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G W N e

Abstract: This study presents the application of the $° model expansion technique to find exact solu-
tions for the (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation
under Jumarie’s modified Riemann-Liouville derivative (JMRLD). The suggested method captures
dark, periodic, traveling, and singular soliton solutions, providing deep insights into wave behav-
ior. Clear graphics demonstrate that the solutions are greatly affected by changes in the fractional
order, deepening our understanding and revealing the hidden dynamics of wave propagation. The
considered equation has several applications in fluid dynamics, plasma physics, and nonlinear optics.

Keywords: ¢° model expansion approach; solitons; fractional derivative

1. Introduction

Differential equations play important role in the modelling of physical phenom-
ena [1,2]. Besides this, fractional differential equations (FDEs) have gained important
attention in recent years due to their growing application in modeling complex nonlin-
ear phenomena across several fields of science, containing physics, biology, mathematics,
economics, engineering, and others [3,4]. These equations are used to define real-world
systems, which are then explained into mathematical models. As a result, the quest of exact
solutions for FDEs is essential in scientific research [5-7].

FDEs are an expansion of classical differential equations. Differentiation orders may be
any real number, instead of just integers as in traditional differential equations. This makes
FDEs much better at modeling complex system dynamics, especially in cases that show non-
locality or memory features [8]. Applications for FDEs are numerous and varied starting
from modelling population dynamics and chemical reactions, all the way to involving
behavioral phenomena of materials and systems in physics and engineering [9-11].

In the investigation of FDEs, new analytical and numerical methods are developed
for solving these equations, with prevailing among them the Adomian decomposition
method [12], homotopy perturbation method [13], variational iteration method [14], and
matrix approach method [15], between others. The method selected usually depends on
the specific problem at hand and the required level of accuracy.

Fractional soliton solutions, arising from FDEs, have diverse applications across
scientific and engineering fields. They model phenomena in nonlinear optical fibers,
plasma physics, and fluid dynamics, where standard solitons fall short due to non-local
effects. In quantum mechanics, they describe wave functions with unique dispersion
properties, while in biological systems, they capture wave propagation with memory
effects. Their applications extend to financial modeling, acoustics, epidemiology, control
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systems, and material science, offering insights into complex behaviors and interactions in
these areas [16-19].

Recently, nonlinear integrable systems and their soliton solutions have attracted the
attention of the researchers. Various soliton solutions of integrable systems have been
investigated in the literature. For instance, Chen-Lee-Liu equation[20], Sasa-Satsuma
equation [21], Drinfel’d-Sokolov—Wilson equation [22], pKP-BKP integrable equation [23],
complex Ginzburg-Landau equation [24], Chaffee-Infante equation [25], nonlinear Za-
kharov system [26], and many more [27,28]. The (3+1)-dimensional modified Korteweg-de
Vries-Zakharov-Kuznetsov ((3+1)-D MKDV-ZK) equation is a mathematical equation that
shows the propagation of nonlinear waves in four-dimensional space time. It's an ex-
tension of the classic KdV equation, which expresses solitary wave phenomena, and the
Zakharov-Kuznetsov equation, which explanations for wave propagation in plasmas. The
revised equation contains additional terms or modifications for a better explanation of
actual phenomena. It's commonly used to examine various physical systems such as fluid
dynamics and nonlinear optics where it gives an understanding of complex wave behav-
iors [29,30]. The following expression has been proposed to offer a generalized version
of the classical KdV equation to have fractional derivatives taken as per the modified
Riemann-Liouville derivative.

(3+1)-D MKDV-ZK.

DIV + 02D+ DU+ DIDPu+ DIDIPU=0, 0<g<1. 1)

Here v is an arbitrary constant.

Various techniques have been developed to solve the (3+1)-D MKDV-ZK equation,
containing the method of undetermined coefficients [31], the ansatz method [32], the
functional variable method [33], and the exp-function method [34]. These methods were
applied for getting different types of solutions like solitons, dark solitons etc. In addition to
this, they have also been working on studying a number of different cases including (3+1)-
D MKDV-ZK equation in different fields of physics related to other aspects of nonlinear
waves, solitons, etc. The equation is also related to fractional calculus and its applications
in modeling complex systems.

The method that we have suggested provides exact solutions to complicated equations
such as the (3+1)-D MKDV-ZK equation. Taking into account JMRLD and ¢°® model
expansion method of Jumarie makes it a fairly extensive observation of wide soliton
behaviors. The power of the proposed approach lies in its ability to solve fractional
derivative nonlinear wave equations properly and effectively in order to capture different
wave phenomena. This method has wide applications such as in fluid dynamics and
nonlinear optics where exact control of nonlinear wave dynamics is useful in forecasting
actual systems.

The unique thing about this research is how it addresses the research gap by mod-
eling complex wave dynamics exactly. Previous attempts often needed accuracy and
completeness to achieve broad soliton behaviors depending on numerical approximations
or simplification techniques. This study contributes by providing exact solutions to the
(3+1)-D MKDV-ZK equations, thereby filling the research gap. Thus, this investigation
significantly improves our capability for modeling and understanding nonlinear wave
phenomena through a new approach for obtaining exact solutions which are different from
those used before.

