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Abstract: This article investigates the dynamic behaviors of delayed fractional-order memristive
fuzzy cellular neural networks via the Lyapunov method. To address the delay terms of fractional-
order systems, a novel lemma is provided to make the solutions of the systems exponentially stable.
Furthermore, two new intermittent-hold controllers are designed to improve the robustness of
the system and reduce the cost of the controller. One intermittent-hold controller is based on the
feedback control strategy, while the other one integrates an adaptive control strategy. Moreover, two
crucial theorems are derived from the proposed lemma and controllers, guaranteeing the exponential
synchronization between drive and response systems. Finally, the superior performance of the
controllers in achieving exponential synchronization is demonstrated through simulations.

Keywords: exponential synchronization; memristive neural networks; fractional-order system;
intermittent-hold control; secure communication

1. Introduction

A memristor is a kind of basic circuit element introduced by Chua [1]. In 2008, a phys-
ical model was proposed, making memristors appropriate for practical applications [2].
Owing to their unique nonlinear characteristics and considerable advantages, memristors
have been extensively studied. Inspired by biological concepts, memristors have been
applied in neural networks due to their abilities to learn and forget [3]. Therefore, memris-
tors have become a hot topic in various fields, including electrical engineering [4], chaotic
circuits [5] and neural networks [6]. Memristor neural networks (MNNs) are complex
network systems that integrate the characteristics of memristors and neural networks.
The authors of [7] investigated the multistability of MNNs using nonlinear theory and
demonstrated the chaotic behavior of memristor-based Hopfield neural networks. Finite
time synchronization was proposed through an adaptive control strategy for memristive
neural networks in [8]. MNNs can perform chaotic behavior when appropriate parameters
are selected, which has attracted significant attention [9,10].

Cellular neural networks (CNNs) were proposed in 1988 in [11], with the connection
weights determined according to the characteristics and dynamical behaviors of neurons,
reflecting the intrinsic nature of CNNs. CNNs have attracted a lot of attention, as seen
in [12–14]. Fuzzy cellular neural networks (FCNNs) are a specialized form of CNNs in-
corporating fuzzy operations that were first proposed in [15]. Fuzzy logic can provide
effective features of dynamic behavior, such as increased robustness and stability. The
uncertainties in the FCNNs make them well-suited to address nonlinear filtering problems.
Furthermore, ref. [16] demonstrated that FCNNs behave well in image processing and
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recognition. The authors of [17], investigated the mean square stability of FCNNs with
mixed delays. The authors of [18] introduced memristive cellular neural networks (MC-
NNs) by integrating memristors with cellular neural networks. Compared with CNNs,
their improved storage capacity makes MCNNs more popular Furthermore, the authors
of [19] investigated MCNNs, with fixed-time synchronization conditions established by
using feedback controllers and Lyapunov methods. Additionally, ref. [20] reported the syn-
chronization results of memristive neural networks with the fuzzy cellular neural networks
(MFCNNs) through feedback controllers. The combination of memristors with FCNNs can
expand the advantages of memory, in addition to exhibiting chaotic characteristics.

Fractional-order calculus originated three hundred years ago, although it was not
widely promoted due to the lack of physical meanings. Scientists and engineers began to
realize that fractional derivatives and integrals can more accurately describe practical phe-
nomena [21]. For instance, the model of a DC–DC converter is a typical fractional-order (FO)
system, and its performance is affected if a traditional integer-order model is adopted [22].
In [23], Stamova and Stamov studied fractional-order neural networks (FNNs) with delays
and reaction–diffusion. The concept of FO cellular neural networks was proposed by the
authors of [24]. The authors of [25] integrated fuzzy logic into FO cellular neural networks.
With the efforts of scholars, FNNs have become increasingly significant, with their dynamic
properties, such as stability and synchronization, having received extensive attention. The
introduction of FO memristive neural networks (FMNNs) is discussed in [26]. Since then,
many efforts have been made in the study of FMNNs. For instance, FO memristive fuzzy
cellular neural networks (FMFCNNs), which integrate fuzzy logic with fractional-order
MNNs, have been explored, with finite-time stability results reported in [27]. The authors
of [28,29] studied FMFCNNs for finite-time synchronization and fixed-time synchroniza-
tion, respectively. However, the authors of [28] did not employ the Lyapunov method,
and the authors of [29] used an integer-order derivative to handle the Lyapunov function.
Research on FMFCNNs, particularly concerning exponential synchronization, remains
limited. This is one of the motivations of this paper.

Synchronization is a critical dynamic behavior that has been extensively studied. Con-
troller design is a core problem, and there are many effective traditional controllers [30–33].
Intermittent controllers stand out as an economical option that can reduce control resource
loss and is easy to achieve. From the perspective of engineering, the transmitted informa-
tion may be interrupted by disturbances, which means discontinuous controllers are more
suitable for practical applications. The authors of [34,35] investigated the synchronization
of neural networks using an intermittent controller. In [36], a novel intermittent-hold con-
troller was proposed that extends traditional intermittent control by incorporating holding
time, allowing the system to retain state information when communication is interrupted.
This enhancement increases the robustness of the system. Traditional intermittent control
strategies set the control input to zero during communication interruptions, which may
cause a decreased convergence rate. However, intermittent-hold control strategies can
improve this phenomenon, as demonstrated in [37]. Moreover, intermittent-hold control
strategies simplify the design of controllers by not updating the control input during
communication interruptions, thereby reducing the cost of controllers. But this kind of
controller has not been applied in FNNs. For delayed FNNs, achieving exponential syn-
chronization is challenging due to the distinct principles of fractional derivatives compared
to integer-order derivatives. To address this, we present an inequality to handle delay
terms and study exponential synchronization problems of FMFCNNs.

Moreover, in practical applications, chaotic synchronization can be utilized in secure
communications. For example, the authors of [38] considered the synchronization problems
of the MNNs and achieved encryption and decryption. Due to the enriched dynamical
behaviors and the expanded parameter spaces of FO systems, the neural networks rep-
resented by FO calculus have more unpredictable dynamics. These characteristics make
secure communication problems based on FO systems more complicated [39]. The study
reported in [40] exhibits the robustness of FO systems, implying that such systems can en-
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sure the stability and reliability of secure communication, even in unstable communication
environments and under external interference. Inspired by the above discussion, this paper
designs an intermittent-hold controller of FO systems and applies the synchronization
results to secure communication problems.

The exponential synchronization of the FMFCNNs is achieved in this paper, and a
novel intermittent-hold controller is designed. The main contributions are summarized
as follows:

(1) In this paper, a novel intermittent-hold controller is designed. The controller can
chose control time flexibly with less control loss. Furthermore, adaptive control is
integrated with intermittent-hold control to handle more complicated situations such
as uncertainties and chaos.

(2) A new inequality is introduced to provide the exponential stability condition for
fractional-order (FO) systems, overcoming the challenges in constructing Lyapunov
functions for FO systems. Based on this novel inequality, the exponential synchroniza-
tion of FMFCNNs is achieved.

(3) Some examples are provided to demonstrate the effectiveness of the proposed con-
ditions. The control time and resting time can be chosen as required, and larger
delays can be tackled by using the proposed conditions and controller, as shown
in simulations.

