)/2 (0 < α < 1). In this case, model (12) at the equilibrium point E is stable.
Case 4. As m2 > 0, m1 > 0 and m2

1 − 4m2 ≥ 0, two eigenvalues are positive real numbers.
Then, | arg(λ)| = 0 < (απ)/2 (0 < α < 1). Model (12) at the equilibrium point E is
unstable.
Case 5. As m2 > 0, m1 > 0 and m2

1 − 4m2 < 0, both eigenvalues have positive real parts.
The argument of the eigenvalue is arg(λ) = arctan(ℑ(λ)/ℜ(λ)). Referring to Lemma 1,
model (12) at the equilibrium point E is stable if | arg(λ)| > (απ)/2 and is unstable if
| arg(λ)| < (απ)/2.
Therefore, the following conclusions can be drawn:

Theorem 1. The stability of model (12) at the equilibrium E depends on the parameters m1 and m2.
It is stated as:
(1) If m2 < 0 or m2 > 0, m1 > 0, m2

1 − 4m2 ≥ 0, model (12) is unstable;
(2) If m2 > 0, m1 ≤ 0 or m2 = 0, model (12) is stable;

(3) As m2 > 0, m1 > 0, m2
1 − 4m2 < 0, model (12) is stable if

√
4m2 − m2

1
/

m1 > tan((1− α)π
/

2)

and is unstable if
√

4m2 − m2
1
/

m1 < tan((1 − α)π
/

2). In this case, when increasing order α from 0

to 1, model (12) experiences Hopf bifurcation at α0 = 1− (2/π) arctan(
√

4m2 − m2
1
/

m1).

3.2. Stabilty Analysis of Model (13) with the Decay Rate α = 0.01

The Jacobian matrix corresponding to model (13) at the equilibrium point (0, 0, 0, 0) is

M∗ =


5T11 − 0.1 5T12 1 0

5T21 5T22 − 0.1 0 1
−5βΓ(0.99) 0 0 0

0 −5βΓ(0.99) 0 0

 (16)
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Thus, the eigenpolynomial for discriminating the stability of equilibrium point (0, 0, 0, 0)
can be yielded as

det(λI − M∗) = (λ2 − m1λ + m0)(λ
2 − m2λ + m0)− 25T12T21λ2 = 0 (17)

where m0 = 5βΓ(0.99), m1 = 5T11 − 0.1 = 0.4, m2 = 5T22 − 0.1 = 9.9, T12T21 = −0.5. Due
to β > 0, λ = 0 is not the root of Equation (17). Then, Equation (17) can be changed into

(λ +
m0

λ
)2 − (m1 + m2)(λ +

m0

λ
) + m1m2 + 12.5 = 0 (18)

Thus,

λ +
m0

λ
=

(m1 + m2)±
√
(m1 − m2)2 − 50
2

(19)

When substituting m1 = 0.4, m2 = 9.9 into Equation (19), we obtain

λ +
m0

λ
= 5.15 −

√
161
4

= k1, λ +
m0

λ
= 5.15 +

√
161
4

= k2

where k1 ≈ 1.9779, k2 ≈ 8.3221. Furthermore, we can obtain

λ2 − k1λ + m0 = 0, λ2 − k2λ + m0 = 0

Then, the roots of Equation (17) are

λ1,2 = (k1 ±
√

k2
1 − 4m0)/2, λ3,4 = (k2 ±

√
k2

2 − 4m0)/2 (20)

If k2
1 − 4m0 ≥ 0 and k2

2 − 4m0 ≥ 0, the eigenvalues λi ≥ 0(i = 1, 2, 3, 4).
If k2

1 − 4m0 < 0, k2
2 − 4m0 < 0 and 0 < β ≤ 1, there are√

4m0 − k2
i

ki
< tan(

0.99π

2
), i = 1, 2 (21)

This implies that the eigenvalues lie in an unstable zone.
Due to k1 < k2, with k2

1 − 4m0 < 0, k2
2 − 4m0 > 0 and 0 < β ≤ 1, we obtain

| arg(λ1,2)| =

√
4m0 − k2

1

k1
< tan(

0.99π

2
), λ3 > 0, λ4 > 0 (22)

In summary, the equilibrium point (0, 0, 0, 0) of model (13) is unstable for any β (0 < β ≤ 1).

4. Numerical Simulations of the Fraction-Order Models
4.1. Numerical Simulations of Model (12)

In this section, the numerical simulations of model (12) are shown with a = 1.6, β = 0.5,
f (u) = tanh(u). In this case, the equilibrium E = (0, 0), m1 = 0.6, and m2 = 0.5Γ(1− α) > 0.
As 0 < α < 1, one has Γ(1 − α) > 1 and m2

1 − 4m2 = 0.36 − 2Γ(1 − α) < 0. Referring to
Theorem 1, the bifurcation point α0 can be calculated by

α0 = 1 − 2
π

arctan

√
2Γ(1 − α0)− 0.36

0.6
(23)

By using Matlab, Equation (23) has the root α0 ≈ 0.2504. Figure 1 is the time history of the
action potential u. As α = 0.24, the action potential u is periodic spiking; while α = 0.26,
the action potential u convergences to the quiescent state. These numerical results are
consistent with the third conclusion shown in Theorem 1.
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Figure 1. The time history of u. (a) α = 0.24; (b) α = 0.26.

