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Abstract: In this manuscript, we survey a numerical algorithm based on the combination of the
homotopy perturbation method and the Sadik transform for solving the time-fractional nonlinear
modified shallow water waves (called Kawahara equation) within the frame of the Caputo–Prabhakar
(CP) operator. The nonlinear terms are handled with the assistance of the homotopy polynomials. The
stability analysis of the implemented method is studied by using S-stable mapping and the Banach
contraction principle. Also, we use the fixed-point method to determine the existence and uniqueness
of solutions in the given suggested model. Finally, some numerical simulations are illustrated to
display the accuracy and efficiency of the present numerical method. Moreover, numerical behaviors
are captured to validate the reliability and efficiency of the scheme.

Keywords: homotopy perturbation transform method; modified Kawahara equation; Sadik transform
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1. Introduction

The integral and derivatives of fractional order play a vital role and are basic in
many branches of engineering and physical sciences [1–5]. The differential equations
containing fractional operators have substantial applications in different scopes of applied
sciences [6,7], engineering [8,9], and physics [10–15]. The Kawahara differential models
of fractional order are important nonlinear models that play a vital role in mathematical
and engineering sciences. These partial differential models describe physical phenomena
such as water transfer and shallow water waves. Due to the important applications of these
types of nonlinear equations in physical sciences [16], these equations are considered in
this work. This paper studies the fractional expansion of the modified Kawahara model by
applying the Caputo–Prabhakar fractional derivative in the sense of the three-parameter
Mittag–Leffler function. The Kawahara model is one of the several influential models and
is important in ocean engineering and physics. To study the water wave equations in the
long-wave regime, it was introduced and developed by Kawahara as a type of modest
value of Weber numbers (WNs) near 1

3 and the surface tension [17]. Moreover, ref. [18] and
Amick and Kirchgässner [19] derived the stimulating results associated with the model
of water wave problems. The Kawahara equation and its modified forms have recently
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been discussed by many authors [20,21]. In this manuscript, we consider the following
time-fractional modified equal-width wave equation [22–24]:

CD
µ
t z(x, t) + z2(x, t)zx(x, t) + c zxxx(x, t) + d zxxxxx = 0,

z(x, 0) = z0(x), (1)

in which ℜ(µ) > 0, and c and d are non-zero real constants. Here, the symbol CD
µ
t is

Caputo–Prabhakar fractional operator of order µ and is defined by the following formula:

CD
µ
t z(x, t) = I1−µ,−η d

dt
z(x, t), (2)

in which I1−µ,−η is the Prabhakar fractional operator and given as [25]

(Iµ,ηz)(x, t) =
∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)ρ)z(x, s)d s, σ, ρ ∈ C, (3)

in which Eη
λ,µ is the Mittag–Leffler (ML) function and for z ∈ C, defined by [25,26]

Eη
λ,µ(z) =

∞

∑
n=0

Γ (η + n)
Γ(η) n! Γ(λn + µ)

zn, ℜ(λ),ℜ(µ) > 0, η > 0. (4)

In general, for all the fractional differential equations (FDEs), the process of finding the
analytical solution is not easy to compute. Hence, researchers are drawn towards obtaining
an approximate or numerical solution of these types of equations, which they find to be
valuable. To gain the approximate solutions of Equation (1), we express a substantial and
reliable method based on a combination of the Sadik transform (ST) with the homotopy
perturbation (HP) technique. Prabhakar [25] showed a novel derivative with the ML kernel
as an extension of Riemann–Liouville and Caputo derivatives and displayed the essence of
generalizing the models associated with probability and mathematical physics. The main
reason for choosing the ML function in this manuscript is related to its main applications in
various models, such as heterogeneous [27], Havriliak–Negami [28,29], viscoelastic [30],
and stochastic [31] models studied in physical sciences [32–34].

