
Citation: Zhao, C.; Ye, J.; Zhu, Z.;

Huang, Y. FLRNN-FGA:

Fractional-Order Lipschitz Recurrent

Neural Network with

Frequency-Domain Gated Attention

Mechanism for Time Series

Forecasting. Fractal Fract. 2024, 8, 433.

https://doi.org/10.3390/

fractalfract8070433

Academic Editors: Serhii Lupenko

and Jacek Leśkow

Received: 11 June 2024

Revised: 13 July 2024

Accepted: 19 July 2024

Published: 22 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural
Network with Frequency-Domain Gated Attention Mechanism
for Time Series Forecasting
Chunna Zhao * , Junjie Ye , Zelong Zhu and Yaqun Huang

School of Information Science and Engineering, Yunnan University, Kunming 650500, China;
yejunjie@stu.ynu.edu.cn (J.Y.); zhuzelong@mail.ynu.edu.cn (Z.Z.); huangyq@ynu.edu.cn (Y.H.)
* Correspondence: zhaochunna@ynu.edu.cn

Abstract: Time series forecasting has played an important role in different industries, including
economics, energy, weather, and healthcare. RNN-based methods have shown promising potential
due to their strong ability to model the interaction of time and variables. However, they are prone to
gradient issues like gradient explosion and vanishing gradients. And the prediction accuracy is not
high. To address the above issues, this paper proposes a Fractional-order Lipschitz Recurrent Neural
Network with a Frequency-domain Gated Attention mechanism (FLRNN-FGA). There are three
major components: the Fractional-order Lipschitz Recurrent Neural Network (FLRNN), frequency
module, and gated attention mechanism. In the FLRNN, fractional-order integration is employed
to describe the dynamic systems accurately. It can capture long-term dependencies and improve
prediction accuracy. Lipschitz weight matrices are applied to alleviate the gradient issues. In the
frequency module, temporal data are transformed into the frequency domain by Fourier transform.
Frequency domain processing can reduce the computational complexity of the model. In the gated
attention mechanism, the gated structure can regulate attention information transmission to reduce
the number of model parameters. Extensive experimental results on five real-world benchmark
datasets demonstrate the effectiveness of FLRNN-FGA compared with the state-of-the-art methods.

Keywords: time series forecasting; fractional-order; Lipschitz recurrent neural network; Fourier
transform; gated attention mechanism

1. Introduction

Time series data play an important role in modern society [1–3]. A large number
of time series data are presented in various fields, such as finance [4], economics [5],
transportation [6], and meteorology [7]. These time series data contain a wealth of useful
information. Accurate analysis and information extraction can help decision makers and
managers in various fields to mitigate risks, manage resources, predict future trends, and
formulate long-term plans for better development.

Traditional time series forecasting methods are mainly divided into statistical meth-
ods and grey models [8,9]. These methods can achieve good forecasting results for low-
dimensional and stationary time series data [10]. However, accurately forecasting high-
dimensional and non-stationary time series data remains challenging. For forecasting
complex time series data, deep learning technology, with its powerful computational and
learning capabilities, has become a research hotspot in the academic community [9,10].
Compared to statistical time series forecasting models, deep learning models can handle
complex nonlinear relationships. Additionally, deep learning models can accurately capture
the long-term dependencies in sequences [11,12].

Recently, thanks to their tremendous success in natural language processing and
computer vision [13,14], Transformers have also been successfully applied to time series
tasks, with a great many Transformer variants being proposed [15]. This is attributed to the

Fractal Fract. 2024, 8, 433. https://doi.org/10.3390/fractalfract8070433 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8070433
https://doi.org/10.3390/fractalfract8070433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0019-1041
https://orcid.org/0000-0002-3391-7582
https://doi.org/10.3390/fractalfract8070433
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8070433?type=check_update&version=2

Fractal Fract. 2024, 8, 433 2 of 15

attention mechanism’s ability to enhance the model’s focus and understanding of different
parts of the time series, allowing it to more effectively learn and utilize the information in
the time series, thereby improving prediction accuracy. However, Transformer modeling
requires substantial computational resources and costs, which limits its development in
time series forecasting [16–18]. To this end, in this paper, we adopt recurrent neural
networks as the main structure.

The recurrent neural network (RNN) model can establish temporal dependencies
through recursion, and it is considered suitable for handling sequential data [19]. Many
studies have indicated the effectiveness of recurrent neural network models in time se-
ries data [20]. However, when recurrent neural network models are applied to long-
sequence tasks, they are prone to gradient issues like gradient explosion and vanishing
gradients [21,22]. Although long short-term memory (LSTM) networks and other variants
alleviate these issues to some extent, there still exist problems with inaccurate dynamic
descriptions and high computational complexity.

In order to address these gradient-related issues, Hochreiter proposed the long short-
term memory (LSTM) networks [23]. The LSTM networks use gate structures to control the
flow of gradients to solve gradient-related issues. Benefiting from the dynamic systems
perspective of RNNs [24–26], Rubanova and Brouwer formulated new recurrent model
equations and their discrete integrals based on differential theory [27]. Lechner and Hasani
extended these models based on ordinary differential equations [28]. They designed an
ordinary differential equation model based on the LSTM to address the gradient vanishing
and exploding issues. Ding combined fuzzy systems to construct the recurrent fuzzy neural
network [29]. Park applied a dual RNN architecture with partial linear dependencies to
forecast time series data [30]. Erichson reconstructed the weight matrices of recurrent units
using Lipschitz RNN to alleviate the gradient issues [31]. However, the prediction accuracy
was not high.

For the prediction accuracy, fractional calculus theory can achieve more accurate
predictions because fractional calculus is an expansion of integer calculus, which can
more accurately describe the actual system. And fractional-order systems have more
precise results [32]. The essence of the world is a fractional-order system. And numerous
natural phenomena cannot be precisely captured by traditional integer-order calculus
equations. Therefore, an extension of traditional calculus is necessary to better describe
and analyze such occurrences. Using Lipschitz recurrent units, the issues of gradient
vanishing and exploding in recurrent neural networks for long-term sequence prediction
tasks are alleviated.

To overcome the above problems, this paper proposes a Fractional-order Lipschitz Recur-
rent Neural Network with a Frequency-domain Gated Attention mechanism (FLRNN-FGA) for
time series prediction. Deep learning techniques and fractional calculus theory can achieve
more accurate predictions of long-term time series data by capturing the long-term de-
pendencies of the time series. This paper utilizes piecewise recurrent units, which can
effectively reduce the number of iterations of the recurrent units. Based on fractional
calculus, fractional-order integration is used to accurately describe the dynamics of the
system [33], and it can enhance the model’s ability to capture long-term dependencies and
improve the prediction accuracy. By introducing Fourier transform, the temporal data
are transformed into the frequency domain. Some processing is conducted, including
frequency domain selection and sampling. This reduces the computational complexity of
the model, addressing the inefficiency involved in handling long-term time series data. To
address the issue of insufficient feature interaction in the model, a gated attention mech-
anism is adopted, which combines gated techniques with an attention mechanism. The
gated structure can adjust the information flow of the attention, enabling the model to
filter out noise and avoid its introduction. This facilitates better handling of inter-variable
relationships, enhancing features while reducing model parameter count and improving
efficiency. The main contributions of this study are as follows.