Remark 2. It is shown in [15] that model (5) shows Hopf Bifurcation when the memory decay rate
α = 0.6 , while in the fractional-order model (12), Hopf Bifurcation occurs when the memory decay
rate α = 0.2504. This implies that the memory kernel function has heavy effects on the dynamics of
the tabu learning single-neuron model.

4.2. Dynamics of Model (13) with α = 0.01 Induced by the Learning Rate β

As shown in Section 3.2, model (13) is unstable for all β > 0. In this case, periodic
spiking and chaotic spiking occur in model (13). Figure 2 is the bifurcation diagram of the
local maxima of the variable u1. It is found that model (13) changes between the periodic
spiking and the chaotic spiking as β increases from 0 to 0.4. While β > 0.4, model (13) goes
into chaotic spiking. Figure 3 is the time history of state u1 for different β values. There is
periodic spiking when β = 0.05, β = 0.305, and β = 0.35, and then there is chaotic spiking
when β = 0.301, β = 0.31, β = 0.32, β = 0.4, and β = 0.5. This implies that model (13)
shows that tangent bifurcation increased β from 0 to 0.4 and shows only chaotic spiking
when β > 0.4.

Figure 2. Bifurcation diagram of the local maxima of the variable u1 of model (13) regarding β.

4.3. Dynamic Transitions of Model (13) Induced by the Memory Decay Rate α

In Section 4.1, model (12) with different memory decay rates α shows different dynam-
ics. Taking this into account, we chose a different memory decay rate α for model (13) with
β = 0.5.
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Figure 3. The time history of u1. (a) β = 0.05; (b) β = 0.301; (c) β = 0.305; (d) β = 0.31; (e) β = 0.32;
(f) β = 0.35; (g) β = 0.4; (h) β = 0.5.
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When α = 0.01 and α = 0.1, model (13) is chaotic (Figure 4a1,b1). When α = 0.5
or α = 0.9, model (13) goes into periodic spiking (Figure 4c1,d1), and it is found that
the frequency of the oscillation increases as the order α increases. This implies that the
learning frequency of tabu learning neurons is very high when the memory decay rate is
high. In theory, this is quite consistent with the actual phenomenon. In addition, when the
memory decay rate α increased from 0.01 to 0.9, Figure 4a2,b2,c2,d2 show that model (13)
enters frequency synchronization firstly and then the amplitudes of two neurons gradually
become consistent. This implies that the memory decay rate α has a significant impact on
the synchronization of the neurons connected by model (13).

Remark 3. When β = 0.5, the classical integer-order model with the memory decay rate α = 0.1
corresponding to model (13) produces periodic spiking [15], while the fractional-order model (13)
with α = 0.1 shows chaotic spiking (Figure 4b2). The conclusion is drawn that the fractional-order
model (13) has stronger nonlinearity than the corresponding classical integer-order model.
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Figure 4. Cont.
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Figure 4. The time histories of model (13): (a1–c1,d1) are the time histories of u1; (a2–d2) are the time
histories of u1 and u2.

5. Conclusions

In this paper, a novel fractional-order tabu learning single-neuron mathematical model
is proposed by introducing the exponential memory kernel function to the tabu learning
variable. In the new model, the memory decay rate is measured by the order of the
fractional-order derivative. Similar to the integer-order tabu learning neuron, the fractional-
order tabu learning neuron model showed Hopf bifurcation as the memory decay rate
increased from 0 to 1. It is interesting that the memory decay rate at which the fractional-
order model showed Hopf bifurcation is numerically smaller than that of the integer-order
tabu learning model. This indicates that the memory capacity has a significant impact on
the neuron behavior. Based on this new fractional-order tabu learning model, the network
of two interacting fractional-order tabu learning neurons is displayed. It is found that the
network with a lower memory decay rate of 0.01 is unstable and shows tangent bifurcation
as the learning rate increases from 0 to 1. However, when fixing the learning rate at 0.5 and
increasing the memory decay from 0 to 1, the network enters into frequency synchronization
firstly and then the amplitudes of two neurons gradually become consistent. At the same
time, the numerical simulation shows that the bigger the memory decay rate is, the higher
the learning frequency of the fractional-order tabu learning neuron network is, which
coincides with the rule of fast forgetting and fast learning. This indicates that the memory
decay rate takes an important role in the synchronization of a network connected by two
fractional-order tabu learning neurons.

Of course, all results stated above are based only on mathematical models and theo-
retical analysis. In future research, it is needed to confirm that the actual firing of neurons
matches our model.
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