One of the numerical methods for solving the FDEs is the Sadik transform. Recently,
Shaikh [35,36] discussed a modern integral representation called the Sadik transform (ST).
In [35], Shaikh found some properties of this transform, like the existing theorem and
duality theorem of the Sadik transform. Moreover, the author illustrated that Sumudu,
Laplace, and Laplace–Carson transforms are particular cases of ST. Soon after, Shaikh in [37]
presented a shifting theorem for ST and its properties for the derivative of functions. Also,
for the dynamical system, the transfer function is obtained using control theory via ST. The
integral transform technique is an effective tool and useful for solving fractional differential
equations. However, it is difficult to find the exact solution for all kinds of FDEs using
the integral transform method (see [38,39]). In this connection, the authors of [40] studied
some basic notions and properties of ST, and then employed them to investigate nonlinear
models. The integral transformation method with different structures has been performed
to solve numerous types of differential equations in various scientific fields, for example,
in the Adomian decomposition method [41–43], homotopy-based schemes [44–46], the
iterative perturbation method [47], numerical methods based on the Petrov–Galerkin [48],
the Petrov–Galerkin finite method [49], the variational iteration method [50], and the
methods studied in the references [22,51–55].

With this aim, the rest of this paper is presented as follows. Section 2 contains a
summary of the definitions and mathematical preliminaries of fractional calculus. We
describe the suggested method for solving Equation (1) in Section 3. The convergence,
stability, existence, and uniqueness of the suggested method are studied in Section 4. To
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verify and demonstrate the proposed approach, we solve the proposed model in Section 5.
Finally, some conclusions are expressed in Section 6.

2. Important Preliminaries

This part studies the theorems and lemmas which will be applied in the following sections.

Definition 1 ([56]). Let ψ(t) be a piecewise continuous function under the interval [0, B] such
that

∣∣ψ(t)∣∣ ≤ C1 exp(at), where B > 0, a > 0, and C1 > 0 are the real constants. Then, the Sadik
transform for ψ(t) is given by

T (ψ(t)) =
1

υβ

∫ +∞

0
e−tυα

ψ1(t)dt.

Lemma 1 ([4]). Under the assumptions of Equation (4), we have

(Iµ,ηtν−1)(x) = Γ(ν)tµ+ν−1Eη
λ,µ+ν(σtλ). (5)

Lemma 2 ([56]). Suppose that Φυ
α,β is an ST of ψ1(t) and Ψυ

α,β is an ST of ψ2(t). Then, ST of
(ψ1 ∗ ψ2)(t) is displayed by

T [(ψ1 ∗ ψ2)(t)] = υβΦυ
α,β.Ψυ

α,β, (6)

in which the symbol ∗ shows the convolution operator. Here, we consider Φυ
α,β = T (ψ1(t)) =

1
υβ

∫ +∞
0 e−tυα

ψ1(t)dt and Ψυ
α,β = T (ψ2(t)) = 1

υβ

∫ +∞
0 e−tυα

ψ2(t)dt.

Lemma 3. Under the assumptions of Lemma 1, we have

T
(

tµ−1Eη
λ,µ(σtλ); υ

)
= υ−αµ−β(1 − συ−λα)−η , (7)

in which T is the Sadik transform of function.

Proof. With the help of the definition of ST and using Equation (4), we obtain

T (tµ−1Eη
λ,µ(σtλ); υ) =

1
υβ

∫ +∞

0
e−tυα

tµ−1Eη
λ,µ(σtλ)dt

=
1

υβ
Q(λ, µ, η)

∫ +∞

0
e−tυα

tλn+ µ−1dt. (8)

in which Q(λ, µ, η) = ∑∞
n=0

Γ( η+ n) σn

Γ(λn+ µ )Γ(η) n! . By the use of the gamma function, the above
equations can be expressed as follows:

T (tµ−1Eη
λ,µ(σtλ); υ) =

1
υαµ+β

∞

∑
n=0

(
η
)

n(συ−λα)n

n!