This paper proposes employing JMRLD [35] in combination with ¢® model expansion
method to obtain exact solutions for nonlinear FPDEs. The primary objective of this study
is to demonstrate the efficiency of this approach by utilizing it to derive exact solutions for
FPDEs in both spatial and temporal domains related to JMRLD. The study will propose
future possibilities, like extending the method to new equations, refining techniques for
complexity, and exploring practical applications. It will highlight how these efforts can
advance scientific understanding and solve real-world problems effectively.
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The JMRLD of order ¢ is defined by the following expression [36]:

DYF(x) = g e Jo (¥ =) 0(F(e) — F(0)de 0 < g <1, )
X (FM) (x)) (@) n < p<n+ln<l

Here F : R — R, x — F(x) describes a function that is continuous.

Property 1. Suppose that F(x) describes a function that is continuous from R — R. We will use
the considered equality for the integral via (dx)?:

DIF() = o7 fi (=0 (e = g [ fE@T0 <9 <1 @)
Property 2.
DI = mx’fﬁ. 4)
Property 3.
DY (cF(x)) = cDY F(x), where cis a constant. (5)
Property 4.
DYaF(x)+bg(x) = aD{F(x)+bDig(x), 6)
here a and b are constants.
Property 5.

Dfc = 0, )
where ¢ is constant.

2. Methodology

Here in the section, we provide briefly discuss the ¢° model expansion technique. Let
us take a nonlinear partial differential equation(PDE).

U(f/ fXIft/ fxx/ ftt/- . ) = 0/ (8)

where, U is a polynomial with £(x, t) is a unknown partial derivatives.
The scheme contains following steps:
Step 1: Taking the traveling wave transformation defined as:

ax? by? cz? st?

ExD) =0E) = T Y T D) T Tor 1) Tt 1) ©)

The transformation given above will turn Equation (8) into ordinary differential
equation (ODE). where a, b, ¢ and s are arbitrary constants.

N, U, v, U, ), (10)
2
where N is a polynomial of transformed ordinary derivatives U = U(¢), U = 2, v" = ‘;TIZJ,

/Nid3U
U —@,



Fractal Fract. 2024, 8, 498 4 0f 21
Step 2: Let the formal solution of Equation (10) is:
25
Ule) = ) a0 (). (11)
v=0

ay are constants for (v = 0,1,2,...,2k) and 6(¢) follows the below auxiliary non-
linear ODE.

0'(e)? = 300 + 20(e)? + 240(e)* + 30(¢)°,
0" () = s00(e) + 2540(e)> + 3560 (¢)°, (12)
here, sz, is a real constant forv =0, 2,4, 6.

Step 3: By Balancing Equation (10) to obtain the value of s in Equation (11).
Step 4: Obtaining solution for Equation (8):

A
be) = 2 13)
VmA(e)2+n
here A(e) and mA(e)? + n > 0 satisfy the Jacobian Elliptic equation (JEE):
A7 =ty + A% (e) + tyA%(e), (14)
where t; are constants forj=0,2,4.
The values of m and n are defined as:
24 (ty — 32)
_ i 15
m (tz — %2)2 — th(tz - %2) + 3toty (15)
34tg
_ i 16
"7 (o= )% —2t(ts — 22) + Btota 16)
under the constraint condition:
) 2
33 (ty — 209) [9toty — (t2 — 502) (322 + 2t2)] + 336 [3t0t4 - (t2 - %%)] =0. (17)

Step 5: The JEE for Equation (14), are given in the table below.

Sr. No. to tp ty U(e)
1 1 —(14p?) 2 sn(e) or cd(e)
2 1—p? 2u% —1 —u? cn(e)
3 w—1 2—u? -1 dn(e)
4 2 —(1+4?) 1 ns(e) or dc(e)
5 —u? 2% —1 1—p? ne(e)
6 -1 2—ud —(1-a?) nd(e)
7 1 2—u? 1—pu? sc(e)
8 1 2u? —1 —12(1—p?) sd(e)
9 1—p? 2—u? 1 cs(e)
10 —12(1—u?) 2u? —1 1 ds(e)
11 1*4"2 12 1*41‘2 ne(e) & sc(e) or 11’;515()5)
12 7(11;!2)2 # 2 nen(e)= dn(e)
13 % % e
1 i e o QG0
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To obtain analytic solutions to the equation, jacobian elliptic functions (JEF) limitations
are given in the table.

function u—1 u—0 function u—1 u—0

sn(e, u) tanh(e) sin(e) ns(e, u) coth(e) csc(e)
cd(e) 1 cos(¢) de(e) 1 sec(e)
cn(e) sech(e) cos(e) ne(e) cosh(e) sec(e)
dn(e) sech(e) 1 nd(e) cosh(e) 1
sc(e) sinh(e) tan(e) cs(e) csch(e) cot(e)
sd(e) sinh(e) sin(e) ds(e) csch(e) csc(e)

Step 6: By substituting Equations (12) and (13) into Equation (11) one will achieve the JEF
solutions of Equation (8).

