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Abstract: Due to system complexity, research on fuzzy fractional-order, singular perturbation, multi-
agent systems (FOSPMASs) remains limited in control theory. This article focuses on the leader-
following consensus of fuzzy FOSPMASs with orders in the range of (0, 2). By employing the T-S
fuzzy modeling approach, a fuzzy FOSPMAS is constructed. In order to achieve the consensus of a
FOSPMAS with multiple time-scale characteristics, a fuzzy observer-based controller is designed,
and the error system corresponding to each agent is derived. Through a series of equivalent trans-
formations, the error system is decomposed into fuzzy singular fractional-order systems (SFOSs).
The consensus conditions of the fuzzy FOSPMASs are obtained based on linear matrix inequalities
(LMIs) without an equality constraint. The theorems provide a way to tackle the uncertainty and
nonlinearity in FOSPMASs with orders in the range of (0, 2). Finally, the effectiveness of the theorems
is verified through an RLC circuit model and a numerical example.

Keywords: fuzzy systems; singular perturbation systems; multi-agent systems; consensus

1. Introduction

In recent decades, the control of multi-agent systems (MASs) has become a leading
research subject, stemming from the superior efficiency of multiple agents collaborating to
execute tasks compared to an individual agent [1]. The applications of MASs are significant,
spanning various domains, including service robotics [2,3], hazardous environment detec-
tion [4], and unmanned aerial vehicle formation flying [5]. Consensus control of MASs is a
fundamental and core issue based on tracking control [6,7]. A significant amount of research
has emerged on the consensus of MASs [8–12]. Ren [8] constructed MASs with second-
order integrator dynamics by analyzing the swarming model and designed a consensus
protocol. Tian and Liu [9] obtained two decentralized consensus conditions of MASs with
diverse input and communication delays. Wen et al. [10] introduced an innovative protocol
designed by using synchronous intermittent local feedback for second-order consensus
of MASs. Zhang et al. [11] proposed event-trigger output feedback control approaches,
enabling all connected communication graphs to reach a consensus. Tan et al. [12] derived
the consensus criteria for cyber-physical systems under sampled data control, employing a
suitable Lyapunov function. The above studies predominantly concentrate on achieving
consensus of MASs with integer order, which encounters challenges in describing actual
systems in nature and industry.

Fractional-order systems (FOSs) are capable of more accurately modeling and com-
puting genetic and memory effects in various complex processes than integer-order sys-
tems [13]. Singular fractional-order systems (SFOSs), also called descriptor systems, have

Fractal Fract. 2024, 8, 523. https://doi.org/10.3390/fractalfract8090523 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8090523
https://doi.org/10.3390/fractalfract8090523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-2831-5747
https://orcid.org/0000-0002-9335-9930
https://orcid.org/0000-0003-0717-5009
https://orcid.org/0000-0001-6026-5674
https://doi.org/10.3390/fractalfract8090523
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8090523?type=check_update&version=2


Fractal Fract. 2024, 8, 523 2 of 21

a broader range of applications. In physics, SFOSs are employed to accurately simulate
a range of complex physical phenomena, including anomalous diffusion [14] and wave
propagation [15]. In engineering, SFOSs are used to enhance the efficiency and accuracy of
both signal processing and image recognition [16]. In addition, the consensus of fractional-
order MASs (FOMASs) has attracted widespread interest [17–22]. Su and Ye proposed
a control strategy with input delays to achieve the consensus of general linear and non-
linear FOMASs under event-triggered conditions in [17,18], respectively. Yang et al. [19]
considered the consensus of nonlinear distributed and input-delayed FOMASs and fur-
ther explored the performance of FOMASs in terms of leader-following and leaderless
global consensus in [20]. Hu et al. [21] developed an adaptive controller that employs an
event-triggered scheme without Zeno behavior, aiming to realize the consensus of FO-
MASs. Bahrampour et al. [22] proposed new Lyapunov-based LMI conditions to determine
the state feedback controller gains on the distributed consensus control of heterogeneous
FOMASs with interval uncertainties. However, many practical MASs exhibit multiple
time-scale characteristics that refer to the coupled coexistence of fast dynamics and slow
dynamics. The design of controllers for these systems frequently encounters difficulties
due to the presence of high dimensionality and pathological values [23,24].