= υ−αµ−β(1 − συ−λα)−η . (9)

In this case, Equation (7) is obtained.

Theorem 1 ([56]). Suppose Φυ
α,β = T (ψ(i)(t)) and ψ(i)(t), i ∈ N

⋃{0} are continuous. Then,

T [ψi(t)] = υiαΦυ
α,β −

i−1

∑
k=0

υkα−βψi−k−1(0). (10)
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Also, the integration of φ(i)(t) is achieved by using the ST displayed as follows:

T [
∫ t

0
ψ(t)(i)] =

1
υα

Φυ
α,β. (11)

Theorem 2. The ST of fractional derivative defined in (2) for i = 1 is calculated by

T
(

CD
µ
t z(x, t)

)
= υα µ (1 − σ υ−λ α )η Z(υ, α, β)− υαµ−(α+β)(1 − σ υ−λ α)η z( x, 0+), (12)

in which Z(υ, α, β) = T (z(x, t)).

Proof. By using Equations (2), (6), (7) and (10), we have

T
(

CD
µ
t z(x, t)

)
=

1
υβ

∫ ∞

0
e−tυα

[
CD

µ
t z(x, t)

]
dt

=
1

υβ

∫ ∞

0
e−tυα

{ ∫ t

0
(t − s)−µE−η

λ,1−µ(σ(t − s)λ)
d
ds

z(x, s)ds
}

dt

=
1

υβ

∫ ∞

0

∫ ∞

s
e−tυα

(t − s)−µE−η
λ,1−µ(σ(t − s)λ)

d
ds

z(x, s)dtds

=
1

υβ

∫ ∞

0
e−sυα d

ds
z(x, s)

[ ∫ ∞

0
e−yυα

y−µE−η
λ,1−µ(σyλ)dy

]
ds

= υβT
( d

dt
z(x, t)

)
× T

(
t−µE−η

λ,1−µ(σtλ)
)

=
[
υαZ(υ, α, β)− υ−βz(x, 0+)

]
υα(µ−1)(1 − σ υ−λ α)η

= υα µ(1 − σ υ−λ α)ηZ(υ, α, β)− υαµ−(α+β)(1 − σ υ−λ α)ηz(x, 0+). (13)

The proof is completed.

Lemma 4 ([12]). Let S : X → X be a mapping and (X, ∥ . ∥) be a Banach space. Then, for
∀w, v ∈ X

∥ Sw − Sv ∥≤ σ1 ∥ w − Sw ∥ +η1 ∥ w − v ∥,

in which σ1 ≥ 0 and 0 ≤ η1 ≤ 1. Moreover, there is a fixed point of S and it is Picard’s S-stable.

3. The Projected Scheme

This part demonstrates the HP method and the ST for obtaining the following equation solutions:

CD
µ
t z(x, t) +Mz(x, t) +Vz(x, t) = w(x, t),

z(x, 0) = z0(x), (14)

in which Mz(x, t) is a linear part of Equation (14), Vz(x, t) is the nonlinear part of
Equation (14), and w(x, t) is a known function. By applying the ST and Equation (12),
one can obtain

υα µ (1 − σ υ−λ α)η Z(υ, α, β)− υαµ−(α+β)(1 − σ υ−λ α)ηz0(x) + T
(
Mz(x, t) +Vz(x, t)

)
= T (w(x, t)). (15)

By using the Sadik inverse transform, we obtain

z(x, t) = T −1
[
υ −α µ(1 − σ υ−λ α)−ηT (w(x, t)) +

1
υα+ β

z0(x)
]
− T −1

[
(

1
υα µ (1 − σ υ−λ α)−η)

×
[
T

(
Mz(x, t) +Vz(x, t)

) ] ]
. (16)
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To solve Equation (16), we consider the set of solutions by

z =
∞

∑
n=0

βnzn, (17)

where βn is the unknown coefficient and is calculated from Equation (16). Now, we consider
the nonlinear part Vz by

Vz =
∞

∑
n= 0

βnFn(z), (18)

in which Fn(z(x, t)) =
{

1
n!