Fractal Fract. 2024, 8, 433 3 of 15

• A new Fractional-order Lipschitz Recurrent Neural Network with a Frequency-domain
Gated Attention mechanism is proposed for time series prediction. Extensive experi-
mental results on five datasets demonstrate the effectiveness of this method.

• This paper introduces fractional calculus to describe the system dynamics of recurrent
neural networks, effectively improving the model’s prediction accuracy.

• In this paper, piecewise recurrent units are introduced to reduce the number of iter-
ations of recurrent units. By reconstructing the weight matrix of the recurrent layer
to control the system’s dynamic changes, the gradient problem in recurrent neural
networks is effectively alleviated.

• This paper combines gated techniques with an attention mechanism to regulate atten-
tion information, which can reduce the number of model parameters and effectively
improve the model’s efficiency and accuracy.

The remainder of the article is structured in the following way. In Section 3, the FLRNN-
FGA method is deduced in detail. Section 4 verifies the effectiveness of the proposed method
through some experiments. Finally, our conclusions are derived in Section 5.

2. Related Work
A Time Series Forecasting Model Based on RNNs

Recurrent neural networks (RNNs) have long been the preferred choice for time
series forecasting tasks due to their ability to handle sequential data. Extensive research
has focused on applying RNNs to short-term and probabilistic forecasting, achieving
significant progress. For instance, the work by Lai et al. [33], Wen et al. [34], Tan, Xie, and
Cheng [35], and Bergsma et al. [36] has made important contributions in this area. However,
in the field of long-term sequence forecasting (LTSF), RNNs are considered ineffective at
capturing long-term dependencies when faced with excessively long historical windows
and prediction horizons, leading to their gradual abandonment [37,38].

To address these challenges, novel RNN architectures such as SegRNN and RWKV-TS
have emerged, aiming to enhance the ability of RNNs to capture long-term dependencies
by improving their structure. Additionally, in the field of large-scale language models,
some new RNN architectures, like RWKV, Retentive Network [39], and Mamba [40], have
demonstrated performance comparable to Transformer models [41], while also being more
efficient. These new developments suggest that, despite the limitations of traditional RNNs
in certain long-sequence forecasting tasks, RNNs still hold great potential in time series
forecasting through architectural innovation and improvement.

However, when recurrent neural network (RNN) models are applied to long-sequence
tasks, they are prone to issues such as gradient explosion and gradient vanishing. Although
long short-term memory (LSTM) networks and other variants have mitigated these issues
to some extent, they still face challenges related to inaccurate dynamic descriptions and
high computational complexity.

3. Methods

Addressing the issues of inaccurate prediction and gradient problems in recurrent
neural networks, a Fractional-order Lipschitz Recurrent Neural Network with a Frequency-
domain Gated Attention mechanism (FLRNN-FGA) is proposed for time series prediction.
The model architecture of FLRNN-FGA is depicted in Figure 1, which mainly involves the
Fractional-order Lipschitz Recurrent Neural Network (FLRNN), frequency module, and
gated attention mechanism.

First, we present our redesigned FLRNN architecture of FLRNN-FGA in Section 3.1
Time Series Forecasting Model Based on RNN. Here, piecewise recurrent units are in-
troduced. The segmented sequence is used as the input to the Lipschitz recurrent unit.
Through segmented recurrent units, the model can accelerate the processing speed of the
recurrent units for long sequences without compromising their performance. By employing
fractional-order Lipschitz recurrent units, it is possible to control the sensitivity of the
system. And it can alleviate gradient issues and accurately capture system dynamics and

Fractal Fract. 2024, 8, 433 4 of 15

dependencies. Thus, more precise predictions can be provided for time series tasks. Then,
we present the frequency module in Section 3.2. The temporal data are transformed into the
frequency domain by Fourier transform. Then, the low-frequency part that contains more
sequence information is selected using frequency domain selection. A strategy of random
frequency domain sampling is employed to reduce the computational overhead. Frequency
domain processing can effectively decrease the computational cost while retaining crucial
sequence features. In addition, we also present the detailed gated attention mechanism in
Section 3.3. This combines gated techniques with an attention mechanism. The correlation
between features is captured by attention. Then, it can be enhanced through feature interac-
tion. The gated structure can regulate the attention information transmission. That method
can reduce the number of model parameters.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 4 of 15

Figure 1. The framework overview of FLRNN-FGA: the FLRNN is to improve the prediction accu-
racy and mitigate gradient vanishing and exploding problems; the frequency module reduces the
computational complexity by Fourier transform; the GA combines gated techniques with an atten-
tion mechanism to reduce model parameter count and improve efficiency.

First, we present our redesigned FLRNN architecture of FLRNN-FGA in Section 3.1
Time Series Forecasting Model Based on RNN. Here, piecewise recurrent units are intro-
duced. The segmented sequence is used as the input to the Lipschitz recurrent unit.
Through segmented recurrent units, the model can accelerate the processing speed of the
recurrent units for long sequences without compromising their performance. By employ-
ing fractional-order Lipschitz recurrent units, it is possible to control the sensitivity of the
system. And it can alleviate gradient issues and accurately capture system dynamics and
dependencies. Thus, more precise predictions can be provided for time series tasks. Then,
we present the frequency module in Section 3.2. The temporal data are transformed into
the frequency domain by Fourier transform. Then, the low-frequency part that contains
more sequence information is selected using frequency domain selection. A strategy of
random frequency domain sampling is employed to reduce the computational overhead.
Frequency domain processing can effectively decrease the computational cost while re-
taining crucial sequence features. In addition, we also present the detailed gated attention
mechanism in Section 3.3. This combines gated techniques with an attention mechanism.
The correlation between features is captured by attention. Then, it can be enhanced
through feature interaction. The gated structure can regulate the attention information
transmission. That method can reduce the number of model parameters.

3.1. FLRNN
The Fractional-order Lipschitz Recurrent Neural Network (FLRNN) can achieve a

more accurate result and avoid gradient vanishing and exploding problems.
The recurrent neural network is shown as follows.

 (1)

where ℎ represents the hidden state that contains past information. ℎ ሶ is the derivative
of the hidden state h with respect to time. 𝐴, 𝑊, and 𝑈 are matrices. 𝑏 is the offset of the
system. x is input, and 𝑦 is output. The Lipschitz Recurrent Neural Network recon-
structed the hidden layer weight matrix [22] as follows.

 (2)

where 𝐼 is a unit diagonal matrix. 𝑀் and 𝑀ௐ் are transposed matrices. 𝛽  and  𝛾  are
used to control the spectrum of the weight matrix. The former one controls the width of
the spectrum, and the latter one shifts the position of the entire spectrum. The Lipschitz
Recurrent Neural Network obtains the hidden state ℎ through numerical integration.

 (3)

To describe the system dynamics more accurately, fractional-order GL calculus [42]
can be used to compute this hidden state. Fractional calculus is a generalization of classical

Figure 1. The framework overview of FLRNN-FGA: the FLRNN is to improve the prediction
accuracy and mitigate gradient vanishing and exploding problems; the frequency module reduces the
computational complexity by Fourier transform; the GA combines gated techniques with an attention
mechanism to reduce model parameter count and improve efficiency.

