
Citation: Nedeljković, Z.; Krstonošić,
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Abstract: Multifractal analysis offers a sophisticated method to examine the complex morphology
of neurons, which traditionally have been analyzed using monofractal techniques. This study in-
vestigates the multifractal properties of two-dimensional neuron projections from the human dorsal
striatum, focusing on potential morphological changes related to aging and differences based on spa-
tial origin within the nucleus. Using multifractal spectra, we analyzed various parameters, including
generalized dimensions and Hölder exponents, to characterize the neurons’ morphology. Despite
the detailed analysis, no significant correlation was found between neuronal morphology and age.
However, clear morphological differences were observed between neurons from the caudate nucleus
and the putamen. Neurons from the putamen displayed higher morphological complexity and greater
local homogeneity, while those from the caudate nucleus exhibited more scaling laws and higher
local heterogeneity. These findings suggest that while age may not significantly impact neuronal
morphology in the dorsal striatum, the spatial origin within this brain region plays a crucial role in de-
termining neuronal structure. Further studies with larger samples are recommended to confirm these
findings and to explore the full potential of multifractal analysis in neuronal morphology research.

Keywords: neuronal morphology; multifractal analysis; dorsal striatum; age-related changes; neuron
spatial origin

1. Introduction

The basal nuclei, a group of subcortical nuclei, are primarily recognized for their motor
functions, yet their involvement in various behavioral processes is well documented [1].
Consequently, these nuclei are implicated in numerous neuropsychiatric disorders [2,3].
The (neo)striatum serves as the major input structure of the basal nuclei. The predominant
neuronal population in the striatum comprises projection neurons, accounting for approxi-
mately 96% of all striatal neurons in rodents and about 74% in primates [4]. The remaining
cells, interneurons or local circuit cells, have been classified according to their morphology,
physiology and neurochemistry, and include up to six different types [5]. Déjerine (1901)
was the pioneer in applying the Golgi impregnation technique to striatal cells [6]. Following
his work, numerous researchers have employed both Golgi and modified Golgi methods to
examine various neuronal types within the basal nuclei [7,8].

This study investigates binary images of multipolar neurons from the human precom-
missural neostriatum, specifically the putamen and the head of the caudate nucleus. The
morphology of these images has been quantitatively analyzed in previous publications [1,9].
This study, however, focuses on a specific subset of the previous sample, employing a dif-
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ferent methodological approach. The images were examined using multifractal analysis,
specifically through the examination of generalized dimension and singularity spectra [10].

Multifractal analysis is a form of fractal analysis that is well suited for highly irregular
objects exhibiting multiple scaling rules. While neurons have traditionally been considered
monofractal objects [11], there are indications of their multifractal features [12–14]. One of
the secondary objectives of this study is to verify the presence of multiple scaling laws in
the morphology of these neurons. Scaling law refers to the set of scales at which a pattern
exhibits statistical self-similarity. The primary aims of the study are twofold: first, to explore
the potential of multifractal analysis in distinguishing spectral distributions with age, and
second, to differentiate neuron morphology from different regions of the neostriatum.

2. Materials and Methods
2.1. Tissue Preparation and Image Acquisition

Postmortem brain material was obtained from thirty adult human individuals during
medico-legal autopsies (Center for Forensic Medicine, Toxicology and Molecular Genetics at
the Clinical Center of Vojvodina, Serbia). None of the subjects had evidence of neurological
or psychiatric diseases [9]. The study was conducted in accordance with the Declaration
of Helsinki. The protocol was approved by the Ethical Committee of the University of
Novi Sad (Faculty of Medicine in Novi Sad, Serbia) (protocol number 01-39/256-2008), and
written informed consent was obtained from the next of kin of the deceased [15].

Tissue blocks containing precommissural putamen and precommissural caudate nu-
cleus head from both cerebral hemispheres were processed according to the Golgi–Kopsch–
Bubenaite method. The protocol is described in detail in Lalošević et al. (2005) and
Krstonošić et al. (2012) [1,16]. Serial sections along the anteroposterior axis of the precom-
missural striatum were cut as 100 µm thick slices. Neurons were completely observed
through a series of optical sections, i.e., horizontal cross-sections [1]. From such rich
material, neurons were isolated in which soma, dendrites and axonal initial part were
clearly distinguished from the surrounding structures (other neurons, glial cells and blood
vessels) [15].

The sample used in this study consisted of 116 neuron projections, with 60 neurons
from the caudate nucleus and 56 neurons from the putamen. Example images from
both groups are presented in Figure 1. All images were binary and had a resolution of
1600 × 1212 pixels.
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Figure 1. Examples of striatum binary images used in the study: (a) caudate nucleus neuron projection;
(b) putamen neuron projection.
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The sample was further divided into three age groups: the first group (30 to 45 years)
included 18 caudate nucleus and 12 putamen neurons, the second group (46 to 60 years)
included 22 caudate nucleus and 18 putamen neurons, and the third group (61 to 82 years)
included 20 caudate nucleus and 26 putamen neurons. Example images from the three age
groups are presented in Figure 2.
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2.2. Multifractal Analysis

Multifractal analysis is a mathematical tool used to quantify morphologies character-
ized by multiple scaling laws [17]. Originating from research related to energy dissipation
during fully developed turbulence, multifractal analysis has since been applied to a wide
range of complex systems [18,19]. The comprehensive theoretical foundation of multi-
fractal analysis has been elaborated in numerous works [20–23]. This paper focuses on
several key calculations necessary for the practical implementation of this analysis using
computational tools.