∂n

∂βn

[
N
(

∑∞
i=0 ϱizi

)]
β=0

}
is the Adomian function that is defined

in [57]. By inputting Equations (17) and (18) into Equation (16), we obtain

∞

∑
n=0

βnzn = W − T −1
[
(

1
υ α µ (1 − σ υ −λ α)−η)×

[
T
(
M

∞

∑
n=0

βnzn +V
∞

∑
n=0

βnzn

)]]
= W − T −1

[
(

1
υ α µ (1 − σ υ−λ α) −η)×

[
T
(
M

∞

∑
n=0

βnzn +
∞

∑
n=0

βnFn(z(x, t))
)]]

(19)

in which W = T −1
[

1
υ α µ (1 − σ υ−λ α)−ηT (w) + 1

υα+ β z0(x)
]
. For n = 1, 2, . . . , we have

β0 : z0 = W(x, t),

β1 : z1 = −T −1
[
(

1
υ α µ (1 − σ υ −λ α)−η)×

[
T
(
Mz0 + F0(z)

)]
; t
]
,

β2 : z2 = −T −1
[
(

1
υ α µ (1 − σ υ −λ α)−η)×

[
T
(
Mz1 + F1(z)

)]
; t
]
,

...

βn+1 : zn+1 = −T −1
[
(

1
υ α µ (1 − σ υ−λ α) −η)×

[
T
(
Mzn + Fn(z)

)]
; t
]
. (20)

Therefore, the solution of Equation (14) is obtained as

z =
∞

∑
n=0

zn. (21)

4. Existence and Uniqueness of Solutions with Caputo–Prabhakar Derivative

In this section, we used the fixed-point theorem to show the existence and uniqueness
of solutions for the time-fractional modified Kawahara equation. To this aim, by applying
the Prabhakar fractional integral given in Equation (3) on both sides of Equation (1),
we obtain

z(x, t)− z(x, 0) = −
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(ω(t − s)λ)
(

z2(x, s)zx(x, s)

+ c zxxx(x, s) + d zxxxxx(x, s)
)]

ds. (22)

For simplicity, we assume that

ζ(z, x, t) = z2(x, t)zx(x, t) + c zxxx(x, t) + d zxxxxx(x, t).

Then, we have

z(x, t)− z0 = −
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)ζ(z, x, s)
]
ds. (23)
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Now, we show that the function ζ(Z, x, t) admits the Lipschitz condition when ζ(Z, x, t)
is bounded. For this aim, we assume that the continuous functions U and V are upper
bounded; thus, we have

∥ ζ(U, x, t)− ζ(V, x, t) ∥
=∥ (U2Ux − V2Vx) + c(Uxxx − Vxxx) + d(Uxxxx − Vxxxx) ∥
≤∥ U2Ux − V2Vx ∥ +c ∥ Uxxx − Vxxx ∥ +d ∥ Uxxxxx − Vxxxxx ∥

=
1
3
∥ ∂

∂x
(U3 − V3) ∥ +a ∥ ∂

∂x3 (U − V) ∥ +d ∥ ∂

∂x5 (U − V) ∥

=
1
3
∥ ∂

∂x
(U − V)(U2 + UV + V2) ∥ +c ∥ ∂

∂x3 (U − V) ∥ +d ∥ ∂

∂x5 (U − V) ∥

≤ cL1
3

(l2
1 + l1l2 + l2

2) ∥ U − V ∥ +cL2 ∥ U − V ∥ +dL3 ∥ U − V ∥

=
( cL1

3
(l2

1 + l1l2 + l2
2) + +cL2 + dL3

)
∥ U − V ∥

= ϱ ∥ U − V ∥, (24)

in which ∥ U ∥≤ l1, ∥ V ∥≤ l2 and α = cL1
3 (l2

1 + l1l2 + l2
2)++cL2 + dL3. Then, the Lipschitz

condition for ζ(Z, x, t) is satisfied and if 0 ≤ α < 1, it is a contraction. From Equation (23),
we use the recursive relation

zn = −
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)ζ(zn−1, x, s)
]
ds, (25)

with initial condition z0 = z(x, 0). Furthermore, we consider the following differences:

Ψn+1(x, t) = zn+1 − zn

−
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)(ζ(zn, x, τ)− ζ(zn−1, x, s))
]
ds, (26)

by taking the norm on both sides of Equation (26), one can obtain

∥ Ψn+1(x, t) ∥ =∥ zn+1 − zn ∥

∥
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)(ζ(zn, x, s)− ζ(zn−1, x, s))
]
dτ ∥

≤
∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ) ∥ ζ(zn, x, s)− ζ(zn−1, x, s) ∥ ds. (27)

Applying Equation (27), we show the existence of a solution for the projected equation.

Theorem 3. The time-fractional modified Kawahara equation with Caputo–Prabhakar derivative (1)
has a solution, provided that the following holds true:

Mϱ < 1. (28)

Proof. Let the function Φn(x, t) = Zn+1 −Z+Z(x, 0). Then, by applying Equations (24) and (27)
and Lemma 1, we obtain

∥ Φn(x, t) ∥ =∥ zn+1 − z + z(x, 0) ∥

∥
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)(ζ(zn, x, s)− ζ(z, x, s))
]
ds ∥

≤
∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ) ∥ ζ(zn, x, s)− ζ(z, x, s) ∥ ds

= Mϱ ∥ zn − z ∥
≤ (Mϱ)n ∥ z − z1 ∥, (29)
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in which Lemma 2.1 in [6] ensures the existence of Eη
λ,µ+1(σtλ). Then, we can put

M = Eη
λ,µ+1(σtλ). Thus, Equation (29) implies that the functions Φn(x, t) → 0 when

n → ∞ for Mϱ < 1, which further gives that limn→∞ zn+1 = z. Consequently, solutions of
the time-fractional modified Kawahara Equation (1) exist.

Theorem 4. Equation (1) has a unique solution when true:

1 − Mϱ ≥ 0. (30)

Proof. For the uniqueness solution of the time-fractional modified Kawahara equation
with Caputo–Prabhakar derivative (1), we use the contrary path for the proof. Suppose
that u1 is the other solution of (1); then, we have

z − z1 = −
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)ζ(z − z1, x, s)
]
ds. (31)

Therefore, we use the norm, for which we thus have

∥ z − z1 ∥ =∥
[ ∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ)ζ(z − z1, x, s)
]
ds ∥

≤
∫ t

0
(t − s)µ−1Eη

λ,µ(σ(t − s)λ) ∥ ζ(z − z1, x, s) ∥ ds

≤ Mϱ ∥ z − z1 ∥, (32)

which implies

∥ z − z1 ∥
(

1 − Mϱ
)
≤ 0. (33)

Thus, Equation (33) implies that the functions ∥ z − z1 ∥→ 0 when 1 − Mϱ ≥ 0. Conse-
quently, z = z1. Thus, the solution of the time-fractional modified Kawahara equation with
Caputo–Prabhakar derivative (1) is unique.

Theorem 5. Suppose that z and zn are the exact and numerical solutions of Equation (14), such
that ∥ zn+1 ∥≤ ϖ ∥ zn ∥, ϖ ∈ (0, 1), n ∈ N. Then, the series given by (21) converges.

Proof. From ∥ zn+1 ∥≤ ϖ ∥ zn ∥, we obtain

∥ z1 ∥ ≤ ϖ ∥ z0 ∥= ϖ ∥ z0(x) ∥,

∥ z2 ∥ ≤ ϖ ∥ z1 ∥≤ ϖϖ ∥ z0(x) ∥,
...