3.1. FLRNN

The Fractional-order Lipschitz Recurrent Neural Network (FLRNN) can achieve a
more accurate result and avoid gradient vanishing and exploding problems.

The recurrent neural network is shown as follows.{ .
h = AβA ,γA h + tanh

(
WβW ,γW h + Ux + b

)
y = Dh

(1)

where h represents the hidden state that contains past information.
.
h is the derivative of

the hidden state h with respect to time. A, W, and U are matrices. b is the offset of the
system. x is input, and y is output. The Lipschitz Recurrent Neural Network reconstructed
the hidden layer weight matrix [22] as follows.{

AβA ,γA = (1 − βA)
(

MA + MT
A
)
+ βA

(
MA − MT

A
)
− γA I

WβW ,γW = (1 − βW)
(

MW + MT
W
)
+ βW

(
MW − MT

W
)
− γW I

(2)

where I is a unit diagonal matrix. MT
A and MT

W are transposed matrices. β and γ are
used to control the spectrum of the weight matrix. The former one controls the width of
the spectrum, and the latter one shifts the position of the entire spectrum. The Lipschitz
Recurrent Neural Network obtains the hidden state h through numerical integration.

h = ∆t ∑
.
h(t − r∆t) (3)

To describe the system dynamics more accurately, fractional-order GL calculus [42]
can be used to compute this hidden state. Fractional calculus is a generalization of classical
calculus where the order of differentiation and integration can be a fraction rather than an
integer. This generalization allows the modeling of systems with memory and hereditary

Fractal Fract. 2024, 8, 433 5 of 15

properties, which are common in real-world phenomena. In the FLRNN, fractional calculus
is used to integrate the hidden states of the RNN.

aDα
t f (t) = lim

p→0
p−α

[(t−a)/p]

∑
j=0

(−1)j
(

α
j

)
f (t − jp) (4)

where f is the function, and p i0s the step. α represents the fractional order. And
(

α
j

)
expresses a binomial coefficient, and j denotes a natural number.

Here, fractional-order integration is employed to calculate the hidden state of the
system.

.
h is taken as the integrand. The coefficient (−1)j(α

j) can be pre-computed before
training. The hidden state h can be computed through fractional-order integration, and it is
shown in Equation (5).

D−p
t (h(t)) = ∆tp ∑

〈
p
r

〉
h(t − r∆t) (5)

where D−p
t is a p-order integration operator, and it can be a non-integer. The < · >

represents the Grünwald number. Its computation process is shown in Equation (6).〈
p
r

〉
=

p(p + 1) · · · (p + r + 1)
r!

= (−1)r
(
−p
r

)
(6)

Fractional calculus is a generalization of integer-order calculus, where the order is
not limited to integers but can be any real number or even a complex number. Fractional
calculus possesses non-local properties, which are inherent in many complex systems. The
dynamic behavior of complex systems can be better described by fractional calculus.

By introducing fractional calculus and Lipschitz recurrent units, this paper constructs
a Fractional-order Lipschitz Recurrent Neural Network. And this can accurately capture
the temporal relationships in long-term sequential data and alleviate the gradient issue of
recurrent neural networks.

Figure 2 shows the structure of the Fractional-order Lipschitz Recurrent Neural Net-
work in this paper, where xi represents the input data at different time points. h0 represents
the initial hidden state of the Lipschitz recurrent unit, and hi represents the time derivative
of the hidden state at different time points, which is calculated through the Lipschitz recur-
rent unit. After the model calculates the time derivatives at all time points, the final hidden
state h is computed through the fractional-order GL integration. Through fractional-order
integration, the dynamic behavior of complex systems can be described more accurately,
which can make the prediction results more precise.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 5 of 15

calculus where the order of differentiation and integration can be a fraction rather than an
integer. This generalization allows the modeling of systems with memory and hereditary
properties, which are common in real-world phenomena. In the FLRNN, fractional calcu-
lus is used to integrate the hidden states of the RNN.

[]() /

p 0 0
() (1) ()lim

t a p
j

a t
j

D f t p f t jp
j

α α α−
−

→ =

= − −

 (4)

where 𝑓 is the function, and p i0s the step. 𝛼 represents the fractional order. And
j

α

expresses a binomial coefficient, and j denotes a natural number.
Here, fractional-order integration is employed to calculate the hidden state of the

system. ℎ ሶ  is taken as the integrand. The coefficient ሺ−1ሻ ቀఈ ቁ can be pre-computed before
training. The hidden state ℎ can be computed through fractional-order integration, and
it is shown in Equation (5).

 (5)

where 𝐷௧ି is a 𝑝-order integration operator, and it can be a non-integer. The < ⋅ > rep-
resents the Grünwald number. Its computation process is shown in Equation (6).

 (6)

Fractional calculus is a generalization of integer-order calculus, where the order is
not limited to integers but can be any real number or even a complex number. Fractional
calculus possesses non-local properties, which are inherent in many complex systems. The
dynamic behavior of complex systems can be better described by fractional calculus.

By introducing fractional calculus and Lipschitz recurrent units, this paper constructs
a Fractional-order Lipschitz Recurrent Neural Network. And this can accurately capture
the temporal relationships in long-term sequential data and alleviate the gradient issue of
recurrent neural networks.

Figure 2 shows the structure of the Fractional-order Lipschitz Recurrent Neural Net-
work in this paper, where 𝑥 represents the input data at different time points. h repre-
sents the initial hidden state of the Lipschitz recurrent unit, and h୧ represents the time
derivative of the hidden state at different time points, which is calculated through the
Lipschitz recurrent unit. After the model calculates the time derivatives at all time points,
the final hidden state ℎ is computed through the fractional-order GL integration.
Through fractional-order integration, the dynamic behavior of complex systems can be
described more accurately, which can make the prediction results more precise.

Figure 2. Fractional-order Lipschitz Recurrent Neural Network.

x1

h1

dy1

Fractional Intergral

x2

h2

dy2

xn

hn

dyn

…

hidden state

h0

Figure 2. Fractional-order Lipschitz Recurrent Neural Network.

Fractal Fract. 2024, 8, 433 6 of 15

When recurrent neural networks process sequential data, they typically take the data
at a single time point as the input for each iteration. However, adjacent time point data
often contain similar information in temporal data analysis. To reduce the training time
of the network, this paper proposes that adjacent data segments can be input into the
recurrent unit. This approach not only accelerates the training process of the network
but also maintains the prediction accuracy of the model. The structure of the piecewise
recurrent units is illustrated in Figure 3.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 15

When recurrent neural networks process sequential data, they typically take the data
at a single time point as the input for each iteration. However, adjacent time point data
often contain similar information in temporal data analysis. To reduce the training time
of the network, this paper proposes that adjacent data segments can be input into the re-
current unit. This approach not only accelerates the training process of the network but
also maintains the prediction accuracy of the model. The structure of the piecewise recur-
rent units is illustrated in Figure 3.

Recurrent
unit

hn

Recurrent
unit

h1

Recurrent
unit

h2

input
Figure 3. Piecewise recurrent units.

The adjacent time point data can be inserted as a segment into the recurrent unit.
Then, the model can more effectively utilize the temporal characteristics of the data. This
improves the training efficiency of the model. The piecewise recurrent units help reduce
the computational burden of the network, and this can accelerate the convergence speed
of the model.