(4) The conditions can be applied to secure communication problems, as shown in
Example 3. The chaotic signal generated by the FO drive system is mixed with the orig-
inal signal for encryption. The decrypted signal is recovered through synchronized
response systems.

The remainder of this paper is structured as follows. Some lemmas, definitions and
models used in this paper are described in Section 2. Two types of intermittent-hold con-
trollers are designed and some new lemmas and theorems are provided in Section 3. Three
examples of three-dimensional and two-dimensional cases, as well as secure communica-
tions, are presented in Section 4. The last part discusses future work and our proposed
conclusions.

2. Preliminaries and Models

This section contains a description of FMFCNNs and introduces some lemmas used in
this paper.

2.1. Model Description

Consider the following fuzzy cellular FMNNs:

0Dα
t xi(t) = −cixi(t) +

n

∑
j=1

aij(xi(t)) f j(xj(t)) +
n

∑
j=1

bij(xi(t))gj(xj(t − τ))

+
m

∑
j=1

dijνj +
n∧

j=1

αijgj(xj(t − τ)) +
n∧

j=1

Tijνj +
n∨

j=1

Sijνj

+
n∨

j=1

βijgj(xj(t − τ)) + Ii,

(1)

where ϕ(s) ∈ C([−τ, 0],Rn) denotes the initial condition, ci is the self-feedback coefficient,
and aij(xi(t)) and bij(xi(t)) are the memristor’s connective weights. τ is the time delay, and
f j and gj are feedback functions. In the fuzzy cellular neural network model, αij and βij are
elements of fuzzy feedback, αij is MIN and other is MAX. The MIN of a fuzzy feed-forward
neural network is Tij, and MAX is Sij. νj,

∧
and

∨
are bias of the ith neuron and fuzzy
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AND and OR, respectively. The memristive weights of aij(xi(t)) and bij(xi(t)) are satisfied
as follows:

aij(xi(t)) =

{
Âij, |xi(t)| ≤ Ti

Ǎij, |xi(t)| > Ti,
bij(xi(t)) =

{
B̂ij, |xi(t)| ≤ Ti

B̌ij, |xi(t)| > Ti,
(2)

where Ti > 0 is a switching jump and Âij, Ǎij, B̂ij and B̌ij represent memristance-
related constants.

Regarding (1) as drive systems, the response systems of fuzzy cellular FMNNs can be
described as follows:

0Dα
t yi(t) = −ciyi(t) +

n

∑
j=1

aij(yi(t)) f j(yj(t)) +
n

∑
j=1

bij(yi(t))gj(yj(t − τ))

+
m

∑
j=1

dijνj +
n∧

j=1

αijgj(yj(t − τ)) +
n∧

j=1

Tijνj +
n∨

j=1

Sijνj

+
n∨

j=1

βijgj(yj(t − τ)) + Ii + ui(t),

(3)

where the initial condition is φ(s) ∈ C([−τ, 0],Rn), and ui(t) is the intermittent hold
controller. The memristor’s connection weights (aij(yi(t)) and bij(yi(t))) are denoted
as follows:

aij(yi(t)) =

{
Â′

ij, |yi(t)| ≤ Ti

Ǎ′
ij, |yi(t)| > Ti,

bij(yi(t)) =

{
B̂′

ij, |yi(t)| ≤ Ti

B̌′
ij, |yi(t)| > Ti.

(4)

According to Filippov and differential inclusion theories, there exist measurable func-
tions, i.e., a∗ij ∈ co[aij, aij], b∗ij ∈ co[bij, bij], where aij represents the minimum of {Âij, Ǎij}, aij

denotes the maximum of {Âij, Ǎij} and bij and bij stand for min{B̂ij, B̌ij} and max{B̂ij, B̌ij},
respectively. Then the FO neural networks (1) can be rewritten as follows:

0Dα
t xi(t) = −cixi(t) +

n

∑
j=1

a∗ij f j(xj(t)) +
n

∑
j=1

b∗ijgj(xj(t − τ))

+
m

∑
j=1

dijνj +
n∧

j=1

αijgj(xj(t − τ)) +
n∧

j=1

Tijνj +
n∨

j=1

Sijνj

+
n∨

j=1

βijgj(xj(t − τ)) + Ii.

(5)

There exist measurable functions, i.e., a∗∗ij ∈ co[a
′
ij, a

′
ij], b∗∗ij ∈ co[b

′
ij, b

′

ij], where a
′
ij

represents the minimum of {Â′
ij, Ǎ

′
ij} and a

′
ij denotes the maximum of {Â′

ij, Ǎ
′
ij}. b

′
ij and

b
′

ij stand for min{B̂′
ij, B̌

′
ij} and max{B̂′

ij, B̌
′
ij}, respectively. The response systems can be

described as follows:

0Dα
t yi(t) = −ciyi(t) +

n

∑
j=1

a∗∗ij f j(yj(t)) +
n

∑
j=1

b∗∗ij gj(yj(t − τ))

+
m

∑
j=1

dijνj +
n∧

j=1

αijgj(yj(t − τ)) +
n∧

j=1

Tijνj +
n∨

j=1

Sijνj

+
n∨

j=1

βijgj(yj(t − τ)) + Ii + ui(t).

(6)
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The error is denoted as ei(t) = yi(t) − xi(t), and the error system of (5) and (6) is
expressed as follows:

0Dα
t ei(t) = −ciei(t) +

n

∑
j=1

[(
a∗∗ij f j(yj(t))− a∗ij f j(xj(t))

)
+

(
b∗∗ij gj(yj(t − τ)) (7)

− b∗ijgj(xj(t − τ)
)]

+
n∧

j=1

[
αij

(
gj(yj(t − τ))− gj(xj(t − τ))

)]
+

n∨
j=1

[
βij

(
gj(yj(t − τ))− gj(xj(t − τ))

)]
+ ui(t).

When the error system is stable under controller ui(t), systems (5) and (6) can achieve
synchronization. Therefore, the subsequent sections focus on designing controllers and
investigating the synchronization problems.

2.2. Preliminaries

In this subsection, some useful assumption and lemmas are presented, along with the
definition of a Caputo derivative. The models proposed in this paper are described using
the Caputo derivative.

Definition 1 ([41]). For n + 1-order continuous differentiable functions ( f ∈Cn+1([t0,+∞])), the
Caputo fractional-order derivative is defined as follows:

0Dα
t f (t) =

1
Γ(n − α)

∫ t

t0

(t − s)n−α−1 f (n)(s)ds, (8)

where n − 1 ≤ α < n and n > 0 is an integer.

Assumption 1. Activation functions f j and gj satisfy the following for all j = 1, 2, . . . , n, x, y ∈ R,
x ̸= y:

(1) f j(0) = gj(0) = 0,

(2)| f j(y)− f j(x)| ≤ Fj|y − x|, |gj(y)− gj(x)| ≤ Gj|y − x|,
(9)

where Fj and Gj > 0 are Lipschitz constants.

