Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Preparation and Image Acquisition
2.2. Multifractal Analysis
2.3. Statistical Analysis
3. Results
3.1. Differentiation by Age
3.2. Differentiation by Neuron Spatial Origin
3.2.1. Spectrum of Generalized Dimensions DQ(Q)
3.2.2. Spectrum of Hölder Exponents α(Q)
3.2.3. Singularity Spectrum f(α)
3.2.4. Extracted Parameters
4. Discussion
4.1. Differentiation by Age
4.2. Differentiation by Neuron Spatial Origin
4.2.1. Spectrum of Generalized Dimensions DQ(Q)
4.2.2. Spectrum of Hölder Exponents α(Q)
4.2.3. Singularity Spectrum f(α)
4.2.4. Extracted Parameters
4.2.5. Further Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krstonošić, B.; Milošević, N.T.; Gudović, R.; Marić, D.L.; Ristanović, D. Neuronal Images of the Putamen in the Adult Human Neostriatum: A Revised Classification Supported by a Qualitative and Quantitative Analysis. Anat. Sci. Int. 2012, 87, 115–125. [Google Scholar] [CrossRef]
- Deserno, L.; Schlagenhauf, F.; Heinz, A. Striatal Dopamine, Reward, and Decision Making in Schizophrenia. Dialogues Clin. Neurosci. 2016, 18, 77–89. [Google Scholar] [CrossRef]
- Langen, M.; Durston, S.; Kas, M.J.H.; van Engeland, H.; Staal, W.G. The Neurobiology of Repetitive Behavior: …and Men. Neurosci. Biobehav. Rev. 2011, 35, 356–365. [Google Scholar] [CrossRef]
- Roberts, R.C.; Gaither, L.A.; Peretti, F.J.; Lapidus, B.; Chute, D.J. Synaptic Organization of the Human Striatum: A Postmortem Ultrastructural Study. J. Comp. Neurol. 1996, 374, 523–534. [Google Scholar] [CrossRef]
- Bernácer, J.; Prensa, L.; Giménez-Amaya, J.M. Distribution of GABAergic Interneurons and Dopaminergic Cells in the Functional Territories of the Human Striatum. PLoS ONE 2012, 7, e30504. [Google Scholar] [CrossRef]
- Dejerine, J. Anatomie Des Centres Nerveux, Tome 2; Reuff: Paris, France, 1901. [Google Scholar]
- Schmitt, O.; Eggers, R.; Haug, H. Quantitative Investigations into the Histostructural Nature of the Human Putamen. I. Staining, Cell Classification and Morphometry. Ann. Anat.-Anat. Anz. 1995, 177, 243–250. [Google Scholar] [CrossRef]
- Tosevski, J.; Malikovic, A.; Mojsilovic-Petrovic, J.; Lackovic, V.; Peulic, M.; Sazdanovic, P.; Alexopulos, C. Types of Neurons and Some Dendritic Patterns of Basolateral Amygdala in Humans—A Golgi Study. Ann. Anat.-Anat. Anz. 2002, 184, 93–103. [Google Scholar] [CrossRef]
- Krstonošić, B.; Milošević, N.T.; Marić, D.L.; Babović, S.S. Quantitative Analysis of Spiny Neurons in the Adult Human Caudate Nucleus: Can It Confirm the Current Qualitative Cell Classification? Acta Neurol. Belg. 2015, 115, 273–280. [Google Scholar] [CrossRef]
- Karperien, A.L.; Jelinek, H.F. Box-Counting Fractal Analysis: A Primer for the Clinician. In The Fractal Geometry of the Brain; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–43. [Google Scholar]
- Fernández, E.; Bolea, J.A.; Ortega, G.; Louis, E. Are Neurons Multifractals? J. Neurosci. Methods 1999, 89, 151–157. [Google Scholar] [CrossRef]
- Smith, J.H.; Rowland, C.; Harland, B.; Moslehi, S.; Montgomery, R.D.; Schobert, K.; Watterson, W.J.; Dalrymple-Alford, J.; Taylor, R.P. How Neurons Exploit Fractal Geometry to Optimize Their Network Connectivity. Sci. Rep. 2021, 11, 2332. [Google Scholar] [CrossRef]
- Katsaloulis, P.; Ghosh, A.; Philippe, A.C.; Provata, A.; Deriche, R. Fractality in the Neuron Axonal Topography of the Human Brain Based on 3-D Diffusion MRI. Eur. Phys. J. B 2012, 85, 150. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Cornforth, D.J.; Roberts, A.J.; Landini, G.; Bourke, P.; Iorio, A. Image Processing of Finite Size Rat Retinal Ganglion Cells Using Multifractal and Local Connected Fractal Analysis BT—AI 2004: Advances in Artificial Intelligence; Webb, G.I., Yu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 961–966. [Google Scholar]