∥ zn+1 ∥ ≤ ϖ ∥ zn ∥≤ ϖn+1 ∥ z0(x) ∥ . (34)

Then,

∞

∑
i=n+1

∥ zi(x, t) ∥≤
∞

∑
i=n+1

ϖi ∥ z0(x) ∥=∥ z0(x) ∥
∞

∑
i=n+1

ϖi. (35)
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Therefore,

∥ z − zn+1 ∥ =∥
∞

∑
i=n+1

zi ∥≤
∞

∑
i=n+1

∥ zi ∥

≤
∞

∑
i=n+1

ϖi ∥ z0(x) ∥=∥ z0(x) ∥
∞

∑
i=n+1

ϖi

≤ ϖn+1

1 − ϖ
∥ z0(x) ∥ . (36)

Because ϖ ∈ (0, 1), then ∥ z − zn ∥→ 0 as n → ∞.

Stability Analysis

In this part, we study the stability of the projected scheme. To achieve the stability of
the method proposed in Equation (1), we define a self-mapping T as follows:

T(zi) = zi+1 = T −1
[ 1

υα+β
z0(x)

]
− T −1

[
(

1
υα µ (1 − συ−λα)−η)

×
[
T
(

czxxx + dzxxxxx + z2(x, t)zx

)]]
= zi − T −1

[
(

1
υα µ (1 − συ−λα)−η)

×
[
T
(

czxxx + dzxxxxx + z2zx

)]]
, (37)

where T (1) = 1
υα+β . To obtain the required result, we consider the following for (i, j) ∈ N×N:

T(zi)−T(zj) = zi − zj −
[
T −1

[
(

1
υα µ (1 − συ−λα)−η)

×
[
T
(

c
(
(zi)xxx − (zj)xxx

)
+ d

(
(zi)xxxxx − (zj)xxxxx

)
+ z2

i (zi)x − z2
j (zj)x

)]]]
= zi(x, t)− zj(x, t)−

[
T −1

[
(

1
υα µ (1 − συ−λα)−η)

×
[
T
( c

3
∂3

∂x3

(
zi − uj

)
+ d

∂5

∂x5

(
zi − zj

)
+

1
3

∂

∂x

(
z3

i − z3
j

))]]]
. (38)

On employing the norm on Equation (38) and after simplifying, one can obtain

∥ T(zi)−T(zj) ∥

≤∥ zi − zj ∥ +

[
T −1

[
(υ−αµ(1 − συ−λα)−η)

×
[
T
(
∥ c

3
∂3

∂x3

(
zi − zj

)
∥ +d ∥ ∂5

∂x5

(
zi − zj

)
∥ + ∥ 1

3
∂

∂x

(
z3

i − z3
j

)
∥
)]]]

. (39)

We let the continuous function zi be upper bounded; then,

∥ T(zi(x, t))−T(zj(x, t)) ∥

≤
( c

3
βH1(λ, µ, η) + dβ1H2(λ, µ, η) +

1
3

β2(γ
2
1 + γ1γ2 + γ2

2)H3(ρ, µ, γ)
)
∥ zi(x, t)− zj(x, t) ∥, (40)
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in which ∥ zi(x, t) ∥≤ γ1, ∥ zj(x, t) ∥≤ γ2, β = ∂3

∂x3 , β1 = ∂5

∂x5 , β2 = ∂
∂x and Hk(λ, µ, η),

k = 1, 2, 3 are functions retrieved from T −1
[
( 1

υα µ (1 − συ−λα)−η)
[
T
(

.
)]]

. The given
operator in Equation (40) is a contraction mapping if the following relation is satisfied:( c

3
βH1(λ, µ, η) + dβ1H2(λ, µ, η) +

1
3

β2(γ
2
1 + γ1γ2 + γ2

2)H3(ρ, µ, γ)
)
< 1. (41)

Thus, we can state that the self-mapping S has a unique fixed point. Also, S proves
Lemma 4 with

σ1 = 0, η1 =
( c

3
βH1(λ, µ, η) + dβ1H2(λ, µ, η) +

1
3

β2(γ
2
1 + γ1γ2 + γ2

2)H3(λ, µ, η)
)

.