We employed the box-counting method with non-overlapping boxes to determine the
two most commonly applied spectra: the spectra of generalized dimensions DQ(Q), and
the singularity spectra f (α) vs. α. These calculations were executed using the java-based
ImageJ 1.48v plugin called FracLac v2.5 [24].

To calculate the spectrum of generalized dimensions DQ(Q), the object is subjected to a
kind of mathematical distortion using moments of order Q designed to accentuate different
aspects of the pattern, from finer to coarser [19,24]. Initially, the probability distribution
P(i,ε) is determined, representing the number of pixels M contained in an i-th box at a scale ε:

P(i, ε) = M(i, ε)/
[
∑N

i=1 M(i, ε)

]
, (1)

where N is the total number of boxes containing pixels. This allows for the calculation of
the moments of order Q:

I[Q,ε] = ∑N
i=1

[
P(i,ε)

]Q
. (2)

From this, the generalized dimension DQ(Q) is derived as:

DQ = −lim
ε→0

1
1 − Q

ln I[Q,ε]

ln ε
. (3)

When forming a singularity spectrum, a multifractal object is decomposed into subsets
of points with unique monofractal scaling laws, thereby representing the investigated
multifractal object as a collection of monofractal sub-objects [18,20]. Direct determination
of the singularity spectrum through numerical computation is shown to be challenging in
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practice [18]. The calculations of singularity spectra used by the FracLac v2.5 software are
based on the important work of Chhabra and Jensen [24–26], which provided a significant
advancement towards the practical implementation of these calculations [20]. The spectrum
is formed by calculating the parameter α, also known as the Hölder exponent, which
represents the local regularity or irregularity of a given point on an object at a specific
scale [27]. This allows the formation of subsets of points with similar α, which will act as
objects with monofractal properties stemmed from the original multifractal object.

To calculate these Hölder exponents, we first determine the measure of mass probabil-
ity for each box of the size ε [25,26]:

µi(Q,ε) =
Pi(Q,ε)

Q

∑N
i=1 Pi(Q,ε)

Q (4)

after which the α is given as:

α(Q) =
∑

N(ε)
i=1 µi(Q,ε)·lnPi(Q,ε)

lnε
. (5)

Each of these subsets of similar α will have their own Hausdorff dimension represented
as f (α), which is calculated as:

f (α(Q)) =
∑

N(ε)
i=1 µi(Q,ε)·lnµi(Q,ε)

lnε
. (6)

In this study, values of the parameter Q ranged from −10.0 to 10.0 with a step of
0.25, providing each multifractal spectrum with 81 points. Each point in the spectra was
treated as an individual variable. Consequently, each image was associated with three
spectra: DQ(Q), α(Q) and f (α) vs. Q, resulting in a total of 243 variables derived from the
spectra. Additionally, the singularity spectra f (α) vs. α were presented for a more intuitive
understanding of the results, as this is one of the most commonly used multifractal spectra.
During the implementation of the box-counting method, 12 grid positions were used.
This method is sensitive to the position of box grids during calculations, a phenomenon
known as quantization error [24,28]. The grids are not always optimally placed by the
software to achieve the actual minimum number of boxes covering the object. To address
this, a commonly used “brute force” approach was employed, involving multiple grid
positionings to find the optimal position. Theoretically, this number should be as high as
possible, but in practice, 12 positions will reduce the possibility of error to an acceptable
level [24].

In an attempt to reduce the number of variables and to form a kind of a multifractal
“fingerprint” of an image’s spectrum, we extracted four additional variables per spectrum.
These variables included maximum and minimum value of a parameter, the range or
span (the difference between the maximum and minimum values), and area under the
spectrum (abbreviated as AUS). Shown in Figure 3, the AUS parameters were named to
avoid confusion with the commonly used “area under the curve” in statistical analysis in
the medical field. The AUS values were calculated using the trapezoidal rule for definite
integral approximation, where trapezoids were defined by the adjacent equidistant Q-value
points in the spectrum. Therefore, additional parameters for generalized dimension spectra
were DQmin, DQmax, DQspan and AUS DQ(Q); for Hölder exponent spectra, there are
αmin, αmax, αspan and AUS α(Q); and for singularity spectra, there are f (α)min, f (α)max,
f (α)span and AUS f (α) vs. Q. With the addition of these variables, the total number of
variables used in this study was 256, including age.
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2.3. Statistical Analysis

The assumption of normality in variable distributions could not be assured, leading to
the use of non-parametric statistical methods. For these purposes, we employed IBM SPSS
Statistics v25 software. The correlation between variables and age was evaluated using
Kendall’s Tau test. Quantitative differences between age groups were assessed with the
Kruskal–Wallis H test, while differences between spatial groups were assessed with the
Mann–Whitney U test. Statistical significance was set at p ≤ 0.05.