3.2. Frequency Module
Here, the frequency domain transformation is used to process temporal information,

where there are differences between the time domain and frequency domain information.
Time domain information focuses more on the data changes over time, while frequency
domain information represents the frequency components of the data. When temporal
data are processed in the frequency domain, it is possible to identify various frequency
components in the data, and different frequency components are processed, which is very
effective in handling complex data. The frequency domain processing module is illus-
trated in Figure 4.

The Fourier transfer is used to convert time domain data into frequency domain data.
A function is represented by sine and cosine waves of different frequencies. Through the
Fourier transform, the frequencies of the original data can be analyzed. The Fourier trans-
fer is shown in Equation (7).

 (7)

Figure 3. Piecewise recurrent units.

The adjacent time point data can be inserted as a segment into the recurrent unit. Then, the
model can more effectively utilize the temporal characteristics of the data. This improves the
training efficiency of the model. The piecewise recurrent units help reduce the computational
burden of the network, and this can accelerate the convergence speed of the model.

3.2. Frequency Module

Here, the frequency domain transformation is used to process temporal information, where
there are differences between the time domain and frequency domain information. Time domain
information focuses more on the data changes over time, while frequency domain information
represents the frequency components of the data. When temporal data are processed in the
frequency domain, it is possible to identify various frequency components in the data, and
different frequency components are processed, which is very effective in handling complex data.
The frequency domain processing module is illustrated in Figure 4.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 7 of 15

Figure 4. Frequency module.

As high-frequency data often contain noise that may not be beneficial for prediction,
the low-frequency data are selected for the subsequent calculation. Here, frequency do-
main sampling is employed to avoid getting stuck in local optima. The different frequency
components are randomly selected to enhance the oscillation ability of the network, and
they can also accelerate convergence to a better solution.

3.3. Gated Attention Mechanism
This paper combines gated technology with the attention mechanism. For feature in-

teraction and enhancement, the attention mechanism can capture the correlations between
features. By calculating similarity and weighted scores, the attention mechanism is able to
acquire attention to different parts. This process has excellent adaptability to the input
data and can accurately capture relevant relationships. To accurately capture the correla-
tions between features, the attention module is focused on the changing trends of the se-
quence. The gated structure is able to regulate the information flow of attention. This can
make the model exclude the influence of noise, and it can result in a more accurate analysis
of information with a higher correlation.

The calculation process of the gated attention mechanism is shown in Equation (8).

 (8)

where 𝑂 represents the output. 𝑈 𝑎𝑛𝑑 𝑉 are matrices calculated from the input, and 𝑊
is the parameter matrix. 𝐴 is the attention weight matrix, and it is calculated by Equation
(9).

 (9)

where relu is the activation function, and b is the bias. 𝑍 is the same as U and V. 𝑍 ൌ 𝜙௭ሺ𝑋𝑊௭ሻ, (10)

where 𝑋 is the input, and 𝜙 is the activation function, where this paper uses the 𝑆𝑖𝑙𝑢
activation function. Q and K are functions from 𝑍. They are similar to a LayerNorm layer
structure with one learnable parameter, and they perform scaling and translation opera-
tions on each dimension of 𝑍. The structure of the gated attention mechanism is shown
in Figure 5.

Figure 4. Frequency module.

Fractal Fract. 2024, 8, 433 7 of 15

The Fourier transfer is used to convert time domain data into frequency domain data.
A function is represented by sine and cosine waves of different frequencies. Through the
Fourier transform, the frequencies of the original data can be analyzed. The Fourier transfer
is shown in Equation (7).

F(ω) = F [f (t)] =
∞∫

−∞

f (t)e−iωtdt. (7)

As high-frequency data often contain noise that may not be beneficial for prediction,
the low-frequency data are selected for the subsequent calculation. Here, frequency domain
sampling is employed to avoid getting stuck in local optima. The different frequency
components are randomly selected to enhance the oscillation ability of the network, and
they can also accelerate convergence to a better solution.

3.3. Gated Attention Mechanism

This paper combines gated technology with the attention mechanism. For feature
interaction and enhancement, the attention mechanism can capture the correlations between
features. By calculating similarity and weighted scores, the attention mechanism is able to
acquire attention to different parts. This process has excellent adaptability to the input data
and can accurately capture relevant relationships. To accurately capture the correlations
between features, the attention module is focused on the changing trends of the sequence.
The gated structure is able to regulate the information flow of attention. This can make
the model exclude the influence of noise, and it can result in a more accurate analysis of
information with a higher correlation.

The calculation process of the gated attention mechanism is shown in Equation (8).

O = (U ⊙ AV)Wo (8)

where O represents the output. U and V are matrices calculated from the input, and W is
the parameter matrix. A is the attention weight matrix, and it is calculated by Equation (9).

A = relu
(
Q(Z)K(Z)⊤ + b

)
(9)

where relu is the activation function, and b is the bias. Z is the same as U and V.

Z = ϕz(XWz), U = ϕu(XWu), V = ϕv(XWv) (10)

where X is the input, and ϕ is the activation function, where this paper uses the Silu activation
function. Q and K are functions from Z. They are similar to a LayerNorm layer structure
with one learnable parameter, and they perform scaling and translation operations on each
dimension of Z. The structure of the gated attention mechanism is shown in Figure 5.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 8 of 15

Figure 5. The structure of gated attention mechanism.

By introducing the gated attention mechanism, the gated structure can be used to
regulate the flow of attention information, making the attention computation more effi-
cient. The gated attention mechanism can reduce the possibility of noise and encourage
the model to focus on learning relevant information. Additionally, the gated attention
mechanism unit utilizes attention information more efficiently through the gated struc-
ture, and it requires less resources.

3.4. Gated Attention Mechanism
In this paper, we propose a time series forecasting method based on FLRNN-FGA.

First, multivariate time series data are input into the FLRNN module, initializing the RNN
model, and integrating all hidden layers through fractional calculus to capture long-term
dependencies. Then, the time domain data are transformed into the frequency domain via
Fourier transform, selecting low-frequency components to reduce noise interference.
Next, a gated attention mechanism is used to capture correlations between features, reg-
ulating the transmission of the attention information through the gated structure and fi-
nally calculating the model’s output.

As shown in Algorithm 1, the specific steps are as follows: first, the data are input,
and the RNN model is instantiated, using fractional calculus to integrate all hidden layers,
thus outputting the results of the FLRNN module. Second, the time domain data are trans-
formed into the frequency domain via Fourier transform, and low-frequency components
are selected to reduce noise. Finally, the correlations between the features are calculated
using the attention mechanism, and the final output is computed through the gated atten-
tion layer to obtain the prediction results. This method not only addresses the gradient
issues in traditional RNN and LSTM models for long-sequence tasks but also significantly
improves prediction accuracy and computational efficiency.

Algorithm 1 FLRNN-FGA
Input: Multivariate time series data
Section 3.1: FLRNN module
 Step 1 Data input instantiation of the RNN model, Equation (1)
 Step 2 Integrating all hidden layers using fractional calculus, Equations (2)~(6)
 Step 3 Output of the FLRNN module
Section 3.2: Frequency Module
 Step 4 Fourier transform converts the time domain into the frequency domain, Equa-

tion (7)
 Step 5 Select the low-frequency components to reduce noise.
Section 3.3: Gated Attention mechanism

Figure 5. The structure of gated attention mechanism.