3. Implementation of the Expansion Method
Through balancing the term [v",u8], we gets = 2. After substituting the value obtained
for s, we get formal solution expansion as:

U(e) = ap + a10(e) + az0%(e), (18)

where ag, a1, and a; are constants, and a, # 0. For getting algebraic equations we make
use of Equation (18), Equation (13), and Equation (10), by setting them equal to zero,
we obtain.

1
60 : gtxg(SK + 209 A %K) + A + 2007 K31y 4+ 200K 329 — g = 0,

ol : oc%uq&x + a1 %Koy + vclfyzm{z + 63300 — 90 = 0,
0% : woatdK + adandk + dancKoey + Aoy Ky + bk — apo = 0,

1
03 : gzx?&c + 20aq 0K + 200 Py + Zalfyzxm + 2013344 = 0,
% Déoﬂé%(SK + oc%ucz&c + 600K 324 + 60y Koty + 602K = 0,

0° : ocluc%zSK + 301 P + Sle'yz;c%é +3a1x35¢5 = 0. (19)

We use Mathematica 13.0 for computing these constants from the above-mentioned
algebraic equations.

Ny =g, M =0 a1 =0 = 7 — o %—_%
0t e L 2_4K(C2—|—r)/2_._1(2)’ 4= 6(C2+’)/2+K2)’
2
a50 1 3 ) ) ;
T T4 2 A2 12’ AZ*(_ ok — 6 —6 —6 3 > 20
g 24(C2—|—’)/2+K2) 3 xpoK Ko C K I oY K2 Kok 329 + 30 ( )

The obtained analytic answers of Equation (1) are:
Case1: If tg = 1;tp = — (1 + p2); ty = p?; then A(e) = sn(e) or cd(e), 0 < pu < 1 we obtain
the JEF solutions as:

DQA(&)Z

mA(e)2+n’ @D

U1=DCO+

where m and n are given below as
a(—p? — 0 — 1)
(== DE = 22— 1) (1 = s = 1) + 39
3%4
(—u> == 1)2 =2(=p2 = 1)(—p* — 30 — 1) +3p*’

m =

n=
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subject to condition obtained as:

(=2 = =1) (92 = (=12 =2 -1) (2(=12 1) +2)) +3%6(3y2 - (- 1)2+%§)2 =0,

when u — 1
As A(e) = sn(e) = tanh(e) then we obtained:

(22)

3tanh?(e) (—16K2 (242 + K2)2 + 0% + adox (adox — 20)) )

Ujp=ag+az| — 5
Zucoocz(SK(lZK(cz + 92 +x2) — tanh”(e) (a3 (—6) K + 8k (c? + 72 + k2) + 0’))

or A(e) = cd(e) = 1 then we get:

(23)

3(—161(2 (2+7+ K2)2 + 02 + aox (adox — 2(7))
20026k (adbx + 4 (2 + 72 +x2)—)

Upp = ag + a2 (—

Subject to condition computed as:
(=30 =2) (9 (=3 —2) (32— 4)) + 35 (55 1) = 0.

When u — 0
As A(e) = sn(e) = sin(e) then we obtain:

3sin(e) (—161{2 (2+7*+ K2)2 + 02 + adox (adox — 20))
200020k (121 (2 + 2 + x2) — sin?(e) (aZ(—6)x + 8x(c2 + 92 + k2) + 7))

. (24)

U3 =g+ ap

or A(e) = cd(e) = cos(e) then we get:

(25)

3 cos?(e) (—167(2 (P+7*+ K2)2 + 0% + aon (aox — 20)) )

U4 =ap+« —
14 02 ( 20020k (12K (2 + 72 + «2) — cos?(e) (ad(—0)k + 8k (2 + 72 +x2) + 7))

Under the condition interpreted as:
(s = 1)(~(=22 = 1) (0~ 2)) +35 (55— 1) = 0.

Case2: Iftg =1 — p%ty = 2u> — 1;t4 = —p%,0 < u < 1 then A(e) = cn(e) the JEF solution
is as:

woA(e)?

U, = it ot A
2=#0+ mA(e)2+n

(26)

where m and n are of the form:

2y (2;{2 - —1)
(2u2 —p2 —1)? =2(2u% = 1)(2u? — 50 — 1) = 3(1 — p2)p?’
3(1—p?) s
(2u2 =2 —1)2 = 2(2u2 = 1) (24> — 5o — 1) = 3(1 — )2’

n=

Under the condition which interpret as:
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o) () a1 )
~9(1—12)1?) + 35 (—3(1 — )= (2 - 1)2 + %§>2 —0.

When y — 1
As A(e) = sn(e) = sech(e) then we obtained

3(ad(—0)k +4x(c> + 9> +x2) +0
U2,1—1X0+0<2< (0( : szf)zxzé;c ) ) ! 27)

subject to condition which computes as:
(1= 50)(—(1 = 56) (2 +2)) +336 (55 — 1) = 0.