Lemma 1 ([42]). Based on Assumption 1, for measurable functions (a∗ij, a∗∗ij ∈ co[aij, aij], b∗ij, b∗∗ij ∈
co[bij, bij]), then

|a∗∗ij f j(yj(t))− a∗ij f j(xj(t))| ≤ γ∗
ijFj|yj(t)− xj(t)|,

|b∗∗ij gj(yj(t))− b∗ijgj(xj(t))| ≤ δ∗ijGj|yj(t)− xj(t)|,
(10)

where γ∗
ij = max{|Âij|, |Ǎij|}, δ∗ij = max{|B̂ij|h, |B̌ij|}.

Lemma 2 ([16]). For system (5), we have the following:

|
n∧

j=1

αij
(

gj(yj(t))− gj(xj(t))
)
| ≤

n

∑
j=1

Gj|αij||yj(t)− xj(t)|,

|
n∨

j=1

βij
(

gj(yj(t))− gj(xj(t))
)
| ≤

n

∑
j=1

Gj|βij||yj(t)− xj(t)|,
(11)

where xj(t) and yj(t) are states of system (5).
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Lemma 3 ([43]). For a continuous function (V(t)), for 0 < α < 1, there exist constants (ρ and δ)
such that

0Dα
t V(t) ≤ −ρV(t) + δ, t ≥ 0. (12)

Then, we can obtain

0Dα
t V(t)− δ

ρ
≤ (V(0)− δ

ρ
)e−

ρ
Γ(α+1) tα. (13)

3. Main Results

A novel intermittent-hold controller is designed and the control strategies are given
in this section. Feedback control and adaptive control are integrated with intermittent-
hold control. Some sufficient conditions for achieving exponential synchronization of FO
systems are provided in this part.

3.1. Controller Design

Consider following intermittent controller:

ui(t) =


ũi(t), t ∈ [tk, tk1),
ũi(tk), t ∈ [tk1, tk2),
0, t ∈ [tk2, tk+1),

(14)

In contrast with traditional intermittent control, the intermittent-hold control strategy
remains the last received state information of the system instead of stopping control
input. By selecting the appropriate holding interval, drive and response systems can
achieve synchronization faster. In addition, the intermittent-hold control strategy is less
conservative than traditional intermittent control and can achieve synchronization even
with shorter communication intervals [44]. The time intervals are tk+1 − tk = T, tk1 − tk =
θ1, tk2 − tk1 = θ2 and tk+1 − tk2 = θ3. The controller can be designed as follows:

ui(t) =


−kiei(t)− ηi|ei(t − τ)|, t ∈ [tk, tk1),
−kiei(t−k1)− ηi|ei(t−k1 − τ)|, t ∈ [tk1, tk2),
0, t ∈ [tk2, tk+1),

(15)

where the control gains (ki and ηi) need to be designed later. Controller (14) can be designed
as an adaptive intermittent-hold controller as follows:

ui(t) =


−kiei(t)− 1

2 ξiλi(t), t ∈ [tk, tk1),
−k

′
iei(t−k1)− ξ

′
iλi(t−k1), t ∈ [tk1, tk2),

0, t ∈ [tk2, tk+1),

(16)

where λi(t) = 1
ei(t)

e2
i (t − τ), 0Dα

t ki = k̂ie2
i (t)−

1
2 k̂iq1ki, 0Dα

t ξi = ξ̂ie2
i (t − τ)− 1

2 ξ̂iq2ξi and

k̂i, ξ̂i, q1, q2 > 0 are constants.

Remark 1. Controller (14) adopts an intermittent-hold control strategy, allowing for flexible
selection of control time and holding time. By using this controller, larger delays can be tackled as
shown in Figure 8. Controller (15) is feedback-based, and controller (16) is adaptive-based so that it
can handle more complex situations. The design of control gains is addressed subsequently.

Remark 2. The use of an adaptive controller is an intelligent control strategy. The control law
includes an update rule to adjust the control parameters. These parameters are dynamically updated
based on errors and state changes between drive and response systems. The design of control
parameters k̂i and ξ̂i needs to be determined by the conditions outlined in Theorem 2.
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3.2. Exponential Synchronization of FMNNs with Fuzzy Cellular Neural Networks

In this subsection, a lemma for a delayed FO system is presented that addresses the
exponential stability and synchronization problems. The results for FMFCNNs with two
kinds of intermittent-hold control are reported.

Lemma 4. For following delayed FO system with V(t) > 0, V(t) is exponentially stable if ρ1 > 0,
ρ2 > 0 and V(0) is bounded:

0Dα
t V(t) ≤ −ρ1V(t) + ρ2V(t − τ) + δ.

Then, there exist positive constants (b and σ1) such that

V(t) ≤ be−ρ2σ1tα
.

Proof of Lemma 4. For a positive function (m(t)), we have

0Dα
t V(t) = −ρ1V(t) + ρ2V(t − τ) + δ − m(t), (17)

and, taking the FO integral of (17), we can obtain

V(t) = V(0) + 0D−α
t (−ρ1V(t) + ρ2V(t − τ) + δ − m(t)). (18)

Then, taking the Laplace transform of (18), we derive the following equation:

V̄(s) = s−1V(0) + s−α(−ρ1V̄(s)) + s−α(ρ2V̄(s − τ)) + s−αδs−1 − s−αm̄(s), (19)

where L{V(t); s} = V̄(s), L{m(t); s} = m̄(s). From (19), we have

V̄(s) =
s−1

1 + s−αρ1
V(0) +

s−α

1 + s−αρ1
(ρ2V̄(s − τ)) +

s−α−1

1 + s−αρ1
δ − s−α

1 + s−αρ1
m̄(s), (20)

Then, taking the inverse Laplace transform of (20), we can obtain

V(t) ≤ V(0)Eα(−ρ1tα) + δtαEα,α+1(−ρ1tα)

+ ρ2

∫ t

0
(t − s)α−1Eα,α(−ρ1(t − s)α)V(s − τ)ds.

(21)

According to [45], we have 0 < Eα(−ρ1tα) < 1, and 0 < tαEα,α+1(−ρ1tα) < 1
ρ1

. Then,
we can obtain

V(t) ≤ V(0) +
δ

ρ1
+ ρ2

∫ t

0
(t − s)α−1Eα,α(−ρ1(t − s)α)V(s − τ)ds. (22)

Letting σ∗ = sup−τ≤s≤t{V(s − τ) + V(s)}, we have

V(t) ≤ V(0) +
δ + σ∗ρ2

ρ1
− ρ2

∫ t

0
(t − s)α−1Eα,α(−ρ1(t − s)α)V(s)ds. (23)

By utilizing grown-wall inequality we obtain

V(t) ≤ be−ρ2tαEα,α+1(−ρ1tα), (24)

where b = V(0) + δ+σ∗ρ2
ρ1

and, because of tαEα,α+1(−ρ1tα) > 0, there exists σ1 > 0 such
that Eα,α+1(−ρ1tα) > σ1. Therefore, we can obtain

V(t) ≤ be−ρ2σ1tα
. (25)
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Remark 3. When FO systems satisfy the requirements of Lemma 4, V(t) decays exponentially.
If V(t) is a Lyapunov functional, the results of exponential stability or exponential synchronization
can be obtained under Lemma 4.