3. Results

Due to the large number of variables, most of the results will be presented graphically.

3.1. Differentiation by Age

All variables were tested for correlation with age using the non-parametric Kendall’s
tau test. Surprisingly, given the large number of variables used, none showed significant
correlation with age.

To further investigate potential broader morphological differences with age, the sample
was divided into three age groups: 30 to 45 years, 46 to 60 years and 61 to 82 years. Statistical
difference between group distributions was tested with the non-parametric Kruskal–Wallis
H test. Consistent with the previous correlational findings, the test results indicated
no statistically significant differences between the groups for any variable. Thus, the
morphology of the neuron projections within this sample did not change significantly with
age. The multifractal spectra of median values for the three age groups are presented in
Figure 4.
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Figure 4. Median value multifractal spectra of the three age groups: (a) Generalized dimension
spectra DQ(Q); (b) Hölder exponent spectra α(Q); (c) Singularity spectra f (α) vs. Q; (d) Singularity
spectra f (α) vs. α. No statistically significant age-related differences were observed on any part of
any spectrum.

Values of the generalized dimension DQ showed a decrease across almost the entire
Q-negative range of the spectra with increasing age, except at Q = −0.25 (Figure 4a). The
biggest differences between the groups were observed for Q = −10.0 (between groups 1
and 2, and groups 1 and 3), and for Q = −3.0 (between groups 2 and 3).

Hölder exponent α(Q) spectra (Figure 4b) exhibited similar trends to the DQ(Q) spectra,
with the entire Q-negative parts showing a decline in value with age. The most pronounced
differences were observed in the middle part of the spectra, at Q = −1.0 (between groups 1
and 2, and groups 1 and 3) and at Q = −0.5 (between groups 2 and 3).

Singularity spectra f (α) vs. Q (Figure 4c) were quite similar across all three age groups.
Therefore, the differences observed in the singularity spectra f (α) vs. α (Figure 4d) were
primarily attributed to variations in Hölder exponent α(Q) values.

Extreme value parameters and area under the spectrum parameters are presented in
Table 1 for each age group and each spectrum type. These parameters were extracted for
each individual image, with the table displaying the median and range for each group.

Table 1. Extreme value parameters and area under the spectrum parameters (AUS) for three
age groups.

Parameter
Median Value (Range) Kruskal–Wallis

H df p
1. Age Group 2. Age Group 3. Age Group

DQmin 1.403 (1.525) 1.401 (1.492) 1.381 (1.525) 0.689 2 0.709
DQmax 1.981 (1.274) 1.896 (0.999) 1.863 (1.073) 0.118 2 0.943
DQspan 0.804 (1.168) 0.779 (1.079) 0.811 (1.204) 0.515 2 0.773
αmin 1.335 (2.658) 1.318 (2.440) 1.251 (2.385) 0.885 2 0.643
αmax 2.127 (1.499) 2.028 (1.183) 1.992 (1.278) 0.154 2 0.926
αspan 1.061 (1.939) 1.03 (1.776) 1.071 (1.638) 0.447 2 0.800

f (α)min 0.579 (0.400) 0.555 (0.413) 0.545 (0.444) 3.216 2 0.200
f (α)max 1.535 (0.396) 1.556 (0.421) 1.560 (0.332) 1.208 2 0.547
f (α)span 0.984 (0.688) 1.008 (0.606) 1.005 (0.571) 3.581 2 0.167

AUS DQ(Q) 32.774 (22.57) 31.874 (20.588) 32.295 (21.729) 1.180 2 0.554
AUS α(Q) 34.846 (29.762) 33.654 (26.89) 34.093 (27.543) 1.283 2 0.527
AUS f (α) 20.693 (3.471) 20.816 (5.225) 20.567 (5.805) 1.129 2 0.569

None of the extreme value parameters exhibited statistically significant differences
between any of the age groups, which is expected given that they are derived from the
spectra with no significant differences. Similarly, the areas under the spectra did not exhibit
significant differences between the groups, with relatively similar parameter values across
the groups.
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3.2. Differentiation by Neuron Spatial Origin

Neuron images from the dorsal striatum in this study were divided into two groups
based on their spatial origin: the first group consisted of caudate nucleus neurons, and
the second group consisted of putamen neurons. Statistically significant morphological
differences between the groups were detected by the majority of the variables used.

3.2.1. Spectrum of Generalized Dimensions DQ(Q)

The median values of the generalized dimension spectra for both groups are presented
in Figure 5. Statistically significant differences were observed in a substantial portion of the
spectra, specifically 57 out of 81 points, with p < 0.001 in the Q interval from −10.0 to 1.0,
and p < 0.05 from 1.25 to 4.0. For Q values larger than 4.0, no significant differences were
observed (p > 0.05).
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Putamen neurons exhibited higher median DQ values across the entire spectrum. The
differences between the groups tended to decrease with increasing Q on the statistically
significant portion of the spectrum, except for a negligible increase at Q = 2. The largest
difference between the groups was observed at Q = −10.0, while the smallest difference
was at Q = −5.75.