Therefore, S is in agreement with Picard’s S-stable. Hence the numerical method is stable.

5. Computational Results

To illustrate the numerical application of the hired scheme to investigate its efficiency
and applicability, we consider the numerical results and solve them by applying the
present method. In our implementation, the proposed method was carried out by applying
Matlab. The absolute error function ∥ z − zn ∥ is obtained by the L2 − norm, where zn
is the numerical solution and z is the exact solution computed in the present method.
To show the computational results, we consider the time-fractional Equation (1) with

z0 = 3c√
−10d

sech2
(

λ′x
)

, where λ′ =
√

−c
20d . The exact solution of this equation for the

special case η = 0, µ = 1, c > 0 and d < 0 is z(x, t) = 3c√
−10d

sech2
(

λ′(x − c′t)
)

, where

c′ = 25d−4c2

25d . By decomposing the presented method on Equation (1), we have

∞

∑
n=0

βnzn(x, t) =
3c√
−10d

sech2
(

λ′x
)
− T −1

[
(

1
υα µ (1 − συ−λα)−η)×

[
T
(

c(
∞

∑
n=0

βnzn(x, t))xxx(x, t) + d (
∞

∑
n=0

βnzn(x, t))xxxxx +
∞

∑
n=0

βnFn(z(x, t))
)]

; t
]
, (42)

in which Fn(z) is the nonlinear part defined by

∞

∑
n=0

βnFn(z) = z2zx. (43)

The polynomials Fn(z) for some of the factors are calculated as

F0(z) = z2
0(z0)x,

F1(z) = z2
0(z1)x + 2z0z1(z0)x,

(44)

We can compute p in Equation (44) as
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β0 : z0(x, t) =
3c√
−10d

sech2
(

λ′x
)

,

β1 : z1 = T −1
[
(

1
υα µ (1 − συ−λα)−η)×

[
T
(

c(z0)xxx + d (z0(x, t))xxxxx + F0(z)
)]

; t
]

=

[
−24λ′3c2
√
−10d

sech2
(

λ′x
)

tanh3
(

λ′x
)
+

24λ′3c2
√
−10d

sech4
(

λ′x
)

tanh
(

λ′x
)

+
12λ′3c2
√
−10d

sech2
(

λ′x
)

tanh
(

λ′x
)

− 96λ′5cd√
−10d

sech2
(

λ′x
)

tanh5
(

λ′x
)
+

192λ′5cd√
−10d

sech4
(

λ′x
)

tanh3
(

λ′x
)

+
168λ′5cd√

−10d
sech2

(
λ′x

)
tanh3

(
λ′x

)
− 168λ′5cd√

−10d
sech2

(
λ′x

)
tanh

(
λ′x

)
+

384λ′5cd√
−10d

sech5
(

λ′x
)

tanh3
(

λ′x
)

− 336λ′5cd√
−10d

sech6
(

λ′x
)

tanh
(

λ′x
)

+
27c3

5d
√
−10d

sech6
(

λ′x
)

tanh
(

λ′x
)]

tµ−1Eη
λ,µ(σtλ),

(45)

Finally, the series numerical solution is calculated by

z =
∞

∑
n=0

zn

=
3c√
−10d

sech2
(

λ′x
)
+

[
−24λ′3c2
√
−10d

sech2
(

λ′x
)

tanh3
(

λ′x
)
+

24λ3c2
√
−10d

sech4
(

λx
)

tanh
(

λ′x
)

+
12λ′3c2
√
−10b

sech2
(

λ′x
)

tanh
(

λ′x
)

− 96λ′5cd√
−10b

sech2
(

λ′x
)

tanh5
(

λ′x
)
+

192λ′5cd√
−10b

sech4
(

λ′x
)

tanh3
(

λ′x
)