Theorem 1. Under the assumption 1, if there exists a positive control gain (ki) such that

ρ = min
i
{ci + ki −

n

∑
j=1

γ∗
jiFi} > 0, (26)

ρ∗1 = min
i
{2ci −

n

∑
j=1

(γ∗
ijFj + γ∗

jiFi)− ρ2} > 0, (27)

ρ2 = max
i

{
n

∑
j=1

(δ∗ji + |αji|+ |β ji|)Gi} > 0 (28)

and

ηi =
n

∑
j=1

(δ∗ji + |αij|+ |βij|)Gi (29)

hold, where i = 1, 2, . . . , n and other constants are previously defined system parameters, fuzzy
cellular FMNNs (5) and (6) can achieve exponential synchronization with controller (15).

The proof of Theorem 1 is shown in Appendix A.
If controller (15) is changed into an adaptive intermittent-hold controller as (16),

a different synchronization result can be obtained.

Theorem 2. Fuzzy cellular FMNNs (5) and (6) can achieve exponential synchronization with
adaptive intermittent-hold controller (16) if there exist control gains (k̂i, ξ̂i and k

′
i) ξ

′
i such that

ρ = min
i
{2ci + 2k̂i −

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
−

n

∑
j=1

[
δ∗ij + |αij|+ |βij|

]
Gj} > 0,

ρ1 = min
i
{2ci + k

′
i +

1
2

ξ
′
i −

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
−

n

∑
j=1

[
δ∗ij + |αij|+ |βij|

]
Gj} > 0,

n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gi − ξ̂i ≤ 0,

and assumption 1 holds, where i = 1, 2, . . . , n and other constants are previously defined system
parameters.

The proof of Theorem 2 is given in Appendix B.

Remark 4. The gains of controllers are determined by the conditions of theorems. For controller (15),
the gains (ki(i = 1, 2, . . . , n)) need to satisfy the conditions of Theorem 1, and ηi(i = 1, 2, . . . , n)
are given in (29). For controller (16), the k̂i, ξ̂i(i = 1, 2, . . . , n) of adaptive laws need to satisfy the
conditions of Theorem 2. When inequalities in theorems are satisfied with system parameters and
control gains, the drive and response systems can achieve synchronization.

4. Simulation

Example 1. Consider a three-dimensional FMNN with a fuzzy cellular neural network with the
following parameters:

a11(x1(t)) =

{
2, |x1(t)| ≤ 1
1.9, |x1(t)| > 1

, a12(x1(t)) =

{
−1.3, |x1(t)| ≤ 1
−1.1, |x1(t)| > 1

,
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a13(x1(t)) =

{
0.2, |x1(t)| ≤ 1
−0.2, |x1(t)| > 1

, a21(x2(t)) =

{
1.8, |x2(t)| ≤ 1
1.8, |x2(t)| > 1

,

a22(x2(t)) =

{
1.7, |x2(t)| ≤ 1
1.72, |x2(t)| > 1

, a23(x2(t)) =

{
1.1, |x2(t)| ≤ 1
1.2, |x2(t)| > 1

,

a31(x3(t)) =

{
−4.8, |x3(t)| ≤ 1
−4.7, |x3(t)| > 1

, a32(x3(t)) =

{
0.5, |x3(t)| ≤ 1
−0.5, |x3(t)| > 1

,

a33(x3(t)) =

{
1, |x3(t)| ≤ 1
1.2, |x3(t)| > 1

, b11(x1(t)) =

{
−0.1, |x1(t)| ≤ 1
−0.3, |x1(t)| > 1

,

b12(x1(t)) =

{
0.25, |x1(t)| ≤ 1
0.35, |x1(t)| > 1

, b13(x1(t)) =

{
0.5, |x1(t)| ≤ 1
−0.5, |x1(t)| > 1

,

b21(x2(t)) =

{
−0.25, |x2(t)| ≤ 1
−0.15, |x2(t)| > 1

, b22(x2(t)) =

{
−0.18, |x2(t)| ≤ 1
−0.2, |x2(t)| > 1

,

b23(x2(t)) =

{
0.15, |x2(t)| ≤ 1
0.15, |x2(t)| > 1

, b31(x3(t)) =

{
0.15, |x3(t)| ≤ 1
0.7, |x3(t)| > 1

,

b32(x3(t)) =

{
0.2, |x3(t)| ≤ 1
−0.2, |x3(t)| > 1

, b33(x1(t)) =

{
−0.28, |x3(t)| ≤ 1
−0.12, |x3(t)| > 1

,

where c1 = c2 = c3 = 2, τ = 0.1, α = 0.9 and k1 = k2 = k3 = 5 and the activation functions are
fi(x) = gi(x) = 1

2 (|1 + x|+ |1 − x|).

Other parameters are denoted as follows:

(αij)3×3 =

 −0.1 −0.01 0.1
−0.2 −0.1 0.1
−0.04 −0.2 0.4

, (βij)3×3 =

 −0.1 −0.01 0.3
−0.1 −0.2 0.2
−0.1 −0.2 0.3

,

D = (dij)3×3 =

 0.1 0.1 −0.1
0.1 0.1 −0.2
0.2 0.1 0.2

, T = (Tij)3×3 =

 0.2 0.1 0.2
0.2 0.2 0.1
0.1 0.1 0.2

,

S = (Sij)3×3 =

 0.2 0.1 0.2
0.3 0.1 0.2
0.1 0.1 0.2

, V = (νj)3×1 =

 1
2
1

.

Let Fi = 0.1 and Gi = 1; then, according to Lemma 2 and the above parameters, we
can obtain

(δ∗ij)3×3 =

 0.3 0.35 0.5
0.25 0.2 0.15
0.7 0.2 0.28

, (γ∗
ij)3×3 =

 2 1.3 0.2
1.8 1.72 1.2
4.8 0.5 1.2

.

We can calculate that ρ2 = maxi{∑n
j=1(δ

∗
ji + |αji|+ |βji|)Gi} = 2.37 > 0, ρ∗1 = mini{2ci −

∑n
j=1(γ

∗
ijFj + γ∗

jiFi) − ρ2} = 0.42 > 0 and ρ = mini{ci + ki − ∑n
j=1 γ∗

jiFi} = 6.4 > 0 for
i = 1, 2, 3 and that ηi = ∑n

j=1(δ
∗
ji + |αij|+ |βij|)Gi, η1 = 1.87, η2 = 1.65 and η3 = 2.17. The

control gains of controller (15) satisfy the conditions of Theorem 1 with the above system
parameters. Therefore, the drive and response systems can achieve synchronization.

Figure 1 shows that the trajectories of x1(t) and y1(t) can achieve synchronization un-
der intermittent-hold controller (15) with initial values of x1(0) = −0.8626 and
y1(0) = −0.9978. Figure 2 shows that the error systems can converge to zero with ini-
tial values of x(0) = (x1(0), x2(0), x3(0))T = (−0.8626, 0.0387, 0.1755)T and y(0) =
(y1(0), y2(0), y3(0))T = (−0.9978, −1.1277, −0.3095)T .
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Letting tk+1 − tk = 0.1, the control time is chosen as θ1 = 0.05, the holding time is
θ2 = 0.025 and the rest time is θ3 = 0.025, as represented in Figures 3 and 4. Furthermore,
by selecting a delay of τ = 1, FMNs (5) and (6) with controller (15) can achieve exponential
synchronization, which is illustrated in Figure 5. The trajectories of error between FMNs (5)
and (6) are below 3.4 ∗ exp(−1.085x), which is consistent with the results of Theorem 1.