In the caudate nucleus group, median DQ values showed a slight decreasing trend at
the far left and right parts of the spectrum (for the Q intervals of −10.0 to −3.5 and 2.25
to 10.0) and a noticeable increasing trend in the narrow middle part of the spectrum (for
the Q interval of −1.0 to 0). The greatest increase in DQ value was observed at Q = −0.5.
Conversely, putamen neurons exhibited a drop in DQ values across most of the spectrum,
except for the narrow middle part with the Q interval of −0.25 to 1.0. The greatest drop in
DQ value was observed for Q = −1.0.

3.2.2. Spectrum of Hölder Exponents α(Q)

The multifractal spectra of median value Hölder exponents α(Q) of both groups are
presented in Figure 6. Significant differences were observed across the entire Q-negative
part of the spectrum and the left portion of the Q-positive part, with p < 0.001 in the Q
interval of −10.0 to 1.0, and p < 0.05 from 1.25 to 2.0. For Q values larger than 2.0, no
significant differences were observed (p > 0.05).
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Similar to generalized dimension spectra, putamen neurons exhibited higher Hölder
exponent values compared to caudate neurons for all Q values. Differences between the
groups remained consistent on most of the spectra, except for the narrow middle part
(Q values from −0.75 to 0.25) where a sudden increase followed by a rapid decrease in
difference is observed. The largest difference occurred at Q = −0.5, while the smallest
difference was at Q = 2.75.

Both groups showed a “plateau” on the far-left side of spectra with little to no change
in value between the individual points (Q values from −10.0 to −4.75). On the far-right
side, both groups showed a very slight decreasing trend (Q values from 2.75 to 10.0), which
mostly coincided with the part of the spectrum with no statistically significant differences.
The greatest one-step change in α value for the caudate nucleus group was the rise observed
at Q = −0.25. For the putamen group, the biggest change was the rise at Q = −1.0.

3.2.3. Singularity Spectrum f(α)

The median value singularity spectra f (α) vs. Q for both groups are presented in
Figure 7. Statistically significant differences (p < 0.05) were observed in most of the Q-
negative part of the spectrum and a segment in the center (Q intervals of −10.0 to −1.5 and
−0.5 to 1.5). The central segment contained a narrow 5-point band of p < 0.001 (Q values
from 0 to 1). No significant differences were observed in the Q intervals from −1.25 to
−0.75 and 1.75 to 10.0 (p > 0.05).

Values of parameter f (α) were higher for caudate nucleus neurons on almost the entire
Q-negative part of the spectrum (for Q interval of −10.0 to −0.5). The switching point was
Q = −0.25, after which the putamen group exhibited higher values of f (α) (Q interval of
−0.25 to 10.0). Therefore, the statistically significant segment on the left was dominated
by higher values in the caudate nucleus, while the central segment mostly showed higher
values in the putamen. The largest difference between the groups was observed at Q = 0,
and the smallest at Q = 4.5.

The value change in both spectra showed similar trends, with a notable exception
of caudate nucleus spectrum in the Q segment from −0.5 to 0, where a sudden drop was
observed. This area also exhibited the greatest one-step change in value for the caudate
nucleus spectrum, with a decrease at Q = −0.25. The greatest one-step change for the
putamen group occurred as an increase in value at Q = −1.0.



Fractal Fract. 2024, 8, 514 9 of 16Fractal Fract. 2024, 8, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 7. Median value singularity spectra f(α) vs. Q for the two groups. Significant differences (p < 
0.05), indicated with green shades, were observed for Q intervals from −10.0 to −1.5 and −0.5 to 1.5, 
with the narrow band of p < 0.001 in Q interval of 0 to 1. Non-significant differences (p > 0.05) were 
observed for Q intervals from −1.25 to −0.75 and 1.75 to 10.0, indicated with the red shade. 

Values of parameter f(α) were higher for caudate nucleus neurons on almost the en-
tire Q-negative part of the spectrum (for Q interval of −10.0 to −0.5). The switching point 
was Q = −0.25, after which the putamen group exhibited higher values of f(α) (Q interval 
of −0.25 to 10.0). Therefore, the statistically significant segment on the left was dominated 
by higher values in the caudate nucleus, while the central segment mostly showed higher 
values in the putamen. The largest difference between the groups was observed at Q = 0, 
and the smallest at Q = 4.5. 

The value change in both spectra showed similar trends, with a notable exception of 
caudate nucleus spectrum in the Q segment from −0.5 to 0, where a sudden drop was 
observed. This area also exhibited the greatest one-step change in value for the caudate 
nucleus spectrum, with a decrease at Q = −0.25. The greatest one-step change for the pu-
tamen group occurred as an increase in value at Q = −1.0. 

Figure 8 shows one of the most common types of multifractal spectra: the singularity 
spectra f(α) vs. α, which combines the two spectra presented in Figures 6 and 7. 

Caudate nucleus neurons exhibit a slightly broader and more complex singularity 
spectrum with multiple peaks and both positive and negative Hölder exponent values, 
suggesting an underlying complexity in the two-dimensional neuronal projections. In 
contrast, the putamen shows a much narrower spectrum with positive Hölder exponents, 
indicating a certain simplicity and orderliness in terms of the exhibited scaling rules of the 
neuronal structure compared to the caudate group. 