Fractal Fract. 2024, 8, 433 8 of 15

By introducing the gated attention mechanism, the gated structure can be used to
regulate the flow of attention information, making the attention computation more efficient.
The gated attention mechanism can reduce the possibility of noise and encourage the model
to focus on learning relevant information. Additionally, the gated attention mechanism unit
utilizes attention information more efficiently through the gated structure, and it requires
less resources.

3.4. Gated Attention Mechanism

In this paper, we propose a time series forecasting method based on FLRNN-FGA.
First, multivariate time series data are input into the FLRNN module, initializing the RNN
model, and integrating all hidden layers through fractional calculus to capture long-term
dependencies. Then, the time domain data are transformed into the frequency domain via
Fourier transform, selecting low-frequency components to reduce noise interference. Next,
a gated attention mechanism is used to capture correlations between features, regulating the
transmission of the attention information through the gated structure and finally calculating
the model’s output.

As shown in Algorithm 1, the specific steps are as follows: first, the data are input,
and the RNN model is instantiated, using fractional calculus to integrate all hidden layers,
thus outputting the results of the FLRNN module. Second, the time domain data are
transformed into the frequency domain via Fourier transform, and low-frequency com-
ponents are selected to reduce noise. Finally, the correlations between the features are
calculated using the attention mechanism, and the final output is computed through the
gated attention layer to obtain the prediction results. This method not only addresses the
gradient issues in traditional RNN and LSTM models for long-sequence tasks but also
significantly improves prediction accuracy and computational efficiency.

Algorithm 1 FLRNN-FGA

Input: Multivariate time series data
Section 3.1: FLRNN module

Step 1 Data input instantiation of the RNN model, Equation (1)
Step 2 Integrating all hidden layers using fractional calculus, Equations (2)~(6)
Step 3 Output of the FLRNN module

Section 3.2: Frequency Module
Step 4 Fourier transform converts the time domain into the frequency domain, Equation (7)
Step 5 Select the low-frequency components to reduce noise.

Section 3.3: Gated Attention mechanism
Step 6 Capture the correlations between features using the attention mechanism.
Step 7 Calculate the final output through the gated attention layer using Equation (8).

Output: The output of the prediction results

4. Experiments

To evaluate the performance of FLRNN-FGA, we conduct some experiments on five
real-world time series benchmarks and compare them with the corresponding state-of-the-
art methods.

4.1. Datasets

The datasets cover multiple major application areas, including energy, economy,
transportation, and weather. This provides a more comprehensive test for the performance
validation of the model. The real-world multidomain datasets make the model’s prediction
results more credible.

Brief descriptions of the datasets:

(a) Electricity dataset: the hourly electricity consumption records of 321 users from 2012
to 2014;

(b) ETT dataset: Transformer data from July 2016 to July 2018;

Fractal Fract. 2024, 8, 433 9 of 15

(c) Weather dataset: 21 meteorological indicator records from every 10 min throughout 2020;
(d) Exchange dataset: the daily exchange rate records of eight countries from 1990 to 2016;
(e) Traffic dataset: the hourly road occupancy rates records measured by different sensors

on highways in the San Francisco Bay Area.

A sliding window method is adopted to extract data. To avoid the impact of missing
data, the time series segments with missing data are excluded from the datasets.

Each dataset used in the experiments is divided into three parts: training set, test set,
and validation set. For the ETT dataset, the partitioning ratio of the training set, test set,
and validation set is 6:2:2, while for other datasets, the partitioning ratio is 7:1:2.

4.2. Baselines and Evaluation Metrics

To evaluate the effectiveness of the proposed model, this paper selects some current
deep learning models in the field of time series forecasting as baselines, including:

➢ CN: Temporal Convolutional Network, a deep learning method that utilizes one-
dimensional dilated convolutions and causal convolutions to process sequential data.

➢ LSTM: Long Short-Term Memory Network, a deep learning method that uses gated
structures to retain long-term information to learn long-term dependencies.

➢ LSTNet: A method that combines Convolutional Neural Networks and Long Short-Term
Memory Networks.

➢ Informer [37]: A Transformer variant that utilizes sparse self-attention.
➢ Autoformer [43]: A Transformer variant that employs inter-series attention.
➢ FEDformer [38]: A Transformer variant that uses the frequency domain to analyze

time series data.

The selected baseline models are the ones that have shown good performances in the
field of time series data prediction in recent years. Experimental comparisons with these
baseline models can demonstrate the feasibility and effectiveness of the proposed model in
this paper.

In this paper, mean squared error (MSE) and mean absolute error (MAE) are used as
evaluation metrics for the model. These two metrics are the most important indicators to
demonstrate the predictive accuracy of a model in time series forecasting.

The calculation of MSE is shown in Formula (11).

MSE
(
Y, Ŷ

)
=

1
N

N

∑
i=1

(yi − ŷi)

2

(11)

The calculation process of MAE is shown in Formula (12).

MAE
(
Y, Ŷ

)
=

1
N

N

∑
i=1

|yi − ŷi| (12)

4.3. Experimental Settings

The choice of parameters can affect the experimental results of deep learning models.
A batch of data is one input into the network. The size of this batch is called the batch size.
A larger batch size can fully utilize the computational resources and parallelism. At the
same time, too many input data can reduce the model’s ability to escape from local optimal
solutions. Here, a batch size is 32, and it can balance the model’s computational efficiency
and its ability to escape from local optimal solutions.

Fractional calculus often leads to increased model complexity and difficulty in network
training. Here, the coefficients are pre-computed, and this will result in a relatively small
computational burden. Additionally, it is difficult to determine the appropriate fractional
order. The optimal order may vary depending on the specific dynamics and time depen-
dence of the data. The most relevant fractional-order interval is (0, 2), and experiments are
conducted with the orders [0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 1.8] to find a more appropriate order.

Fractal Fract. 2024, 8, 433 10 of 15

The experiments use the electricity dataset and weather dataset for evaluation, and the
fractional order is set to 1.8.

In this paper, the Lipschitz recurrent unit is utilized to reconstruct the weight matrix of
the hidden layer in the recurrent neural network. The size of the hidden layer vector is set
to 128. There are two parameters for controlling the dynamic changes in the system. They
are chosen as 0.7 and 0.01. This enables the network to learn the dynamics appropriately
while maintaining the stability of the system. Fractional-order integration is introduced to
calculate the hidden state of the recurrent neural network. And the fractional-order integra-
tion order is set to 1.8, which is an appropriate value determined through experimental
comparison. This aims to describe the dynamic behavior of the system more accurately,
thereby improving the performance of the model.

The optimizer is ADAM, and the initial learning rate is set to 0.01. After some epochs
of training, the learning rate will be adjusted to find the global optimal solution faster in the
early stages of training, while avoiding excessive adjustments in the later stages, improving
the convergence and stability of the model.