- Krstonošić, B.; Milošević, N.T.; Gudović, R. Quantitative Analysis of the Golgi Impregnated Human (Neo)Striatal Neurons: Observation of the Morphological Characteristics Followed by an Emphasis on the Functional Diversity of Cells. Ann. Anat.-Anat. Anz. 2023, 246, 152040. [Google Scholar] [CrossRef]
- Lalošević, D.; Somer, L.; Djolaji, M.; Lalošević, V.; Mažibrada, J.; Krnojelac, D. Mikroskopska Laboratorijska Tehnika u Medicini; Medicinski fakultet Novi Sad-WUS Austrija: Novi Sad, Serbia, 2005. [Google Scholar]
- Smith, T.G.; Lange, G.D.; Marks, W.B. Fractal Methods and Results in Cellular Morphology—Dimensions, Lacunarity and Multifractals. J. Neurosci. Methods 1996, 69, 123–136. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and Multifractal Analysis: A Review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef]
- Karperien, A.; Jelinek, H.; Ahammer, H. Multifractal Formalism in Image and Time Series Analysis. Banach Cent. Publ. 2016, 109, 23–45. [Google Scholar] [CrossRef]
- Salat, H.; Murcio, R.; Arcaute, E. Multifractal Methodology. Phys. A Stat. Mech. Its Appl. 2017, 473, 467–487. [Google Scholar] [CrossRef]
- Evertsz, C.J.G.; Mandelbrot, B.B. Multifractal Measures. In Chaos and Fractals; Peitgen, H.-O., Jurgens, H., Saupe, D., Eds.; Springer: New York, NY, USA, 1992; pp. 921–953. [Google Scholar]
- Riedi, R.H. Multifractal Processes. Theory Appl. Long-Range Depend. 2003, 2003, 625–716. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 46, ISBN 0470848626. [Google Scholar]
- Karperien, A.L. FracLac for ImageJ 2013. Available online: https://imagej.net/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed on 20 June 2024.).
- Chhabra, A.; Jensen, R.V. Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 1989, 62, 1327–1330. [Google Scholar] [CrossRef]
- Chhabra, A.B.; Meneveau, C.; Jensen, R.V.; Sreenivasan, K.R. Direct Determination of the f(α) Singularity Spectrum and Its Application to Fully Developed Turbulence. Phys. Rev. A 1989, 40, 5284–5294. [Google Scholar] [CrossRef]
- Feder, J. Fractals, 1st ed.; Springer: New York, NY, USA, 1998; ISBN 978-0-306-42851-7. [Google Scholar]
- Bouda, M.; Caplan, J.S.; Saiers, J.E. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems. Front. Plant Sci. 2016, 7, 149. [Google Scholar] [CrossRef]
- Milošević, N.T.; Ristanović, D. Fractality of Dendritic Arborization of Spinal Cord Neurons. Neurosci. Lett. 2006, 396, 172–176. [Google Scholar] [CrossRef]
- Milošević, N. Monofractal Dimension in Quantifying the Image of Neurons in the Plane: Analysis of Image Features of Multipolar Neurons from the Principal Olivary Nucleus in Humans with Age. Fractal Fract. 2022, 6, 408. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Myers, G. Automatic 3D Neuron Tracing Using All-Path Pruning. Bioinformatics 2011, 27, i239–i247. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shen, L. 3D Neuron Reconstruction in Tangled Neuronal Image with Deep Networks. IEEE Trans. Med. Imaging 2020, 39, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, M.; Wang, Y.; Zhang, K.; Meijering, E. Structure-Guided Segmentation for 3D Neuron Reconstruction. IEEE Trans. Med. Imaging 2022, 41, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Gong, H.; Zhang, B.; Wang, Q.; Yan, C.; Wu, J.; Liu, Q.; Zeng, S.; Luo, Q. Micro-Optical Sectioning Tomography to Obtain a High-Resolution Atlas of the Mouse Brain. Science 2010, 330, 1404–1408. [Google Scholar] [CrossRef]