Now when p — 0
As A(e) = sn(e) = cos(e) then we obtained:

3(a3(—0)k +4x(c> + 9> +x2) +0
U2,2=1Xo+0<2< (e5(=2) 20&(()0625;( ) ) ’ (28)

subject to condition which is interpreted as:
(=2 = 1)~ (=5~ 1) (50— 2)] + 35 (:4 —1)2 =0.

Case3: Iftg = p> —1,tp =2 — 4%, t4 = —1,0 < u < 1 then A(e) = dn(e) we obtain the JEF
solution as:

2
Us = ag + m'sz(s) (29)

A(e)?2+n’
where m and n are as:
%4(—y2 — 0 +2)
(i = + 27 =202~ (42— 72 +2) ~ 32— 1)’

3(]42 — 1)%4
(—u2 =0 +2)2 =22 —p2)(—p? — 02 +2) = 3(u> — 1)

m =

n=

Under condition:

(=12 = +2) (~(—12 =2 +2) (2(2- 1) +32) —9(42 -1)) +3%6<—(2—;42)2—3(u2 1) +%§)2 =0.

Ifu—1
As A(e) = dn(e) = sech(e) then we get:

3(a3(=0)x +4x(c*+9*+x2) +0
U3,1:oco+¢x2< (#5(=9) ZaE]azéK ) ), (30)

subject to interpreted constraint:
(1= 30)(~(1 = 20) (3 +2)) + 3% (54— 1)2 = 0.

Now when y — 0
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As A(e) = sn(e) = 1 then we obtained:

20_ A (2 4 o2 4 2
U3,2=txo+ocz<3(%( O+ dr(c £y +K)+U)>,

1
200x0K 1)

subject to a condition which is interpreted as:
42— )9 - (2= ) (a +4) +3x (4 - 1) = 0.

Case4: Iftg = p?, t = —(p? +1),t4 = 1,0 < u < 1 then A(e) = ns(e) or dc(e) the JEF
solution can given as:

_ oA (e)?
U4—1X0+mA(€)2+n, (32)
here m and n are as:
m— %4(—]42—%2—1)
(—p2 =50 —1)2 =2(—p2 = 1)(—p* — 30 — 1) +3p*’
n— 3]/12%4
(2= =12 = 2(—p2 = 1) (<2 = — 1) + 32
Subject to interpreted condition:
2
%f(—‘uz — 1 — 1) (9;,12 - (_#2 — ) — 1) (2(—;42 — 1) + %2)) + 354 (3‘142 - (—yz - 1) + %%)2 =0.
ify—1
As A(e) = ns(e) = coth(e) then we get:
3 coth?(e) (161(2 (2+7*+ K2)2 — 02 + a3dK (20 — a%&x))
Uy =g +ap . (33)
200000% (121((62 + 92 4+ x2) — coth®(e) (a3 (—0)x + 8K (c2 + 42 + k2) + 0))
Or A(e) = dc(e) = 1s0 we get:
3(161{2 (2 + 92 +x2)% — 02 + a2k (20 — zx%d;c))
Ugr = ap + , 34
=T e 2a0020k (36K + 4x (2 + 7% +x2) — 0) (34)
subject to a condition which is interpreted as:
(=22 =2)(9— (=30~ 2) (32— 4)) + 33 (4 — 1)2 =0,
Now when y — 0
As A(e) = ns(e) = csc(e) so we obtain:
3 (161<2 (2 + 72 +12)% — 0% + a2k (20 — aé&x))
Ugz = — , 35
43 = Mo 200k (a3 (—0) K + 4xc (2 + 2 + k2) + 0) (35)
Or A(e) = dc(e) = sec(e) so
3 (167(2 (2 + 72 +12)% — 0% + a26x (20 — oc%&x))
Ugga =g+ a| — 5 (36)
’ 2a000% (a3 (—0)k + 4K (2 + 7% + k2) + 0)



Fractal Fract. 2024, 8, 498 9 of 21

under constraint condition:
(=50 =1)(~ (=22 = 1) (2 —2)) + 3 (4 —1)2 = 0.

Case 5: Iftg = —pu?, tp = 24> —1,t4 = 1 — 42,0 < u < 1 then A(e) = nc(¢) obtained the
JEF solutions as:

_ oA (e)?
U5 —’XO"' mA(S)Z‘f—n, (37)
here m and n are:
m— %4(2‘142—%2—1)
(2 = 12 2027 1) (247 = — 1) = 3(1 - )’
n— — 3]12%4
(@ e 1) 220 - (22 - — 1) = 31— )
Subject to interpreted condition:
g (22 =0 -1) (= (22 =22 - 1) (2(22 1) +2),
2
—9(1— 1)) + 35 (—3(1 i) (22 -1) %§>2 —0.
ifu—1
As A(e) = nc(e) = cosh(e) we get:
3 cosh?(e) (16;(2 (P+7+ K2)2 — 02 + a3oK (20 — a%é;c))
U5,1 = Ky + 1% . (38)
2000p0% (cosh2(£) (030K + 4K (c? + 92 4+ k2) — o) — 12k (c? + 92 + K2)>
With the following constraint:
(1= 50)(—(1 = 56) (2 +2)) +336 (55 — 1) = 0.
When p — 0
As A(e) = nc(e) = sec(e) then we get:
3(16K2 (2+7*+ K2)2 — 0% + a3dK (20 — a%éx))
Usp = ap + ap 5 5 > > , (39)
20026k (030K — 4K (2 + 2 +xk2) — 0)

under computed constraint condition:
(=50 —1)(~ (=22 = 1) (0 —2)) + 3 (4 —1)2 = 0.