0 1 2 3 4 5 6 7 8

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 1. Trajectories of x1(t) and y1(t) under controller (15) with with initial values of
x1(0) = −0.8626 and y1(0) = −0.9978.

0 1 2 3 4 5 6 7 8

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 2. Trajectories of error between FMNs (5) and (6) under controller (15).
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0 1 2 3 4 5 6 7 8

Figure 3. The time interval with a control time of θ1 = 0.05, holding time of θ2 = 0.025 and rest time
of θ3 = 0.025.
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3
(t

)
u2(t)
u3(t)

(a) (b)

Figure 4. Trajectories of controller (15) with a control time of θ1 = 0.05, holding time of θ2 = 0.025
and rest time of θ3 = 0.025. (a) u1(t); (b) u2(t) and u3(t).
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Figure 5. The norm of error between FMNs (5) and (6) with τ = 1.

To compare the performance of intermittent-hold control with that of traditional
intermittent control, we compare convergence time using three different sets of initial
values. The first set of initial values is x(0) = (−0.3175,−2.5191,−0.1228)T and y(0) =
(1.0146, 1.7545, 0.3030)T . The second set is x(0) = (0.5871,−0.2314,−0.1870)T and y(0) =
(−0.5449,−0.2592,−0.9586)T . The third set is x(0) = (−0.9639, 0.4034,−0.4632)T and
y(0) = (0.5931, 0.6637,−0.8803)T . The intermittent-hold controller becomes a traditional
intermittent controller when the holding time is θ2 = 0, letting tk+1 − tk = 0.5, τ = 0.2 and
τ = 1.5.
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Table 1 show that the intermittent-hold control strategy achieves a faster convergence
rate than traditional intermittent control. Moreover, the intermittent-hold controller performs
better than the traditional one when dealing with large time delays.

Table 1. The error convergence time with different intermittent holding times and an error bound of 0.02.

Time Delay Initial Value Set Control Strategy Convergence Time (s)

τ = 0.2

first set θ1 = 0.25, θ2 = 0.175, θ3 = 0.075 2.18
θ1 = 0.25, θ3 = 0.25 (without hold) 4.05

second set θ1 = 0.25, θ2 = 0.175, θ3 = 0.075 2.36
θ1 = 0.25, θ3 = 0.25 (without hold) 4.06

third set θ1 = 0.25, θ2 = 0.175, θ3 = 0.075 2.37
θ1 = 0.25, θ3 = 0.25 (without hold) 4.03

τ = 1.5

first set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 3.76
θ1 = 0.25, θ3 = 0.25 (without hold) 5.07

second set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 5.01
θ1 = 0.25, θ3 = 0.25 (without hold) 5.08

third set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 4.95
θ1 = 0.25, θ3 = 0.25 (without hold) 5.06

Remark 5. Based on the FO system parameters in Example 2 in [46], we can calculate that
ρ2 = 5.72 > 0, ρ∗1 = 1.33 > 0, ki = 10, η1 = 4.44, η2 = 5.9 and η3 = 3.74, indicating
that the presented results still work under the parameters reported in [46]. Figure 6 shows the
synchronized states (x1(t) and y1(t)), along with the trajectories of error between two states.
Under the parameters of Example 1 in [28], the theorems proposed in this paper are also valid.
Moreover, the proposed results can be applied to handle larger delays, such as τ = 1.5. Therefore,
the results obtained in this paper are less conservative.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0 1 2 3 4 5
-0.1

0

0.1

0.2

(a) (b)

Figure 6. Trajectories of states under the parameters reported in [46] with intermittent-hold control.
(a) Trajectories of x1(t) and y1(t); (b) trajectories of error.

Example 2. Consider a two-dimensional FMNN with a fuzzy cellular neural network with the
following parameters:

a11(x1(t)) = 1, a22(x2(t)) = 1.8,

a12(x1(t)) =

{
7, |x1(t)| ≤ 1
5, |x1(t)| > 1

, a21(x2(t)) =

{
0.8, |x1(t)| ≤ 1
1, |x1(t)| > 1

,

b11(x1(t)) =

{
−1.5, |x1(t)| ≤ 1
−1.2, |x1(t)| > 1

, b12(x1(t)) =

{
1, |x1(t)| ≤ 1
0.8, |x1(t)| > 1

,

b21(x2(t)) =

{
0.8, |x1(t)| ≤ 1
1, |x1(t)| > 1

, b22(x2(t)) =

{
−1.4, |x1(t)| ≤ 1
−1.6, |x1(t)| > 1

,
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where c1 = c2 = 2, τ = 0.8, α = 0.98 and k̂i = 4 and the activation functions are fi(x) =
gi(x) = 1

2 (|1 + x|+ |1 − x|). Other parameters are denoted as follows:

(αij)2×2 =

(
−1.6 −0.2
−0.4 −2.8

)
, (βij)2×2 =

(
−1.2 −0.4
−0.1 −2.4

)
,

D = (dij)2×2 =

(
0.1 0.1
0.1 0.1

)
, T = (Tij)2×2 =

(
0.2 0.1
0.2 0.2

)
,

S = (Sij)2×2 =

(
0.2 0.1
0.3 0.1

)
, V = (νj)2×1 =

(
0.5
0.5

)
.

Let Fi = 0.1 and Gi = 1; then, according to Lemma 2 and the above parameters, we
can obtain

(δ∗ij)2×2 =

(
1.5 1
1 1.6

)
, (γ∗

ij)2×2 =

(
1 7
1 1.8

)
.

We can calculate that ρ = mini{2ci + 2k̂i − ∑n
j=1

[
γ∗

ijFj + γ∗
jiFi

]
− ∑n

j=1
[
δ∗ij + |αij| +

|βij|
]
Gj} = 2.54 > 0 and ∑n

j=1
(
δ∗ji + |αji|+ |β ji|

)
Gi − ξ̂i ≤ 0, for i = 1, 2, ξ̂1 ≥ 0.58, ξ̂2 ≥

0.84. The control gains of controller (16) satisfy the conditions of Theorem 2 with the above
system parameters. Therefore, the drive and response systems can achieve synchronization.

According to Theorem 2, we find that ρ∗1 = 1.38 > 0, ρ > 0, η1 = 1.18 and η2 = 1.46.
Figure 7 shows a control time of θ1 = 0.07, a holding time of θ2 = 0.015 and a rest time of
θ3 = 0.015. To demonstrate the trajectory and effectiveness of the controller, we select three
sets of states (x(t) and y(t)) with different initial values of x1(0) = (−1.0292, 2.6821)T ,
y1(0) = (−1.6697, 0.5007)T , x2(0) = (−1.8612, 0.9289)T , y2(0) = (−0.2962, −0.3957)T ,
x3(0) = (0.4037, 0.5386)T and y3(0) = (0.6360, −0.8386)T . Figure 8 shows the results
obtain using the intermittent-hold controller integrated with an adaptive strategy and a
delay of τ = 0.8.

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

Figure 7. The time interval with a control time of θ1 = 0.07, a holding time of θ2 = 0.015 and a rest
time of θ3 = 0.015.