- Shapson-Coe, A.; Januszewski, M.; Berger, D.R.; Pope, A.; Wu, Y.; Blakely, T.; Schalek, R.L.; Li, P.H.; Wang, S.; Maitin-Shepard, J.; et al. A Petavoxel Fragment of Human Cerebral Cortex Reconstructed at Nanoscale Resolution. Science 2024, 384, eadk4858. [Google Scholar] [CrossRef]
- Rajković, N.; Krstonošić, B.; Milošević, N.T. Box-Counting Method of 2D Neuronal Image: Method Modification and Quantitative Analysis Demonstrated on Images from the Monkey and Human Brain. Comput. Math. Methods Med. 2017, 2017, 8967902. [Google Scholar] [CrossRef]
Parameter | Median Value (Range) | Kruskal–Wallis H | df | p | ||
---|---|---|---|---|---|---|
1. Age Group | 2. Age Group | 3. Age Group | ||||
DQmin | 1.403 (1.525) | 1.401 (1.492) | 1.381 (1.525) | 0.689 | 2 | 0.709 |
DQmax | 1.981 (1.274) | 1.896 (0.999) | 1.863 (1.073) | 0.118 | 2 | 0.943 |
DQspan | 0.804 (1.168) | 0.779 (1.079) | 0.811 (1.204) | 0.515 | 2 | 0.773 |
αmin | 1.335 (2.658) | 1.318 (2.440) | 1.251 (2.385) | 0.885 | 2 | 0.643 |
αmax | 2.127 (1.499) | 2.028 (1.183) | 1.992 (1.278) | 0.154 | 2 | 0.926 |
αspan | 1.061 (1.939) | 1.03 (1.776) | 1.071 (1.638) | 0.447 | 2 | 0.800 |
f(α)min | 0.579 (0.400) | 0.555 (0.413) | 0.545 (0.444) | 3.216 | 2 | 0.200 |
f(α)max | 1.535 (0.396) | 1.556 (0.421) | 1.560 (0.332) | 1.208 | 2 | 0.547 |
f(α)span | 0.984 (0.688) | 1.008 (0.606) | 1.005 (0.571) | 3.581 | 2 | 0.167 |
AUS DQ(Q) | 32.774 (22.57) | 31.874 (20.588) | 32.295 (21.729) | 1.180 | 2 | 0.554 |
AUS α(Q) | 34.846 (29.762) | 33.654 (26.89) | 34.093 (27.543) | 1.283 | 2 | 0.527 |
AUS f(α) | 20.693 (3.471) | 20.816 (5.225) | 20.567 (5.805) | 1.129 | 2 | 0.569 |
Parameter | MEDIAN Value (Range) | Mann–Whitney U | Z | p | |
---|---|---|---|---|---|
Caudate Nucleus | Putamen | ||||
DQmin | 0.647 (1.486) | 1.461 (1.336) | 2910.0 | 6.796 | <0.001 |
DQmax | 1.518 (1.018) | 2.169 (1.19) | 2917.0 | 6.834 | <0.001 |
DQspan | 0.872 (1.233) | 0.722 (0.881) | 1235.0 | −2.459 | 0.014 |
αmin | −0.187 (2.604) | 1.419 (2.340) | 2970.5 | 7.130 | <0.001 |
αmax | 1.522 (1.202) | 2.337 (1.419) | 2907.5 | 6.782 | <0.001 |
αspan | 1.628 (1.939) | 0.929 (1.615) | 820.5 | −4.479 | <0.001 |
f(α)min | 0.579 (0.417) | 0.549 (0.464) | 1153.5 | −2.909 | 0.004 |
f(α)max | 1.565 (0.428) | 1.546 (0.384) | 1495.0 | −1.022 | 0.307 |
f(α)span | 0.993 (0.688) | 1.02 (0.484) | 2014.0 | 1.845 | 0.065 |
AUS DQ(Q) | 21.736 (21.026) | 34.633 (20.598) | 2899.0 | 6.735 | <0.001 |
AUS α(Q) | 20.431 (27.255) | 37.361 (27.411) | 2878.0 | 6.619 | <0.001 |
AUS f(α) | 20.797 (6.067) | 20.567 (4.509) | 1460.0 | −1.215 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeljković, Z.; Krstonošić, B.; Milošević, N.; Stanojlović, O.; Hrnčić, D.; Rajković, N. Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences. Fractal Fract. 2024, 8, 514. https://doi.org/10.3390/fractalfract8090514
Nedeljković Z, Krstonošić B, Milošević N, Stanojlović O, Hrnčić D, Rajković N. Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences. Fractal and Fractional. 2024; 8(9):514. https://doi.org/10.3390/fractalfract8090514
Chicago/Turabian StyleNedeljković, Zorana, Bojana Krstonošić, Nebojša Milošević, Olivera Stanojlović, Dragan Hrnčić, and Nemanja Rajković. 2024. "Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences" Fractal and Fractional 8, no. 9: 514. https://doi.org/10.3390/fractalfract8090514
APA StyleNedeljković, Z., Krstonošić, B., Milošević, N., Stanojlović, O., Hrnčić, D., & Rajković, N. (2024). Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences. Fractal and Fractional, 8(9), 514. https://doi.org/10.3390/fractalfract8090514