Case 6: If tg = —1,tp =2 —p% t4 = —(1—p2),0 < pu < 1 then A(e) = nc(e) the JEF
solution is as:

Ale)?
Uo = o+ — (&) (40)

A(e)?2+n’

where m and n are:
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sy (—u? — 50+ 2)
(—p2 =0 +2)2 =22 p2)(—p> — 2 +2) = 3(u> - 1)’
3%4
(—p2 —50+2)2 =22 —p2)(—p? — 2 +2) = 3(u> — 1)

m =

n—=—

Under condition:
%ﬁ(—yz — 0 +2) (—(—yz — 0 —I—Z) (2(2 — yz) + %2) —9(;12 — l)) +3%6<—<2 — ;42)2 — 3(;42 — 1) + %%)2 =0,

when y — 1
As A(e) = nc(e) = cosh(e) then we obtained:

3 cosh?(e) (—16;(2 (2+7*+ Kz)z + 0% + ao (aox — 2(7))
U6,1 = K + Ky | — (41)
20000 (coshz(s) (030K + 4x (2 + 2 +x2) — o) — 12(c2 + y2 + Kz))
Under condition interpreted as:
(1= 0)(—(1 = 56) (2 +2)) +33 (54 1) = 0.
Ifu—0
As A(e) = nc(e) = 1 then we get:
3(—161{2 (2+72+ K2)2 + 02 + aox (aox — 20))
Usp = — , 42
62 = o2 20006k (adox — 4 (2 4+ 72 +x2) — 0) 42)

under interpret constraint:
74 (2= 50)(9 = (2= ) (52 +4)) +3%6(%§ - 1>2 =0.
Case7:Iftg =1,tp =2 — %, t4, = 1 — 42,0 < u < 1 then A(e) = sc(e) JEF solution as:

arA(g)?
Uy = ag + 2 ()
m

Ae)2+n’ 43

here m and n are:

sy (—p? — 50+ 2)
(=u2=p2+2)?2 =22 p?)(—p? = +2) +3(1 — p2)’
3%4
(—u> = +2)> =22 —p2)(—p> — 2 +2) +3(1 — )

m =

n=

Under the interpreted condition:

(s o) - (8 2) (o) o)) - () 31 2]

when y — 1
As A(e) = sc(e) = sinh(e) then we get:

3sinh?(e) (—161{2 (2 + 92 +2)% + 02 + a2dx (addx — 2“)) ) (44)

U1 =wap+ax| — 5
2x0026K (121((02 + 72 + «2) + sinh® (¢) (aZ6x + 4k (c? + y2 + «2) — a))
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subject to computed constraint:
41— 50)(—(1 = 56) (2 +2)) +33 (55 1) = 0.
Now if y — 0

As A(e) = sc(e) = tan(e) then,

(45)

3tan?(e) (7161<2(c2 + 72 +12) + 02 + a26x (ad5K — 20))
20026k (12 (2 + 92 + x2) + tan? () (a30x + 8k (c2 + 12+ k2) — o)) |’

U7p = o+ a2 (—

under condition:
(1= 30)(~(1 = 22) (3 +2)) + 3% (54— 1)2 = 0.

Case8:Iftg = 1,t, =2p> — 1, t4 = —p?*(1 — ), 0 < p < 1 then A(e) = sd(e) obtained
JEF solution is as:

arA(g)?

mA(e)2+n’ (46)

Ug = &g +

where m and n are:

sy (22 — 5 — 1)
(22 =30 —1)2 = 2(2u% = 1) (22 — 500 — 1) = 3(1 — p2)p?
_ 3y
" @ 12 22— ) (2 — e — 1) — 3(1— )2

m =

under condition interpreted as:
(22 =50 —1) (= (22 =22 = 1) (2(202 = 1) +0) =9(1 - #2) ) + 354
(3(1 — i)t - (202 - 1)2 + %§>2 ~0.

now if y — 1
As A(e) = sd(e) = sinh(e) then:

3sinh?(e) (7161(2 (492 +x2)% + 02 + a26x (35K — 20))
Ug1 =ao+a | — , (47)
200K (121c(c2 + 92 + «2) + sinh?(e) (aZox + 4xc(c2 + 92 + k2) — (7))
subject to the computed condition:
(1= ) (—(1= 50) (2 +2)) +33 (54 1) = 0.
Ifu—0
As A(e) = sd(e) = sin(e) then
3sin(e) (—16K2 (2492 + K2)2 + 02 + adox (adox — 20))
Ugr =ap+an| — , 48
sz R0TE 200000k (125 (2 + 42 + «2) + sin? () (addx — 4x(c2 + 92 +x2) — 7)) (48)

under interpreted constraint condition:

(=50 =1)(~ (=22~ 1) (0 —2)) + 3 (>4 —1)2 = 0.
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Case 9: Ift =1—p%,tp =2 —p%,ty = 1,0 < u < 1 then A(e) = cs(e) the JEF solution is as:

A 2
Ug = ap + m“z (¢) (49)

A(e)2+n’
here m and n are as:
sy (—p? — 5+ 2)
(=2 —50+2)2 =22 — p2)(—p? — s +2) +3(1 — p2)’

3(1- Vz)%4
(=2 =0 +2)> =22 = p?)(=p> =2+ 2) +3(1 — )

m =

n—

Subject to the condition:

A=) o1-1) - (e 2) (=) ) 9~ 02(1-1) <) -

Now Ify — 1
As A(e) = cs(e) = csch(e) then we get:

3(16K%(c? + 9% + «2 2—(72+1x2(51< 20 — addK
(1663 ) 3o (20 — adox) ) | 50

Ug1 =ap+«a
oL R ( 2000k (036 + 4K (c? +y2 +x2) — 0)

under the constraint condition:
(1= 30)(~(1 = 22) (32 +2)) + 3% (4 —1)2 = 0.

Ifu—0
As A(e) = cs(e) = cot(e) then we got:

(51)

3cot?(e) (161{2 (2 + 7% + %) — 0% + a2k (20 — a%&x))
20026k (12x (2 + 72 + x2) + cot?(e) (adox + 8x(2 + y2 +x2) —0)) |’

Ugp = g + a2 (

subject to interpreted condition:
52— 0)(9— (2—50) (0 +4) + 3%6(%3 - 1)2 =0.

Case10: Iftg = —p? (1 — p?),t, =2p? —1,t4 = 1,0 < u < 1 then A(e) = ds(e) we obtained
the JEF solution as:

woA(g)?

Upg =g+ — 22—,
1o = &0+ mA(e)2+n

(52)

where m and n are,
sy (2u% — 5 — 1)
(22 =30 —1)? = 2(2u% = 1) (22 — 50 — 1) = 3(1 — p2)p?’
32 (1— 1) 4
(2p2 =50 —1)? = 2(2p2 = 1) (242 — 30 — 1) = 3(1 — p?)u?’

m =

n=—
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Under condition:
G (22 = s = 1) (— (2 =32 = 1) (2(202 = 1) +32) = 9(1— #2) ) + 3546

(<50~ (1) ) -

Ifu—1
ds(e) = csch(e) then we get:

As Q(e) =
— 0% + a3dK (20 — oc%é;c))
—5) , (53)

3(16K2 (C+7+ K2)2
U101 = ap +«
101 =R e 2026k (adox + 4x (2 + 92 +x2)

under the interpreted constraint condition
(1= 30) (—(1 = 5) (2 +2)) + 35 (2 — 1) = 0.

Now if 4 — 0
As A(e) = ds(e) = csc(e) we get:

3(16K2 (2 + 92 +x2)% — 0% + aZox (20 — ao(s;c))
200020% (30K — 4xc(c2 + 92 + k2) — o) / (54)

Ujpp2 = g + a2 (

under computed constraint condition
(s = 1)(~(=2 = 1) (6 —2) +3% (4 — 1) = 0.
T2 +1),ta = $(1—42),0 < u < 1 then A(e)

Case 11: If tg = (1 —p2), tp =
nc(e) + sc(e)ory is( 8  then JEF solution obtained as:
_ 2 A(e)
Ull = & + mA(S)Z 4 n/ (55)

here m and n are as:
%4(%(}12 + 1) — %2>

(12 +1) (302 +1) = 50) + F(1 - w2)?

3(1—p2) sy
(12 + D) (302 +1) =50 ) + (1 - 12)%)

o (302 +1) =)~

n =
4((%@‘2 +1) - %2>2 -
Subject to interpreted condition:

”‘%(i(ﬂzﬂ) ”2) (16

(0= =601 w)

1
(2 ]/l +1 %2>(ﬂ2+%2+1))+3%6

Nowifp — 1
As A(e) = nc(e) £sc(e) = cosh(e) & sinh(e) then we get
— 0% + a3dK (20 — adox)
jox(20 —afor) )\ 56

)

3(1612(c 477 + 1)
U1 = o+«
=R 2000k (a3 6k + 4x(c? + 2 + x2)
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also,

3(16x2(c* + 9% + k%) — 0% + a26x (20 — 36K
(1612 )? 3o (20 — aor) ) | -

U =apta
H2 =R e ( 20026k (a3dx + 4x (2 + 72 +x2) — 0)

condition which computes as:
(1= 50)(~(1= 5) (2 +2)) +336 (54 —1)? =

Nowif 4 — 0
As A(e) = nc(e) £ sc(e) = sec(e) £ tan(e) then we get:

3(sec(e) + tan(e))2 (12(c2 + 2 +12)” = 02 + ador (20 — adox) ) ) (58)

U3 = ag +
113 = %0 7T %2 <2a0¢x2(51<(31<(c2 + 72 +x2) + (sec(e) + tan(e) )2 (addx + 2k (2 + 72 + x2) — 7))

orA(e) = 1;25:3()) = 11(;5151()) then we get:

3cos?(e) (K2 (2 + 72 +x2)% — 02 + a2k (20 — a%éx))

cos?(e) (ador-+2x(c2+92+x2)—0) ) !