Figure 7. Median value singularity spectra f (α) vs. Q for the two groups. Significant differences
(p < 0.05), indicated with green shades, were observed for Q intervals from −10.0 to −1.5 and −0.5 to
1.5, with the narrow band of p < 0.001 in Q interval of 0 to 1. Non-significant differences (p > 0.05)
were observed for Q intervals from −1.25 to −0.75 and 1.75 to 10.0, indicated with the red shade.

Figure 8 shows one of the most common types of multifractal spectra: the singularity
spectra f (α) vs. α, which combines the two spectra presented in Figures 6 and 7.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Median value singularity spectra f(α) vs. α for both groups. 

3.2.4. Extracted Parameters 
Extreme value parameters and area under the spectrum parameters were extracted 

for each neuron image. Group median values and ranges, along with the Mann–Whitney 
U test results, are shown in Table 2. The majority of the parameters exhibit statistically 
significant differences between the groups, which aligns with the results of the spectra 
previously shown in Figures 5–8. When comparing the extreme value parameters and 
similar parameters extracted from the median spectra (Figures 5–7), we observe some ex-
pected deviations due to the nature of obtaining these variables. 

The extreme parameters of generalized dimension spectra exhibit significant differ-
ences in maximum, minimum and span values between the groups. These values slightly 
deviate from the corresponding parameters in the median spectra DQ(Q) shown in Figure 
5. The significant difference in the DQspan parameter is unsurprising given the significant 
differences in both DQmin and DQmax parameters. The AUS DQ(Q) parameter also showed 
significant differences between the groups, which is evident from the median spectra in 
Figure 5. 

All extreme value parameters of the Hölder exponent α show significant differences 
between the groups. These parameters also deviate slightly from the median spectra ex-
tremums (Figure 6). The αspan parameter exhibited significant differences, with more 
pronounced value difference between the groups than in the case of the DQ parameter. 
The areas under the median spectra shown in Figure 6 are clearly different between the 
groups, which is reflected in the significantly different values of AUS α(Q) parameter. 

The f(α) parameter exhibited significant differences only in the case of f(α)min. Pa-
rameters f(α)max, f(α)span and AUS f(α) did not exhibit any significant differences be-
tween the groups. 

Table 2. Extreme value parameters and area under the spectrum parameters (AUS) for the caudate 
nucleus and putamen groups. 

Parameter 
MEDIAN Value (Range) 

Mann–Whitney U Z p 
Caudate Nucleus Putamen 

DQmin 0.647 (1.486) 1.461 (1.336) 2910.0 6.796 <0.001 
DQmax 1.518 (1.018) 2.169 (1.19) 2917.0 6.834 <0.001 

Figure 8. Median value singularity spectra f (α) vs. α for both groups.

Caudate nucleus neurons exhibit a slightly broader and more complex singularity
spectrum with multiple peaks and both positive and negative Hölder exponent values,
suggesting an underlying complexity in the two-dimensional neuronal projections. In
contrast, the putamen shows a much narrower spectrum with positive Hölder exponents,
indicating a certain simplicity and orderliness in terms of the exhibited scaling rules of the
neuronal structure compared to the caudate group.
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3.2.4. Extracted Parameters

Extreme value parameters and area under the spectrum parameters were extracted
for each neuron image. Group median values and ranges, along with the Mann–Whitney
U test results, are shown in Table 2. The majority of the parameters exhibit statistically
significant differences between the groups, which aligns with the results of the spectra
previously shown in Figures 5–8. When comparing the extreme value parameters and
similar parameters extracted from the median spectra (Figures 5–7), we observe some
expected deviations due to the nature of obtaining these variables.

Table 2. Extreme value parameters and area under the spectrum parameters (AUS) for the caudate
nucleus and putamen groups.

Parameter
MEDIAN Value (Range)

Mann–Whitney U Z p
Caudate Nucleus Putamen

DQmin 0.647 (1.486) 1.461 (1.336) 2910.0 6.796 <0.001
DQmax 1.518 (1.018) 2.169 (1.19) 2917.0 6.834 <0.001
DQspan 0.872 (1.233) 0.722 (0.881) 1235.0 −2.459 0.014
αmin −0.187 (2.604) 1.419 (2.340) 2970.5 7.130 <0.001
αmax 1.522 (1.202) 2.337 (1.419) 2907.5 6.782 <0.001
αspan 1.628 (1.939) 0.929 (1.615) 820.5 −4.479 <0.001

f (α)min 0.579 (0.417) 0.549 (0.464) 1153.5 −2.909 0.004
f (α)max 1.565 (0.428) 1.546 (0.384) 1495.0 −1.022 0.307
f (α)span 0.993 (0.688) 1.02 (0.484) 2014.0 1.845 0.065

AUS DQ(Q) 21.736 (21.026) 34.633 (20.598) 2899.0 6.735 <0.001
AUS α(Q) 20.431 (27.255) 37.361 (27.411) 2878.0 6.619 <0.001
AUS f (α) 20.797 (6.067) 20.567 (4.509) 1460.0 −1.215 0.224

p values for statistically significant differences shown in bold.