To prevent the model from overfitting the training set, this paper introduces an early
stopping mechanism in the experiments. The training will be terminated if there is no
improvement on the test set for five consecutive epochs. This mechanism helps stop the
training in time after the model performance reaches its peak. To reduce the training time,
all the experiments are limited to 20 epochs. The low-frequency part ratio is 0.5. The input
length is 336. The hidden layer size of the gated attention module is set to 168.

4.4. Main Results

The results of the multivariate time series forecasting are presented in Table 1.

Table 1. Forecasting results in terms of MSE and MAE. The best results are highlighted in bold, and
the second best results are underlined. The 1st Count means the first number. Smaller values indicate
better performance.

Models FLRNN-FGA
(Ours) FEDformer Autoformer Informer LSTNet LSTM TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

El
ec

tr
ic

it
y 96 0.130 0.228 0.183 0.297 0.201 0.317 0.274 0.368 0.680 0.645 0.375 0.437 0.985 0.813

192 0.151 0.251 0.195 0.308 0.222 0.334 0.296 0.386 0.725 0.676 0.442 0.473 0.996 0.821
336 0.167 0.269 0.212 0.313 0.231 0.338 0.300 0.394 0.828 0.727 0.439 0.473 1.000 0.824
720 0.192 0.296 0.231 0.343 0.254 0.361 0.373 0.439 0.957 0.811 0.980 0.814 1.438 0.784

Et
tm

2 96 0.124 0.240 0.203 0.287 0.255 0.339 0.365 0.453 3.142 1.365 2.041 1.073 3.041 1.330
192 0.154 0.271 0.269 0.328 0.281 0.340 0.533 0.563 3.154 1.369 2.249 1.112 3.072 1.339
336 0.194 0.302 0.325 0.366 0.339 0.372 1.363 0.887 3.160 1.369 2.568 1.238 3.105 1.348
720 0.236 0.344 0.421 0.415 0.422 0.419 3.379 1.338 3.171 1.368 2.720 1.287 3.135 1.354

Ex
ch

an
ge 96 0.118 0.255 0.139 0.276 0.197 0.323 0.847 0.752 1.551 1.058 1.453 1.049 3.004 1.432

192 0.207 0.341 0.256 0.369 0.300 0.369 1.204 0.895 1.477 1.028 1.846 1.179 3.048 1.444
336 0.353 0.464 0.426 0.464 0.509 0.524 1.672 1.036 1.507 1.031 2.136 1.231 3.113 1.459
720 1.284 0.823 1.090 0.800 1.447 0.941 2.478 1.310 2.285 1.243 2.984 1.427 3.150 1.458

Tr
af

fic

96 0.410 0.265 0.562 0.349 0.613 0.388 0.719 0.391 1.107 0.685 0.843 0.453 1.438 0.784
192 0.433 0.277 0.562 0.346 0.616 0.382 0.696 0.379 1.157 0.706 0.847 0.453 1.463 0.794
336 0.451 0.288 0.570 0.323 0.622 0.337 0.777 0.420 1.216 0.730 0.853 0.455 1.476 0.799
720 0.502 0.306 0.596 0.368 0.660 0.408 0.864 0.472 1.481 0.805 1.500 0.805 1.499 0.804

W
ea

th
er 96 0.151 0.213 0.217 0.286 0.266 0.336 0.300 0.384 0.594 0.587 0.369 0.406 0.615 0.589

192 0.206 0.268 0.276 0.336 0.307 0.367 0.598 0.544 0.560 0.565 0.416 0.435 0.629 0.600
336 0.268 0.320 0.339 0.380 0.359 0.395 0.578 0.523 0.597 0.587 0.455 0.454 0.639 0.608
720 0.402 0.407 0.403 0.428 0.419 0.428 1.059 0.741 0.618 0.599 0.535 0.520 0.639 0.610

1st Count 37 3 0 0 0 0 0

Improvement - 18.15% 31.52% 149.36% 281.52% 232.80% 357.32%

In this experiment, we compare the performance of FLRNN-FGA (our model) with six
other models (FEDformer, Autoformer, Informer, LSTNet, LSTM, and TCN) on five datasets

Fractal Fract. 2024, 8, 433 11 of 15

for time series forecasting. The evaluation metrics are mean squared error (MSE) and mean
absolute error (MAE). The results show that FLRNN-FGA performs outstandingly on all
datasets and prediction windows, achieving the best results in 37 experimental settings,
while the second-best model, FEDformer, achieves the best results in only 3 settings.
Specifically, on the electricity, Ettm2, exchange, traffic, and weather datasets, the MSE
and MAE of FLRNN-FGA are significantly better than those of the other models. For
example, on the electricity dataset with a 96-step prediction, FLRNN-FGA has an MSE
of 0.130 and an MAE of 0.228, which are 28.42% and 29.02% lower, respectively, than the
second-best FEDformer. On the Ettm2 dataset with a 96-step prediction, FLRNN-FGA has
an MSE of 0.124 and an MAE of 0.240, which are 38.92% and 19.33% lower, respectively,
than the second-best FEDformer. Overall, compared to the other models, the average
improvements in MSE and MAE for FLRNN-FGA are 18.15% and 31.52%, respectively,
with improvements on some datasets reaching as high as 149.36% (Informer) and 281.52%
(LSTNet). This demonstrates that FLRNN-FGA has significant advantages in time series
forecasting tasks, maintaining stable and superior performance across different types of
time series data.

4.5. Ablation Study

In our approach, there are three major components: the FLRNN, frequency module,
and gated attention mechanism. We analyze the effects of each component, and a series of
ablation experiments are conducted.

w/o fractional calculus.

Firstly, we remove the fractional-order integral; this is the LRNN-FGA model. Then,
we eliminate the Lipschitz weight matrix; this is the RNN-FGA model. The changes in
performance are shown in Table 2.

Table 2. Ablation study on fractional-order component.

Models FLRNN-FGA LRNN-FGA RNN-FGA
Metric MSE MAE MSE MAE MSE MAE

El
ec

tr
ic

it
y 96 0.130 0.228 0.183 0.273 0.179 0.277

192 0.151 0.251 0.188 0.281 0.190 0.288
336 0.167 0.269 0.202 0.295 0.205 0.302
720 0.192 0.296 0.241 0.328 0.242 0.336

Tr
af

fic

96 0.410 0.265 0.588 0.343 0.633 0.364
192 0.433 0.277 0.585 0.339 0.629 0.366
336 0.451 0.288 0.609 0.340 0.635 0.365
720 0.502 0.306 0.636 0.357 0.676 0.377

As can be seen in Table 2, fractional-order integration can effectively enhance the
prediction performance of the model. The fractional-order description of complex sys-
tems provides more useful information for the model, and it makes the final prediction
results more accurate. In this paper, the Lipschitz weight matrix is introduced to address
the gradient issue. The performance difference between LRNN-FGA and RNN-FGA is
relatively small.

w/o frequency module and gated structure, respectively.

When the frequency module is removed, it is the FLRNN-GA model. When the
gated structure is removed, it is the FLRNN-FA model. The frequency processing can
reduce the number of parameters to improve prediction accuracy. The gated structure
can help the attention mechanism process the similarity information of the data. The
experimental results are shown in Table 3, which displays the MAE, MSE, and number of
parameters (Paras).

Fractal Fract. 2024, 8, 433 12 of 15

Table 3. Ablation study on frequency module and gated structure.