Figure 9 presents the error between drive and response systems based on three sets of
states (x(t) and y(t)) with different initial values. ei is the first dimension of yi(t)− xi(t).
Figure 9 shows that the conservation of Theorem 2 is reduced due to the application of
intermittent-hold controller (16). In this simulation, we use three different initial values,
with delays set to τ = 0.1, τ = 0.5, τ = 1 and τ = 1.5. The errors between drive and
response systems can converge to zero, which means that the results are applicable even in
situations with larger delays.
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Figure 8. Trajectories of controller (16) with three sets of states with different initial values and
τ = 0.8. (a) u1(t); (b) u2(t) and u3(t).
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Figure 9. The error between FMNs (5) and (6) under controller (16) with different delays. (a) Delay of
τ = 0.1; (b) delay of τ = 0.5; (c) delay of τ = 1; (d) delay of τ = 1.5.

Figure 10 shows the trajectories of controller (16) with four different delays. The lager the
time delays, the larger the controller adjustment range. Comparisons of convergence times for
three sets of initial values are provided. The first set of initial values is x(0) = (0.1873, 0.4373)T

and y(0) = (1.5822,−0.9426)T. The second set is x(0) = (−0.0323, 0.0224)T and y(0) =
(−0.6654,−1.2561)T. The third set is x(0) = (0.3669,−1.2666)T and y(0) = (−0.3175, 0.3563)T.
Figure 11 shows a comparison between an intermittent-hold controller and a traditional
intermittent controller. The delays are set as τ = 1.5, tk+1 − tk = 0.5, and Figure 11a shows that
FMNs (5) and (6) can achieve synchronization, while Figure 11b displays the errors between
two states under intermittent-hold control and intermittent control. Table 2 demonstrates that
the intermittent-hold control strategy can converge faster than the traditional intermittent
control.



Fractal Fract. 2024, 8, 519 15 of 24

0 2 4 6 8
-6

-5

-4

-3

-2

-1

0

0 2 4 6 8
-8

-6

-4

-2

0

2

(a) (b)

0 2 4 6 8
-6

-4

-2

0

2

0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2
data1

(c) (d)

Figure 10. Trajectories of controller (16) with different delays. (a) Delay of τ = 0.1; (b) delay of
τ = 0.5; (c) delay of τ = 1; (d) delay of τ = 1.5.
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Figure 11. Comparison of intermittent-hold control with traditional control (τ = 1.5). (a) The
trajectories of x(t) and y(t) with an intermittent hold controller; (b) the trajectories of error (e1(t))
with and without holding time.

Table 2. The error converge time with different intermittent holding times and an error bound of 0.02.

Time Delay Initial Value Set Control Strategy Convergence Time (s)

τ = 0.2

first set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 1.01
θ1 = 0.25, θ3 = 0.25 (without hold) 1.11

second set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 0.87
θ1 = 0.25, θ3 = 0.25 (without hold) 1.09

third set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 0.62
θ1 = 0.25, θ3 = 0.25 (without hold) 0.95

τ = 1.5

first set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 5.11
θ1 = 0.25, θ3 = 0.25 (without hold) 7.12

second set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 5.01
θ1 = 0.25, θ3 = 0.25 (without hold) 7.03

third set θ1 = 0.25, θ2 = 0.125, θ3 = 0.125 4.01
θ1 = 0.25, θ3 = 0.25 (without hold) 6.52

Example 3. Memristive neural networks can exhibit chaotic behaviors. Therefore, the results
reported in this paper can be employed in secure communication problems.
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System (1) can be degenerated as follows:

0Dα
t xi(t) = −cixi(t) +

n

∑
j=1

aij(xi(t)) f j(xj(t)) +
n

∑
j=1

bij(xi(t))gj(xj(t − τ)) + Ii, (30)

The memristive weights can be described as uncertainties, for instance, A +A(t) =
(aij(xi(t)))n×n, A(t) = EFM, FT F ≤ I. The parameters are set as

A =

 2 −1.2 0
1.8 1.71 1.15

−4.75 0 1.1

, B =

 −10 10 0
28 −1 0
0 0 − 8

3

,

and f j(x) = 1
2 (|1 + x|+ |1 − x|), gj(x) = cos(x), ci = 2(i = 1, 2, 3), τ = 0.1, k̂i = 3(i =

1, 2, 3), θ1 = 0.5, θ2 = θ3 = 0.25.
The response system has the same parameters. In the following simulation, the

synchronization results are applied to the secure communication problem. First, the
transmitter and receiver construct the same memristive neural networks to achieve signal
synchronization. Based on Figure 12, we conclude that synchronization can be achieved by
using controller (16). The transmitter combines the information signal with fractional-order
MNN signals for encryption. The transmitted signal described as S(t) = sin(t) + sin(5t) +
sin(7t) is shown in Figure 13a. The encryption function is Φ1(x, s) = (φ1(x) + φ2(x))S,
where φ1(x) = x2x3 and φ2(x) = x2 + x3. The mixed signal is shown in Figure 13b.

0 2 4 6 8 10
-4

-2

0

2

4

(a) (b)

Figure 12. States trajectory and synchronization. (a) The trajectories of x(t); (b) the trajectories of
error with an intermittent hold controller.
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Figure 13. The transmitted and encrypted information signals. (a) The transmitted information signal;
(b) the mixed signal.

In this way, we can obtain the encryption signal (SE). The receiver uses the synchro-
nized signal to recover the original signal as Sd = Φ2(y, SE). Figure 14 shows that the
signal can be decoded successfully.
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Figure 14. The signal decrypted using the synchronization method.

Remark 6. In the process of encryption and decryption through the use of the synchronization
method, the initial errors are usually caused by the time required for the transmitter and receiver to
establish synchronization. However, the two systems gradually adjust, reducing errors over time.
These initial errors usually do not affect the long-term decryption effect because once the systems
are synchronized, encryption and decryption can be proceed accurately, ensuring the security and
reliability of information transmission.

5. Conclusions

In this paper, the exponential synchronization problems of FMFCNNs are investi-
gated. A novel lemma is introduced to tackle the delay terms of FO systems via inequality
techniques and the FO Laplace transform method. A new intermittent-hold controller is
designed to address the synchronization problems. Furthermore, to handle more com-
plicated situations, an intermittent-hold controller integrated with an adaptive control
strategy is proposed. Additionally, two significant theorems are obtained on the basis of
the proposed lemma and the two controllers. The simulation results confirm that the two
proposed controllers can achieve exponential synchronization and effectively handle larger
time delays. Compared with the traditional intermittent controllers, the proposed con-
trollers have a faster convergence rate. Moreover, an application in secure communication
is exhibited, which demonstrates the effectiveness of the results. For in future works, we
will concentrate on the chaotic synchronization problems of FO systems.
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Appendix A. Proof of Theorem 1

The proof is divided with three cases.