+
168λ′5cd√

−10b
sech2

(
λ′x

)
tanh3

(
λ′x

)
− 168λ′5cd√

−10b
sech2

(
λ′x

)
tanh

(
λ′x

)
+

384λ′5cd√
−10b

sech5
(

λ′x
)

tanh3
(

λ′x
)

− 336λ′5cd√
−10b

sech6
(

λ′x
)

tanh
(

λ′x
)

+
27c3

5d
√
−10d

sech6
(

λ′x
)

tanh
(

λ′x
)]

t−µαEη
−λα,1−µα(σt−λα) + . . . . (46)

Now, we study a comparative examination of the absolute error function results for classical
Equation (1), for the special case γ = 0, µ = 1. Table 1 presents the computational results
given by the application of our proposed method and the other one obtained by the authors
of [58,59] for the special case γ = 0, µ = 1. The computational results for different values
of µ are demonstrated in Figures 1 and 2 by selecting µ = 0.75, 0.85, 0.95, and λ = 0.5,
η = 0.75, σ = 1. In particular, the computational results for the solutions corresponding
to λ = 0.5, η = 0.75, σ = 1 at disparate values of µ with t = 0.5 are presented in Figure 3.
Figure 4 shows the graphs of the absolute error function for the case η = 0, µ = 1. According
to the established results, the achieved method is very accurate and effective in all cases.
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Table 1. The exact solution values when µ = 1 and comparison between the proposed method with
the methods VIM [59], HPM [59], and HATM [58] corresponding to ρ = 0.5, γ = 0.75, ω = 1 and
µ = 0.99, α = 0.5 a = 0.001, b = −1.

x t Exact Solution VIM [59] HPM [59] HATM [58]

−5 0.2 9.474889415 × 10−7 9.474984315 × 10−4 9.474984315 × 10−4 9.474984315 × 10−4

−2.5 0.4 9.483773375 × 10−6 9.483868961 × 10−4 9.483868961 × 10−4 9.483868965 × 10−4

0 0.6 9.486831272 × 10−7 9.486832980 × 10−4 9.486832980 × 10−4 9.486832980 × 10−4

2.5 0.8 9.484055589 × 10−6 9.483868961 × 10−4 9.483868961 × 10−4 9.483868965 × 10−4

5 1.0 9.475453144 × 10−6 9.474984315 × 10−4 9.474984315 × 10−4 9.474984315 × 10−4

x t Our Method
−5 0.2 9.745606079 × 10−7

−2.5 0.4 1.526682172 × 10−6

0 0.6 9.720373521 × 10−7

2.5 0.8 1.076279876 × 10−6

5 1.0 2.221689661 × 10−6

Figure 1. The approximate solution graph corresponding to λ = 0.5, η = 0.75, σ = 1 at different
values of µ with c = 1, d = −1.
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Figure 2. The approximate solution graph corresponding to λ = 0.5, η = 0.75, σ = 1 at different
values of µ with c = 1, d = −1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
10

-6

Figure 3. The absolute error function graph for η = 0 and µ = 1 when t = 0.5 with c = 1, d = −1.
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=0.85
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Figure 4. The approximate solution graph corresponding to λ = 0.5, η = 0.75, σ = 1 at different
values of µ with t = 0.5, c = 1, d = −1.

6. Conclusions

In the present investigation, we studied the modified Kawahara equation associated
with the Caputo–Prabhakar fractional operator. With the help of a unified computational
technique with the homotopy perturbation algorithm and Sadik transform, the iterative
solution was attained. To show and examine the stability, existence, and uniqueness of the
solutions of the given suggested model, we used the fixed-point theory as well as the theory
of S-stable mapping. Some stimulating numerical results were obtained at different values
of the parameters µ, ρ, γ, and ω. The attained results illustrate that the Caputo–Prabhakar
fractional operator can be applied to demonstrate real-world problems.
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