The extreme parameters of generalized dimension spectra exhibit significant differ-
ences in maximum, minimum and span values between the groups. These values slightly
deviate from the corresponding parameters in the median spectra DQ(Q) shown in Figure 5.
The significant difference in the DQspan parameter is unsurprising given the significant
differences in both DQmin and DQmax parameters. The AUS DQ(Q) parameter also showed
significant differences between the groups, which is evident from the median spectra in
Figure 5.

All extreme value parameters of the Hölder exponent α show significant differences
between the groups. These parameters also deviate slightly from the median spectra
extremums (Figure 6). The αspan parameter exhibited significant differences, with more
pronounced value difference between the groups than in the case of the DQ parameter. The
areas under the median spectra shown in Figure 6 are clearly different between the groups,
which is reflected in the significantly different values of AUS α(Q) parameter.

The f (α) parameter exhibited significant differences only in the case of f (α)min. Param-
eters f (α)max, f (α)span and AUS f (α) did not exhibit any significant differences between
the groups.

4. Discussion

For many years, multifractal analysis has been applied across various fields of research
due to its capability to characterize highly complex and nonlinear objects and systems [19].
Neurons, and consequently their two-dimensional projections, exhibit a certain level of
complexity over specific ranges of scaling [29]. In the existing literature, neuron morphol-
ogy and their two-dimensional projections are predominantly subjected to monofractal
analysis, as these objects are often considered monofractals [11]. However, there is a
growing interest in exploring the multifractal properties of neurons, as evidence suggests
that neurons possess multiple scaling laws in their morphology and other aspects like
interconnectedness [12].

The use of multifractal spectra allows for the examination of various aspects of mor-
phology that are typically overlooked due to the constraints of monofractal analysis. Spectra
are created through mathematical “distortion” using moments of the order Q, as described



Fractal Fract. 2024, 8, 514 11 of 16

in Equations (2) and (4), which function like a “lens” highlighting different properties of the
object from finer to coarser details [19]. This process generates the generalized dimensions
spectrum, DQ, characterized by a sigmoidal shape that indicates the complex structure of
the scaling laws, and the singularity spectrum f (α) vs. α, which usually exhibits a parabolic
shape and suggests greater “multifractality” with its larger width [19].

Neuronal projections from the sample in this study demonstrate multifractal properties
in certain parts of the spectra, as evidenced by the sigmoidal shape of the generalized
dimensions spectra and the relatively wide range of Hölder exponent α values, indicating
multiple scaling laws. Additionally, the “plateaus” observed in both the generalized
dimensions spectra and Hölder exponent spectra may suggest “monofractal tendencies”
within these structures. These findings provide some support for studies that argue for the
monofractal nature of neurons [11].

4.1. Differentiation by Age

The initial question posed in designing this study was whether age is related to the
morphology of neurons and their ability to fill the surrounding space. To investigate this,
we checked for correlations between all parameters and age, and subsequently divided the
sample into three age groups. Surprisingly, none of the numerous variables showed any
significant correlation with age, not even by chance. This finding was further corroborated
by the age group separation, which also yielded no significant differences.

This result leads to several possible conclusions. First, the chosen neuron projections
in the sample might be too morphologically uniform to detect significant differences.
This contrasts somewhat with the second part of the study, where clear morphological
differences based on the spatial origin of neurons were observed. However, this does
not negate the possibility that neuron projections are quite uniform within individual
spatial groups.

Another possible explanation is that multifractal spectra are not suitable for this type
of analysis. Studies using monofractal analysis have shown significant differences in the
box-count dimension [1,30]. The central point of the generalized dimensions spectrum
DQ(Q) at Q = 0 represents the Minkowski–Bouligand (i.e., box-count) dimension (see
Equation (2)) [19], so we could have expected statistically significant differences at least in
this part of the spectrum, but they were absent.

The third conclusion is that the morphology of individual neurons in this subcortical
structure does not change significantly with aging. To confirm this conclusion, further
studies on larger samples are necessary. Additionally, the median values on the Q-negative
parts of the DQ(Q) and α(Q) spectra showed some differences between the groups, with a
decrease in the values of the generalized dimensions and Hölder exponents observed with
age (Figure 4a,b). These differences in the α(Q) parameter are also evident in the singularity
spectra (Figure 4d). Given that finer structures dominate this part of the spectrum, these
differences could suggest a reduction in the space-filling complexity and an increase in
local heterogeneity of finer structures with age. However, the distributions of the variables
were not statistically significantly different among groups, which does not support these
notions. A larger sample could reveal more noticeable differences or confirm the findings
of this study, indicating no significant morphological differences with age.

Another important consideration is that neurons originate from different brains due
to the current limitations of imaging techniques, affecting the nature of this type of study.
Thus, it is currently not possible to observe age-related morphological changes in the same
brain or ideally the same set of neurons, which could have a non-negligible impact on
samples of this size.