U4 = &0 + a2 (59)

2006k (1 + sin(e))? <3K(C2 + 2+ x2) + i@

under condition which interpreted as:

() (- (1 m)omen) el

Case12:iftg = —§ (1 — yz)z, trp = 34> +1),ts = —1,0 <y < L then Q(e) = pen(e) £ dn(e)
then JEF solution is as:

, (60)

here m and n are,
%4(%(V2+1) *%2)
(20241 —20) = (2 + D (302 +1) =) + 1 —2)"
3(1—12)%s
4((202+ D) —2)2 - 2+ ) (J02 + 1) —m) + 0 2))

m =

n— —

Under condition:
%( G +1)—%2>(196 (1-n (; (w2 +1 —%2)(}42+P2+1)>+3%6
(30 =30 w)

now if y — 1
As A(e) = pen(e) £ dn(e) = psech(e) £ sech(e) then we get:

(61)

3(16K2 (E+7*+ Kz) — 0% + a3dK (20 — ocO(SK))
2000 0K (Dé%(SK +4x(c2 4+ 2 +x2) —0) ¢

Uip,1 = ap + a2 (
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subject to interpreted condition:
(1= ) (—(1 = 30) (2 +2)) +33 (4 —1)2 =0,
nowif y =0
As A(e) = pen(e) £ dn(e) = pcos(e) £ 1 then:
3(0+1)? (K2 (2 + 72 +x2)% — 02 + a2k (20 — 06%51())
Uppo = , 62
122 = 0+ 42 20000k ((0 £ 1)2 (addx + 2ic(c? 4+ y2 + «k2) — ) — 3x(c2 + 72 + «2)) (62)

under computed condition:

R R R

16

Case 13: Iftg = §,t = 1(1—2¢%),ts = 1,0 < < 1 then A(e) = £

= TZan(®) then JEF solution
is as:
B a2A (e)?
Uiz = a9 + mA (e 1’ (63)
here m and n are,
7y (% (1 — 2]42) — %2)
m = 7
(30 -212) = 300)2 = (1= 22) (31— 22) — 0 +
n— 3%4

4((%(1 —2p%) — %2)2 -1 —2u2)(%(1 —2u?) — %2) + %)

Under interpreted condition:

(3(1-20) ) (3~ (30-2) ) (2 ) (-2 )
now if y — 1

n(e tanh(e
As A(£> = lzstcg()e) = l:l:sec%l()s) then

3tanh?(e) (agézxz — k2 (> + 92+ K2)2 + 02 — sz%&m])
U1 = ao+az | — > ;o (64)
20pa0% (31{(02 + 7% + «2)(1 £ sech(¢))? — tanh”(¢) (a3 (—6)x + 2k (c? + 2 + x2) + v))

under interpreted constraint condition:

Ao (- Yonn) oaa- o

Now if y — 0

As A(S) = 1:5;5:’()8) = 1112)(5()5) then

3sin?(e) (—K2 (2492 +12)% + 02 + ad6r (35K — 20))
Uiz =aptaz| —

, (65)
ia2 2 2 2142\
20026k (1 + cos(e))? (3K(C2 +924+x2)+ 2 (&) (agor - 26(c2 72 U))

(1=cos(e))?
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subject to interpreted condition:

3 n) (e om)imen) onl

Case14: Tftg = 1, tp = 1 (32 +1),ty = 1(1— 4>, 0 < 4 < 1 then
mathbbA () = ﬁ then JEF solution is as:

ao A (g)?

Uy = dp+ —2—2
14 =0t mA(e)2 +n

(66)

here m and n are as:

(302 +1) — ) |
(202 4+ = )2 = 2+ 1) (302 +1) =) + 0 - 2)?
3y

4((302+1) =)= (2 + D (302 + D) —22) + H(1-2)°)

Subject to an interpreted condition:

4074 =) (- <; 1) ) (1)) o
(G50 50 ) w)

Nowif y — 1

sn tanh
As A(e) = cn(s):éf:l)n(e) = sech(s):l:gi)ch(s) then:

m =

n=

3tanh?(e) (*161(2 (2472 +12)? + 02 + a2ox (ad6x — 20))
Ung1 = ao +az | — (67)

2 2 2402442V ’
2ngnads(sech(e) i sech(e))?(3e(c2 + 72 +x2) + WL AC )

under condition:
(1= 50)(~(1 = 5) (2 +2)) + 336 (54 —1)? =

Ifu—0

As A(e) = cn(es)rifi)n(s) = cossl?s()sil then

3sin?(e) (—K2 (P+7*+ K2)2 + 0% + a2k (a0x — 20'))
Uap = o+ a2 | — > , (68)