Models FLRNN-FGA
(Ours) w/o Gated Structure w/o Frequency Module

Metric MSE MAE Paras/k MSE MAE Paras/k MSE MAE Paras/k

ET
Th

2 96 0.188 0.305 355.76 0.335 0.395 381.46 0.312 0.374 752.24
192 0.236 0.340 380.52 0.434 0.457 406.23 0.406 0.432 777.01
336 0.266 0.363 417.68 0.428 0.447 443.38 0.684 0.580 814.16
720 0.337 0.421 516.75 2.019 0.976 542.46 1.225 0.751 913.23

Et
tm

2 96 0.124 0.250 355.76 0.190 0.278 381.46 0.201 0.284 752.24
192 0.154 0.271 380.52 0.256 0.332 406.23 0.260 0.328 777.01
336 0.194 0.302 417.68 0.335 0.382 443.38 0.318 0.368 814.16
720 0.236 0.344 516.75 0.443 0.441 542.46 0.489 0.471 913.23

It can be seen that the FLRNN-FGA model has a lower number of parameters and
lower MSE and MAE compared to the others. This indicates that the frequency module
and the gated attention mechanism can decrease the parameters and improve the model’s
accuracy. The FLRNN-FGA model can obtain the better results.

4.6. Visualization

To facilitate a clear comparison between the different models, we visualize the predic-
tion results on the ETTm2 dataset with a 96-step output horizon. We compared three recent
baseline models: FEDformer, Autoformer, and Informer. The visualization of the prediction
results is shown in Figure 6. In contrast, among the various models, the prediction results
of FLRNN-FGA are closer to the ground truth results and exhibit superior performance.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 13 of 15

recent baseline models: FEDformer, Autoformer, and Informer. The visualization of the
prediction results is shown in Figure 6. In contrast, among the various models, the predic-
tion results of FLRNN-FGA are closer to the ground truth results and exhibit superior
performance.

Figure 6. Visualization of 96-step results on the ETTm2 dataset.

4.7. Computational Efficiency Analysis
In this section, we perform a comparative analysis of the computational efficiency of

the models on the ETTm2 dataset. As shown in Table 4, we select models with good MSE
for the comparison analysis, including FEDformer, Informer, and Autoformer. As we can
observe, our proposed FLRNN-FGA model has the smallest number of parameters and
the lowest memory usage, which are 1.60 M and 0.49 G, respectively. Moreover, the
FLRNN-FGA model also has a shorter training time. Overall, our proposed efficiency
analysis indicates that FLRNN-FGA achieves a good balance between computational re-
sources and prediction accuracy.

Table 4. Computational efficiency analysis on the ETTm2 dataset (predict-96). The symbols “M”,
“G”, and “S” are used to denote the units for “#Para”, “Memory” and “Time”, respectively, repre-
senting million bytes, gigabytes, and seconds, respectively. Smaller values indicate better perfor-
mance.

 #Para (M) Memory (G) Time (S) MSE
Informer 62.80 1.54 52 0.365

FEDformer 83.70 2.44 174 0.203
Autoformer 59.70 1.97 38 0.255

FLRNN-FGA 1.60 0.49 45 0.124

5. Conclusions
Recurrent neural network (RNN) models establish temporal dependencies for time

series data. Many studies have demonstrated the effectiveness of RNN models on time
series data. However, gradient explosion and gradient vanishing are important issues
when applying RNNs to time series tasks. And the prediction accuracy is not high.

To overcome these problems, the FLRNN-FGA is proposed in this paper. This
method mainly involves the FLRNN, frequency module, and gated attention mechanism.
In the FLRNN module, piecewise recurrent units are introduced to accelerate the

Figure 6. Visualization of 96-step results on the ETTm2 dataset.

4.7. Computational Efficiency Analysis

In this section, we perform a comparative analysis of the computational efficiency of
the models on the ETTm2 dataset. As shown in Table 4, we select models with good MSE
for the comparison analysis, including FEDformer, Informer, and Autoformer. As we can
observe, our proposed FLRNN-FGA model has the smallest number of parameters and the
lowest memory usage, which are 1.60 M and 0.49 G, respectively. Moreover, the FLRNN-

Fractal Fract. 2024, 8, 433 13 of 15

FGA model also has a shorter training time. Overall, our proposed efficiency analysis
indicates that FLRNN-FGA achieves a good balance between computational resources and
prediction accuracy.

Table 4. Computational efficiency analysis on the ETTm2 dataset (predict-96). The symbols “M”, “G”,
and “S” are used to denote the units for “#Para”, “Memory” and “Time”, respectively, representing
million bytes, gigabytes, and seconds, respectively. Smaller values indicate better performance.

#Para (M) Memory (G) Time (S) MSE

Informer 62.80 1.54 52 0.365
FEDformer 83.70 2.44 174 0.203
Autoformer 59.70 1.97 38 0.255

FLRNN-FGA 1.60 0.49 45 0.124

5. Conclusions

Recurrent neural network (RNN) models establish temporal dependencies for time
series data. Many studies have demonstrated the effectiveness of RNN models on time
series data. However, gradient explosion and gradient vanishing are important issues
when applying RNNs to time series tasks. And the prediction accuracy is not high.

To overcome these problems, the FLRNN-FGA is proposed in this paper. This method
mainly involves the FLRNN, frequency module, and gated attention mechanism. In the
FLRNN module, piecewise recurrent units are introduced to accelerate the processing
speed of recurrent units for long sequences without compromising their performance.
Fractional-order Lipschitz recurrent units can alleviate gradient issues and accurately
capture system dynamics and dependencies, and they improve the prediction accuracy.
In the frequency module, the temporal data are transformed into the frequency domain
by the Fourier transform. Frequency domain processing can reduce the computational
complexity of the model. In addition, the gated attention mechanism combines gated
techniques with the attention mechanism. The gated structure can regulate the attention
information transmission. This method can handle inter-variable relationships and reduce
model parameter count. The extensive experimental results show the effectiveness and
excellence of our proposed method, and the ablation experiments further confirm the
rationality of the various components of the model. We hope this work can facilitate more
future research on the fractional-order method of time series modeling.

Author Contributions: Conceptualization, C.Z. and Z.Z.; methodology, C.Z. and Z.Z.; software,
C.Z., J.Y. and Z.Z.; investigation, C.Z.; resources, C.Z. and Z.Z.; data curation, C.Z. and J.Y.; writing—
original draft preparation, C.Z.; writing—review and editing, C.Z. and Y.H.; visualization, C.Z. and
Y.H.; supervision, C.Z. and Y.H.; project administration, C.Z.; funding acquisition, C.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61862062 and 61104035.

Data Availability Statement: The data presented in this study are available within the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic graph structure learning for multivariate time series forecasting. Pattern Recognit.

2023, 138, 109423. [CrossRef]
2. Klein, N.; Smith, M.S.; Nott, D.J. Deep distributional time series models and the probabilistic forecasting of intraday electricity

prices. J. Appl. Econom. 2023, 38, 493–511. [CrossRef]
3. Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl.

Soft Comput. 2011, 11, 2664–2675. [CrossRef]
4. Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2023, 37, 76–111.