4.2. Differentiation by Neuron Spatial Origin
4.2.1. Spectrum of Generalized Dimensions DQ(Q)

Neurons were also categorized by their place of origin within the dorsal striatum.
Groups from the caudate nucleus and putamen exhibited statistically significant mor-
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phological differences in most applied variables. Notably, the spectrum of generalized
dimensions DQ(Q) revealed significant differences in about 70% of the variables (57 out of
81 points in the spectrum) between these groups (Figure 5).

The generation of these spectra involves a mathematical distortion using moments of
order Q, creating a series of objects derived from the initial object. Each new object is a dis-
tortion of the initial one, emphasizing different aspects of the original object. Moving along
the spectrum towards increasingly negative values of Q emphasizes the finer structures
of the object, represented by fewer pixels (Equations (1) and (2)), as coarse features (with
more pixels) are suppressed. Conversely, the positive part of the spectrum highlights the
dominance of coarser features of the object [19].

Examining the median spectra of DQ(Q) in Figure 5, it becomes evident that the fine
structures in the neuron projections are the primary source of morphological differences
between the caudate and putamen groups, as significant differences were observed across
the entire Q-negative parts of the spectra. The higher values of the generalized dimensions
in the putamen group indicate a greater space-filling complexity of these fine structures
compared to the caudate nucleus group. These drastic differences in the negative part of
the spectrum can be attributed to the shape of the individual spectra in a significant number
of images from the caudate nucleus group. This resulted in an “inversion” of the median
spectrum of the caudate nucleus group relative to the putamen group, which maintained
the standard sigmoidal shape typical of this type of multifractal spectra.

The central parts of these spectra also show statistically significant differences. Here,
the mathematical distortion is minimal, indicating that differences exist in the “intact”
morphology of the two groups. This trend continues into the narrow Q-positive part of
the spectrum, with slightly prominent coarser features. Across all these sections of the
spectrum, the putamen group, with its higher DQ values, demonstrates greater morpholog-
ical complexity.

4.2.2. Spectrum of Hölder Exponents α(Q)

The spectra of the Hölder exponents α(Q) shown in Figure 6 align with the results of
the generalized dimension spectra DQ(Q). The Q-negative parts of the spectrum, along with
the narrower central part, exhibit statistically significant differences between the groups,
confirming the greater influence of finer structures in differentiating neuronal projections.
The fact that the Hölder exponent α describes local irregularities on the examined object,
and that the spectra of both groups display “plateaus” in α values, suggests the presence of
monofractal properties in large portions of the projections. Again, this observation could
support the argument for the monofractal nature of neuron morphology [11]. However,
parts of the spectra showing drastic changes in values indicate a degree of “multifractality”
and complexity in morphology that monofractal analysis cannot adequately quantify.

The putamen group exhibits higher α values across the entire spectrum, particularly in
the Q-negative part where differences are significant. This suggests greater local homogene-
ity of fine structures in the neuron projections of this group. In contrast, the caudate nucleus
group shows greater local heterogeneity in fine structures, reflected in the varied DQ(Q)
spectra within the group. Additionally, the caudate nucleus displays slightly more scaling
laws, implying higher “multifractality” in its neurons. However, caution is advised in such
interpretations, as both spectra reveal a large clustering of points around similar values.

4.2.3. Singularity Spectrum f(α)

When forming the singularity spectrum, the multifractal object is divided into monofrac-
tal subsets of points grouped by the common Hölder exponent. The parameter f (α) for these
subsets is then determined, representing their Hausdorff dimension [20]. Thus, the entire
multifractal object is a superposition of these monofractal subsets [18]. The f (α) vs. Q
spectra provide insight into how the fractal dimensions of point subsets vary depending
on different aspects of the object’s scaling properties [19].
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From Figure 7, two regions of importance can be identified. First, in the Q-negative
part of the spectrum, significant differences are observed where the caudate group exhibits
a higher f (α) value. Second, in the central region of the spectrum, the putamen shows a
significantly higher f (α) value. This indicates that with a more pronounced accentuation
of fine structures, the monofractal subsets of the caudate group demonstrate greater com-
plexity compared to the putamen. In this Q-region, the caudate group also shows lower
values of the α parameter (Figure 6), suggesting that caudate neurons not only have greater
complexity but also exhibit greater local heterogeneity in fine structures. Conversely, in the
central part of the spectrum, the putamen group displays higher complexity in monofractal
point sets, while both groups show similar heterogeneity in scaling regularity.

It is important to note that one of the challenges of this type of analysis is the practical
interpretation of the singularity spectrum results. The practical significance of these spectra
can often be “elusive” and abstract, making it difficult to intuitively understand individual
spectra and relate the results to the actual images.

This part of the results is more clearly illustrated by the singularity spectra in Figure 8,
which combine the information from the spectra in Figures 6 and 7. At f (α) values lower
than 1.0, the differentiation between the two groups is evident. This corresponds to the
statistically significant region in Figure 7, where f (α) values lower than 0.931 for the caudate
nucleus and 0.9 for the putamen show significant differences between groups. In this part
of the spectrum, we observe a clustering of α values around 0.7 for the caudate nucleus and
2.3 for the putamen. This indicates greater local heterogeneity in the fine structures of the
caudate group, while maintaining a similar degree of complexity in their scaling properties.