Case 1: t ∈ [tk, tk1)

Consider the following Lyapunov function:

V(e(t)) =
n

∑
i=1

|ei(t)|. (A1)

Then, taking the FO derivative of (A1), we have

0Dα
t V(e(t)) ≤

n

∑
i=1

sign(ei(t))0Dα
t ei(t) (A2)

=
n

∑
i=1

sign(ei(t))
{
− ciei(t) +

n

∑
j=1

[(
a∗∗ij f j(yj(t))− a∗ij f j(xj(t))

)
+

(
b∗∗ij gj(yj(t − τ))− b∗ijgj(xj(t − τ)

)]
+

n∧
j=1

[
αij

(
gj(yj(t − τ))− gj(xj(t − τ))

)]
+

n∨
j=1

[
βij

(
gj(yj(t − τ))− gj(xj(t − τ))

)]
+ ui(t)

}
.

According to Lemma 1 and Lemma 2, we can obtain

0Dα
t V(e(t)) ≤

n

∑
i=1

[
− ci|ei(t)|+ sign(ei(t))

n

∑
j=1

γ∗
ijFj|ej(t)|

+ sign(ei(t))
n

∑
j=1

δ∗ijGj|ej(t − τ)|

+ sign(ei(t))
n

∑
j=1

(|αij|+ |βij|)Gj|ej(t − τ)|

− ki|ei(t)| − ηisign(ei(t))|ei(t − τ)|
]
.

(A3)

Together with the conditions of Theorem 1 (ηi = ∑n
j=1(δ

∗
ji + |αij|+ |βij|)Gi), we can

obtain

0Dα
t V(e(t)) ≤

n

∑
i=1

(
− ci − ki +

n

∑
j=1

γ∗
jiFi

)
|ei(t)|

+
n

∑
i=1

( n

∑
j=1

(δ∗ji + |αij|+ |βij|)Gi − ηi
)
sign(ei(t))|ei(t − τ)|

= −ρV(e(t)),

(A4)

where ρ = mini{ci + ki − ∑n
j=1 γ∗

jiFi} > 0. According to Lemma 3, we have

V(e(t)) ≤ V(e(0))e−
ρ

Γ(α+1) tα

, (A5)

that is,

∥e(t)∥ ≤ V(e(t)) ≤ ∥e(0)∥e−
ρ

Γ(α+1) (t−tk)
α

. (A6)

Case 2: t ∈ [tk1, tk2)
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Consider the following Lyapunov function:

V(e(t)) =
n

∑
i=1

e2
i (t). (A7)

Together with Lemma 1 and Lemma 2, taking the FO derivative of (A7), we can obtain

0Dα
t V(e(t)) ≤ 2

n

∑
i=1

ei(t)0Dα
t ei(t)

≤ 2
n

∑
i=1

{
− cie2

i (t) +
n

∑
j=1

ei(t)
[
γ∗

ijFj|ej(t)|+ δ∗ijGj|ej(t − τ)|

+ (|αij|+ |βij|)Gjej(t − τ)
]
− kiei(t)e(t−k1)− ηiei(t)ei(t−k1 − τ)

}
,

(A8)

And we have following inequalities:

2
n

∑
i=1

n

∑
j=1

γ∗
ijFjei(t)|ej(t)| ≤

n

∑
i=1

n

∑
j=1

γ∗
ijFje2

i (t) +
n

∑
i=1

n

∑
j=1

γ∗
ijFje2

j (t), (A9)

2
n

∑
i=1

n

∑
j=1

(δ∗ij + |αij|+ |βij|)Gjei(t)|ej(t − τ)|

≤
n

∑
i=1

n

∑
j=1

(δ∗ij + |αij|+ |βij|)Gj(e2
i (t) + e2

j (t − τ)).
(A10)

Substituting (A9) and (A10) into (A8), we can obtain

0Dα
t V(e(t)) ≤

n

∑
i=1

[
− 2ci +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij|

+ |βij|
]
Gj

]
e2

i (t) +
n

∑
i=1

n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gie2

i (t − τ)

−
n

∑
i=1

kiei(t)e(t−k1)−
n

∑
i=1

ηiei(t)ei(t−k1 − τ).

(A11)

There exist ε1 and ε2 such that

−
n

∑
i=1

kiei(t)e(t−k1) ≤ −1
2

n

∑
i=1

kie2
i (t)−

n

∑
i=1

(
1
2
− ε1)kie2

i (t
−
k ),

−
n

∑
i=1

ηiei(t)e(t−k1 − τ) ≤ −1
2

n

∑
i=1

ηie2
i (t)−

n

∑
i=1

(
1
2
− ε2)ηie2

i (t
−
k − τ).

(A12)

Therefore, we have

0Dα
t V(e(t)) ≤ −ρ1V(e(t)) + ρ2V(e(t − τ)) + δ, (A13)

where ρ1 = mini{2ci + ki + ηi − ∑n
j=1(γ

∗
ijFj + γ∗

jiFi)− ρ2} > 0, ρ2 = maxi{∑n
j=1(δ

∗
ji + |αji|

+ |β ji|)Gi} > 0 and

δ =

{
0, ε1, ε2 ≤ 1

2 ,

∑n
i=1[(

1
2 − ε1)e2

i (t
−
k ) + ( 1

2 − ε2)e2
i (t

−
k − τ)], others.

(A14)

According to Lemma 4 and the conditions of Theorem 1, we have

V(e(t)) ≤ b1e−ρ2σ1tα
, (A15)
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where b1 = ∥e(0)∥2 + 1
ρ1
(δ + σ∗ρ2), σ1 = inft{Eα,α+1(−ρ1tα)}, σ∗ = sup−τ≤s≤t{V(s) +

V(s − τ)}, that is,

∥e(t)∥2 ≤ V(e(t)) ≤ b1e−ρ2σ1tα ≤ b1e−ρ2σ1(t−tk1)
α
. (A16)

Case 3: t ∈ [tk2, tk+1)

By using the same Lyapunov function, we have

0Dα
t V(e(t)) ≤ −ρ∗1V(e(t)) + ρ2V(e(t − τ)), (A17)

where ρ∗1 = mini{2ci − ∑n
j=1(γ

∗
ijFj + γ∗

jiFi) − ρ2}. Then, according to Lemma 4, we can
obtain

V(e(t)) ≤ b2e−ρ2σ1tα
, (A18)

where b2 = ∥e(0)∥2 + 1
ρ1
(σ∗ρ2), that is,

∥e(t)∥2 ≤ V(e(t)) ≤ b2e−ρ2σ1tα ≤ b2e−ρ2σ1(t−tk2)
α
, (A19)

Now, we can find that ∥e(t)∥ is bounded by an exponential decay function. For each
time interval [tk, tk+1], we only need the minimum of ∥e(t)∥ for t ∈ [tk+1, tk+1,1) to be
smaller than the minimum of ∥e(t)∥ for t ∈ [tk2, tk+1), that is,

∥e(t)∥2 ≤ e−
2ρ

Γ(α+1) (tk+1,1−tk+1)
α

≤ b2e−ρ2σ1(tk+1−tk2)
α
. (A20)

For ρ2
ρ ≤ 2ρ1θα

1
Γ(α+1) , we can find that the zero point of (7) is exponentially stable. This

completes the proof.

Appendix B. Proof of Theorem 2

The proof is divided into three parts.