[CrossRef]

https://doi.org/10.1016/j.patcog.2023.109423
https://doi.org/10.1002/jae.2959
https://doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/10.1111/joes.12429

Fractal Fract. 2024, 8, 433 14 of 15

5. Selvin, S.; Vinayakumar, R.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. Stock price prediction using LSTM, RNN and
CNN-sliding window model. In Proceedings of the 2017 International Conference on Advances in Computing, Communications
and Informatics (icacci), Udupi, India, 13–16 September 2017.

6. Vlahogianni, E.I.; Karlaftis, M.G.; Golias, J.C. Optimized and meta-optimized neural networks for short-term traffic flow
prediction: A genetic approach. Transp. Res. Part C Emerg. Technol. 2005, 13, 211–234. [CrossRef]

7. Kumar, B.; Yadav, N. A novel hybrid model combining βsarma and lstm for time series forecasting. Appl. Soft Comput. 2023,
134, 110019. [CrossRef]

8. Pedregal, D.J.; Young, P.C. Statistical approaches to modelling and forecasting time series. In Companion to Economic Forecasting;
Wiley: Hoboken, NJ, USA, 2002; pp. 69–104.

9. Li, X.; Li, N.; Ding, S.; Cao, Y.; Li, Y. A novel data-driven seasonal multivariable grey model for seasonal time series forecasting.
Inf. Sci. 2023, 642, 119165. [CrossRef]

10. Garcia, R.; Contreras, J.; Van Akkeren, M.; Garcia, J. A GARCH forecasting model to predict day-ahead electricity prices. IEEE
Trans. Power Syst. 2005, 20, 867–874. [CrossRef]

11. Yi, K.; Zhang, Q.; Fan, W.; He, H.; Hu, L.; Wang, P.; An, N.; Cao, L.; Niu, Z. FourierGNN: Rethinking multivariate time series
forecasting from a pure graph perspective. Adv. Neural Inf. Process. Syst. 2024, 36.

12. Pan, Z.; Jiang, Y.; Garg, S.; Schneider, A.; Nevmyvaka, Y.; Song, D. S2 IP-LLM: Semantic Space Informed Prompt Learning with
LLM for Time Series Forecasting. In Proceedings of the Forty-First International Conference on Machine Learning, Vienna,
Austria, 21–27 July 2024.

13. Liang, J.; Cao, J.; Fan, Y.; Zhang, K.; Ranjan, R.; Li, Y.; Timofte, R.; Van Gool, L. Conv2former: A simple transformer-style convnet
for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2024. early access.

14. Liang, J.; Cao, J.; Fan, Y.; Zhang, K.; Ranjan, R.; Li, Y.; Timofte, R.; Van Gool, L. Vrt: A video restoration transformer. IEEE Trans.
Image Process. 2024, 33, 2171–2182. [CrossRef]

15. Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17.
[CrossRef]

16. Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI
Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [CrossRef]

17. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018
17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018.

18. Hinton, G.E. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive
Science Society, Amherst, MA, USA, 1–4 August 1986.

19. Xiaotong, H.; Chen, C. Time Series Prediction Based on Multi-dimensional Cross-scale LSTM Model. Comput. Eng. Des. 2023, 44, 440–446.
20. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
21. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.
22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
23. Funahashi, K.-I.; Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw.

1993, 6, 801–806. [CrossRef]
24. Li, X.-D.; Ho, J.K.; Chow, T.W. Approximation of dynamical time-variant systems by continuous-time recurrent neural networks.

IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 656–660.
25. Trischler, A.P.; D’Eleuterio, G.M. Synthesis of recurrent neural networks for dynamical system simulation. Neural Netw. 2016, 80, 67–78.

[CrossRef]
26. Lechner, M.; Hasani, R. Learning long-term dependencies in irregularly-sampled time series. arXiv 2020, arXiv:200604418.
27. Rubanova, Y.; Chen, R.T.; Duvenaud, D.K. Latent ordinary differential equations for irregularly-sampled time series. Adv. Neural

Inf. Process. Syst. 2019, 32.
28. Ding, H.; Li, W.; Qiao, J. A self-organizing recurrent fuzzy neural network based on multivariate time series analysis. Neural

Comput. Appl. 2021, 33, 5089–5109. [CrossRef]
29. Park, H.; Lee, G.; Lee, K. Dual recurrent neural networks using partial linear dependence for multivariate time series. Expert Syst.

Appl. 2022, 208, 118205. [CrossRef]
30. Erichson, B.; Azencot, O.; Queiruga, A.; Hodgkinson, L.; Mahoney, M. Lipschitz Recurrent Neural Networks. In Proceedings of

the International Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021.
31. Zhao, C.; Dai, L.; Huang, Y. Fractional Order Sequential Minimal Optimization Classification Method. Fractal Fract. 2023, 7, 637.

[CrossRef]
32. Xia, L.; Ren, Y.; Wang, Y. Forecasting China’s total renewable energy capacity using a novel dynamic fractional order discrete grey

model. Expert Syst. Appl. 2024, 239, 122019. [CrossRef]
33. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In Proceedings

of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA,
8–12 July 2018; pp. 95–104.

34. Wen, R.; Torkkola, K.; Narayanaswamy, B.; Madeka, D. A multi-horizon quantile recurrent forecaster. arXiv 2017, arXiv:1711.11053.

https://doi.org/10.1016/j.trc.2005.04.007
https://doi.org/10.1016/j.asoc.2023.110019
https://doi.org/10.1016/j.ins.2023.119165
https://doi.org/10.1109/TPWRS.2005.846044
https://doi.org/10.1109/TIP.2024.3372454
https://doi.org/10.1016/j.trc.2017.02.024
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1109/72.279181
https://www.ncbi.nlm.nih.gov/pubmed/18267787
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/S0893-6080(05)80125-X
https://doi.org/10.1016/j.neunet.2016.04.001
https://doi.org/10.1007/s00521-020-05276-w
https://doi.org/10.1016/j.eswa.2022.118205
https://doi.org/10.3390/fractalfract7080637
https://doi.org/10.1016/j.eswa.2023.122019

Fractal Fract. 2024, 8, 433 15 of 15

35. Tan, Y.; Xie, L.; Cheng, X. Neural Differential Recurrent Neural Network with Adaptive Time Steps. arXiv 2023.
36. Bergsma, S.; Zeyl, T.; Rahimipour Anaraki, J.; Guo, L. C2FAR: Coarse-to-fine autoregressive networks for precise probabilistic

forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 21900–21915.
37. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence

time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021;
Volume 35, pp. 11106–11115.

38. Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022.

39. Sun, Y.; Dong, L.; Huang, S.; Ma, S.; Xia, Y.; Xue, J.; Wang, J.; Wei, F. Retentive Network: A Successor to Transformer for Large
Language Models. arXiv 2023, arXiv:2307.08621.

40. Gu, A.; Dao, T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv 2023, arXiv:2312.00752.
41. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30, 5998–6008.
42. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
43. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting.

Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Methods
	FLRNN
	Frequency Module
	Gated Attention Mechanism
	Gated Attention Mechanism

	Experiments
	Datasets
	Baselines and Evaluation Metrics
	Experimental Settings
	Main Results
	Ablation Study
	Visualization
	Computational Efficiency Analysis

	Conclusions
	References