12 2 2 2 2)
200008x(cos(e) +1)2 (3K(C2 +24+x2) 4+ 2 (S)(Noii:j(ig;f)z )=o)

under defined constraint condition:

) (o) onl- o

4. Graphical Illustration and Discussion

Here, we show a graphical illustration of some of the obtained new analytical soliton
solutions for the (3+1)-dimensional fractional (mKDV-ZK) equation, including periodic
soliton, bright soliton dark soliton, and singular periodic soliton. They are visualized in
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Figures 1-8 via 3D and 2D for different values of t. We also show the effect of fractional
parameters on the obtained solutions through 2D for different fractional order shown in
each legend of the graph. In Figure 1, we plot the solution represented by U; ;, which shows
the dark soliton behaviour. Moreover, we show periodic solitons through Figures 2-7
representing by Uy 3, Uy 4, Uy1,3, and Uyz, respectively. Additionally, we also plot singular
solitons through Figures 4 and 6 representing by Uy >, Uy3 1. Lastly, we show Bright Soliton
solution represented by Uy4; through Figure 8. The innovation of these solutions can
be observed as that they provide new analytical expressions for soliton solutions of the
fractional mKdV-ZK equation, which has not been widely studied in the literature. These
solutions will be more helpful in the understanding of nonlinear wave dynamics narrated
by the considered equation, which is applicable in many physical systems such as fluid
dynamics, plasma physics, and nonlinear optics. The gained soliton solutions can be
applied to model and examine the propagation of periodic wave patterns, localized wave
packets, and singular wave profiles in systems reign over by the fractional mKdV-ZK
equation, together with applications in plasma turbulence, shallow water waves, and
optical communications.

40
30
=)
20
—_t=1
10 —_—t=
t=3
—_—t=4
0
-10 5 x 0 5 10

(b) (0)

Figure 1. (a—c) Visualization of Uy ; forc =15, 6 =21,k =17,a0=1,a, =3, y=21,c=1,p =1,
a=11,b=15,s=17y=1z=2.

—_—t=1—t=5 t=10
20

15
5
\
5 25 X0 25

(b) (c)

Uy 3

Figure 2. (a—c) Visualization of Uy 3 forc =15, 6 =21,k =17,a0=1,a, =3, y=21,c=1,p =1,
a=11,b=15s=17y=1,z=21.
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Figure 3. (a—c) Visualization of Uy 4 forc =15, 6 =21,k =17,a0=1,a, =3, y =21, c=1,p =1,
a=11,b=15s=17y=1z=21

400 100

-400 -100
-10 -5 X0 5 10 -10 0 x 10 20

@) (b) (©)

Figure 4. (a—c) Visualization of Uy, forc =15, 6 =21,k =17,a0=1,a, =3, y =21, c=1,p =1,
a=11,b=15s=17y=1z=21

2.9
[—t=1—t=15—t=2—t=25
25 25
= =
15 P
1.5
4
4
-5 25 X 0 25 5
(@ (b) (c)

Figure 5. (a—c) Visualization of Ujy 3 forc =15, 0 =21,k =17,a0 =1, a0 =3, vy =21, c =1,
p=1,a=11,b=15s=17y=1z=21

150
100
=
e
0 e
! —t=1.0 \
—t=1.5
-100 et = 2.0
—t =235
-150
-5 25 X 0 25 5 -4 -2 0 2X 4 6 8
(a) (b) ()

Figure 6. (a—c) Visualization of Uj3; forc =15, 6 =21,k =17,a0 =1, a0 =3, vy =21, c =1,
p=1a=11,b=15s=17y=1,z=21.
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Figure 7. (a—c) Visualization of U3y forc =15, 6 =21,k =17,a0 =1, a0 =3, vy =21, c =1,
p=1a=11,b=15s5s=17y=1z=21
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t=20
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Figure 8. (a—c) Visualization of Uy forc =15, 6 =21,k =17,a0 =1, ap =3, vy =21, c =1,
p=1a=11,b=155s5=17y=1,z=21

5. Conclusions

This study has well focused on the challenge of solving the (3+1)-dimensional space-
time fractional modified KdV-ZK equation by using the ¢® model expansion method with
Jumarie’s modified RL derivative. The method has been confirmed effective in arising exact
solutions that widely capture some soliton behaviors, containing dark, periodic, traveling,
and singular solitons. The effect of the fractional order on the propagation of waves has
been clearly presented via graphs. The dynamics of the soliton solutions were different
when we varied the fractional order. These results significantly contribute to proceeding
with our understanding of nonlinear wave dynamics and have wide implications across
scientific disciplines, including fluid dynamics, plasma physics, and nonlinear optics. The
exact solutions obtained surpass previous efforts and present a strong framework for exactly
modeling complex wave phenomena. Moving forward, further research could explore
extending the method to other equations, refining techniques for handling complexity, and
exploring practical applications in specific fields.
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