Case 1: t ∈ [tk, tk1)

Consider the following Lyapunov function:

V(e(t)) = V1(e(t)) + V2(e(t)) + V3(e(t)), (A21)

where

V1(e(t)) =
n

∑
i=1

e2
i (t), V2(e(t)) =

n

∑
i=1

1
k̂i
(ki − k̂i)

2, V3(e(t)) =
n

∑
i=1

1
2ξ̂i

(ξi − ξ̂i)
2.

Because the controller used here is adaptive, the control gains are included in the
construction of V2(e(t)) and V3(e(t)). Then, taking the FO derivative of V1(e(t)), according
to the the proof of Theorem 1, we can obtain

0Dα
t V1(e(t)) ≤ 2

n

∑
i=1

ei(t)0Dα
t ei(t)

≤
n

∑
i=1

[
− 2ci − 2ki +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij|

+ |βij|
]
Gj

]
e2

i (t) +
n

∑
i=1

n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gie2

i (t − τ)

−
n

∑
i=1

ξie2
i (t − τ).

(A22)

Furthermore, we can find that
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0Dα
t V1(e(t)) ≤

n

∑
i=1

[
− 2ci − 2k̂i +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij|

+ |βij|
]
Gj

]
e2

i (t) +
n

∑
i=1

[ n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gi − ξ̂i

]
× e2

i (t − τ)− 2
n

∑
i=1

(ki − k̂i)e2
i (t)−

n

∑
i=1

(ξi − ξ̂i)e2
i (t − τ).

(A23)

Taking the derivatives of V2(e(t)) and V2(e(t)), we have

0Dα
t V2(e(t)) ≤ 2

n

∑
i=1

1
k̂i
(ki − k̂i)0Dα

t ki

= 2
n

∑
i=1

(ki − k̂i)e2
i (t)− q1

n

∑
i=1

(ki − k̂i)ki

≤ 2
n

∑
i=1

(ki − k̂i)e2
i (t)−

q1

2

n

∑
i=1

(ki − k̂i)
2 +

q1

2

n

∑
i=1

k̂2
i ,

(A24)

and

0Dα
t V3(e(t)) ≤

n

∑
i=1

1
ξ̂i
(ξi − ξ̂i)0Dα

t ξi

≤
n

∑
i=1

(ξi − ξ̂i)e2
i (t)−

q2

4

n

∑
i=1

(ξi − ξ̂i)
2 +

q2

4

n

∑
i=1

ξ̂2
i ,

(A25)

respectively.
According to (A23) to (A25) and the conditions of Theorem 2, we can obtain

0Dα
t V(e(t)) ≤

n

∑
i=1

[
− 2ci − 2k̂i +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij| (A26)

+ |βij|
]
Gj

]
e2

i (t)−
q1

2

n

∑
i=1

(ki − k̂i)
2 − q2

4

n

∑
i=1

(ξi − ξ̂i)
2

+
q1

2

n

∑
i=1

k̂2
i +

q2

4

n

∑
i=1

ξ̂2
i

≤ −ρV1(e(t))−
q1k̂i

2
V2(e(t))−

q2ξ̂i
2

V3(e(t)) + δ,

where ρ = mini{2ci + 2k̂i − ∑n
j=1

[
γ∗

ijFj + γ∗
jiFi

]
− ∑n

j=1
[
δ∗ij + |αij| + |βij|

]
Gj}, ∑n

j=1
(
δ∗ji +

|αji|+ |β ji|
)
Gi − ξ̂i ≤ 0, δ = q1

2 ∑n
i=1 k̂2

i +
q2
4 ∑n

i=1 ξ̂2
i . Let ρ∗ = min{ρ, q1 k̂i

2 , q1 ξ̂i
2 }; then, we

have
0Dα

t V(e(t)) ≤ −ρ∗V(e(t)) + δ. (A27)

According to Lemma 3, we can obtain

V(e(t)) ≤ (V(e(0))− δ

ρ∗
)e−

ρ8

Γ(α+1) tα

+
δ

ρ∗
. (A28)

Case 2: t ∈ [tk1, tk2)

Consider the following Laypunov function:

V(e(t)) =
n

∑
i=1

e2
i (t), (A29)
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Then, we can obtain

0Dα
t V(e(t)) ≤ 2

n

∑
i=1

ei(t)0Dα
t ei(t)

≤
n

∑
i=1

[
− 2ci +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij|

+ |βij|
]
Gj

]
e2

i (t) +
n

∑
i=1

n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gie2

i (t − τ)

− 2
n

∑
i=1

ei(t)k
′
iei(t−k1)−

n

∑
i=1

ei(t)ξ
′
i

1
ei(t−k1)

e2
i (t

−
k1 − τ).

(A30)

There exist ε1 and ε2 such that

−2
n

∑
i=1

ei(t)k
′
iei(t−k1) ≤ −

n

∑
i=1

k
′
ie

2
i (t)− 2

n

∑
i=1

(
1
2
− ε1)k

′
ie

2
i (t

−
k1),

−
n

∑
i=1

ei(t)ξ
′
i

1
ei(t−k1)

e2
i (t

−
k1 − τ) ≤ −1

2

n

∑
i=1

ξ
′
ie

2
i (t)−

n

∑
i=1

(
1
2
− ε1)ξ

′
ie

2
i (t

−
k1 − τ).

(A31)

Substituting (A31) into (A30), we have

0Dα
t V(e(t)) ≤

n

∑
i=1

[
− 2ci − k

′
i −

1
2

ξ
′
i +

n

∑
j=1

[
γ∗

ijFj + γ∗
jiFi

]
+

n

∑
j=1

[
δ∗ij + |αij|

+ |βij|
]
Gj

]
e2

i (t) +
n

∑
i=1

n

∑
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gie2

i (t − τ) + δ1

≤ −ρ1V(e(t)) + ρ2V(e(t − τ)) + δ1,

(A32)

where ρ1 = mini{2ci + k
′
i +

1
2 ξ

′
i − ∑n

j=1
[
γ∗

ijFj + γ∗
jiFi

]
− ∑n

j=1
[
δ∗ij + |αij|+ |βij|

]
Gj}, ρ2 =

maxi{∑n
j=1

(
δ∗ji + |αji|+ |β ji|

)
Gie2

i (t − τ)}. According to Lemma 4, we can obtain

V(e(t)) ≤ b1e−ρ2σ1tα
, (A33)

where b1 = V(e(0)) + 1
ρ1
(δ1 + σ∗

k1ρ2), σ1 = inft{Eα,α+1(−ρ1tα)}, σ∗
k1 = sup−τ≤s≤tk1

{V(s) +
V(s − τ)}.

Case 3: t ∈ [tk2, tk+1)

By choosing the same Lyapunov function as (A29), we can obtain

0Dα
t V(e(t)) ≤ −ρ∗1V(e(t)) + ρ2V(e(t − τ)), (A34)

According to Lemma 4, we can obtain

V(e(t)) ≤ b2e−ρ2σ2tα
, (A35)

where b2 = V(e(0))+ 1
ρ1

σ∗
k2ρ2, σ∗

k2 = sup−τ≤s≤tk2
{V(s)+V(s− τ)}, σ1 = inft{Eα,α+1(−ρ1tα)}.

In the same way as Theorem 1, we can find that ∥e(t)∥ is bounded by an exponential decay
function. This completes the proof.
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