4.2.4. Extracted Parameters

To reduce the number of variables and attempt to form a “multifractal fingerprint”
of the neuronal projection, we calculated extreme value variables and AUS variables for
each image. These variables generally proved to be effective in differentiating the spatial
origin of neurons, as most showed statistically significant differences between the groups
(Table 2). Median values of DQmin and DQmax are lower for the caudate nucleus group,
while the range between these values for individual images (DQspan) is greater in this
group. This confirms that the complexity of spatial filling in the neuron projections is lower
in the caudate nucleus group. On the other hand, this group exhibits a greater variety of
complexity, also seen in its larger range of Hölder exponents (αspan). The lower values
of the extremums of Hölder exponent α further support the finding that caudate nucleus
neuron projections show greater local heterogeneity.

We also notice a slight difference between the extreme value parameters and the
corresponding parameters extracted from the median spectra in Figures 5–7. This difference
stems from the different approach to extracting the given parameters. The parameters in
Tables 1 and 2 are the extremes from the spectra of individual images, while the extremes
from the median spectra are “limited” by the Q values by which the median of each
parameter was calculated. Therefore, it is more accurate to use individual image parameters
because they contain the true extreme values of each image, as opposed to the slightly
“suppressed” extreme values of the median spectrum of the entire group.

A similar observation can be made for the DQspan variable, which shows statistically
significant differences between the groups. When looking at the median spectra in Figure 5,
it may seem that the spans between extremes are very similar for both groups. This is
again explained by the fact that the DQspan value is calculated for individual images,
as opposed to Q-discretized group median spectra, which has a suppressing effect on
individual extremes.

Areas under the spectra of generalized dimensions and Hölder exponents (AUS DQ(Q),
AUS α(Q)) showed statistically significant differences between the caudate and putamen
groups. Examining the median spectra of the groups in Figures 5 and 6 reveals the source
of these differences. The caudate group, due to its low values of the parameters DQ and α
on the Q-negative parts of the spectrum, exhibits a much lower area value. A higher value
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of the AUS DQ(Q) parameter indicates greater complexity of space filling (as observed in
the putamen group), while a higher value of the AUS α(Q) parameter indicates increased
local homogeneity (again, in the putamen group).

The area under the spectrum of f (α) vs. Q, marked as AUS f (α), did not show statis-
tically significant differences, which could be expected given the approximately similar
shapes of the curves shown in Figure 7. It is important to note that reducing the number of
variables results in the loss of certain information that can be observed across the entire
spectra. This includes details on whether the exhibited complexity and homogeneity are
features of finer or coarser structures, or which part of the spectrum these extremes are
expressed in. However, the benefit of this reduction is the relatively quick quantification
of morphology and a mathematical depiction of the dominant morphological features of
the pattern.

4.2.5. Further Discussion

Given that differences in cell morphology are believed to reflect functional differ-
ences, it can be inferred that the observed variations in neuronal morphology between the
putamen and the caudate nucleus may be related to their respective functional predom-
inance (motor vs. cognitive) within the neostriatum. However, the connection between
the observed multifractal profiles of these neurons and their specific biological functions
remains speculative. Future research should aim to provide additional insights, such as
neurotransmitter activity or a more detailed understanding of the specific functions of these
neurons, to enhance our understanding of the relationship between neuronal morphology
and function.

Although the obtained results show significant morphological differences across large
parts of the spectra used, it is necessary to address certain limitations of this approach. The
first limitation is the pixel-based image display. Despite using relatively high-resolution
images (1600 × 1212 px) in this study, various fine structures of the analyzed objects’
morphology can still be obscured, which may prove problematic with larger mathemati-
cal distortions.

Second, the segmentation of neuronal projections was performed by a human spe-
cialist, introducing the possibility of random error. Potential solutions to this drawback
include using segmentation software or artificial intelligence, though these approaches
also have their own drawbacks and potential system errors, so the pros and cons must be
carefully weighed [31–33].

Another limitation is the formation of two-dimensional projections of neurons, which
are essentially three-dimensional objects. This process can strip away certain morpho-
logical information, introducing randomness into the displayed data since it is often
impossible to adequately choose the projection angle. A potential solution is the analysis of
three-dimensional images of neurons, though this comes with its own challenges, such as
imperfect segmentation and accessibility issues [33–35].

Lastly, the box-count method of fractal analysis, which has proven to be very practical
in computer applications, also has its drawbacks that must be considered to minimize
errors [36].

5. Conclusions

Multifractal analysis of two-dimensional neuron projections of the dorsal striatum
did not reveal significant morphological changes in neurons with age. However, it proved
to be an effective tool for differentiating the spatial origin of these neurons within the
aforementioned subcortical structure. Neurons in the putamen group displayed higher
morphological complexity in space filling, evidenced by higher values of generalized
dimensions (DQ) and greater local homogeneity, as indicated by higher values of Hölder
exponents (α). Conversely, neurons in the caudate nucleus group exhibited more scaling
laws and higher local heterogeneity. Future studies with larger samples could enhance
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our understanding of the morphology of this brain region and address the potential
shortcomings of this type of analysis.
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