Singular perturbation systems (SPSs) have multiple time scales and inherently patho-
logical dynamical properties [25–27]. SPSs with a certain parasitic parameter (ε) are mod-
eled to describe real systems. In power system modeling, ε is used to represent transient
phenomena in machine reactors or voltage regulators [28]. In industrial control systems,
it signifies small time constants between control and response [29]. Numerous scholars
have intensively studied SPSs [30–35]. On one hand, two commonly employed strategies
for solving control problems of SPSs are the quasi-steady-state method [30] and the block
diagonalization method [31], which decompose the system into slow and fast subsystems.
But these methods rely on the assumption that the fast subsystem matrix is non-singular,
and they are not applicable to non-standard SPSs that cannot be easily decomposed. On
the other hand, Yang et al. [32], Gao et al. [33], and Liu et al. [34] proposed the integral slid-
ing mode control method for full-order SPSs with mismatched disturbances, uncertainty,
and nonlinear input, respectively. Their methods are based on a full-order model, which
eliminates the need to decompose the system. Furthermore, techniques such as the use of
Lyapunov functions and LMIs are also applied to system analysis. Fridman [35] derived
the LMI criteria for the stability of SPSs for delays proportional to ε and delays independent
of ε. Additionally, for singular perturbation MASs (SPMASs), both Ben Rejeb et al. [36]
and Tognetti et al. [37] designed decentralized controllers, enabling systems to synchronize
and ensuring global performance. Xu et al. [38] presented a sliding-mode controller with
memory output for to address the consensus of SPMASs in finite time. Zhang et al. [39]
achieved global Mittag–Leffler consensus tracking for fractional SPMASs modeled by a
discontinuous function with a non-decreasing property. However, in practical applications,
the exact value of the ε parameter is often difficult to obtain directly. By analyzing the
background information of specific problems in depth, the reasonable change range of
ε can be effectively estimated. Given ε in a known interval, the design of controllers to
achieve the consensus of nonlinear FOSPMASs remains an open problem in the field of
control theory.

T-S fuzzy models possess the ability to approximate nonlinear dynamics; therefore,
the well-established control methods for linear systems can be extended to the analysis and
design of nonlinear systems. Wang et al. [40] proposed a parallel distributed compensation
(PDC) method based on a T-S fuzzy model for the stability of nonlinear systems, where the
fuzzy controller adopts the same fuzzy set as the fuzzy system. Using the PDC method,
Wang et al. [41] further analyzed the effectiveness of using a T-S fuzzy model to approximate
nonlinear functions. Numerous scholars have undertaken extensive research endeavors
focusing on T-S fuzzy SPSs [42–45]. Yang and Zhang [42] proposed a design method for
a state feedback controller depending on ε for T-S fuzzy SPSs. Chen et al. [43] focused
on nonlinear SPSs and presented two novel methods to design a static output feedback
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(H∞) controller based on LMIs. Visavakitcharoen et al. [44] designed an event-triggered
controller based on integral feedback for nonlinear SPSs with a fuzzy model. Zhang and
Han [45] proposed two diverse feedback controllers aiming to obtain the stabilization
criteria of fuzzy FOSPSs with α ∈ (0, 1). Nevertheless, research on the consensus control of
fuzzy FOSPMASs is still relatively limited.

Inspired by previous discussions, this paper focuses on filling this research gap. The
following is an overview of the main contributions of this research:

1 To provide a more accurate portrayal of complex systems in practice, a T-S fuzzy
FOSPMAS with α ∈ (0, 2) is formulated to reduce the difficulty of directly studying
nonlinear systems. Compared to integer-order systems, the constructed model ex-
hibits enhanced accuracy and complexity. A fuzzy FOSPS with error as a variable is
derived by designing a fuzzy observer-based controller.

2 The fuzzy FOSPS is analyzed by transforming it into a fuzzy SFOS using the system
augmentation method. In comparison to the existing methods [46], the proposed
approach not only relaxes the assumption that the fast subsystem matrix must be
non-singular but also avoids the ill-conditioned issue arising from the ε parameter.

3 The consensus conditions for fuzzy FOSPMASs with α ∈ (0, 1) and [1, 2) are formu-
lated in this study for any ε ∈ [ε, ε], where ε and ε are the lower and upper boundaries,
respectively. The results are presented based on LMIs without equality constraints,
reducing solution difficulties. It is demonstrated through an RLC circuit model that
the proposed methods are effective in practice.

The remaining parts are structured in the following manner. Section 2 provides
foundational definitions in graph theory and correlative lemmas. The establishment of the
system model and the primary findings on the consensus of FOSPMASs are detailed in
Section 3. Section 4 presents two practical examples. Lastly, Section 5 summarizes the study.

2. Preliminaries
2.1. Notations

X > 0 and X ⩾ 0 signify that the matrix X is positive definite and positive semi-
definite, respectively. XT stands for the transpose of the matrix (X), and sym{X} = X + XT .
spec (E, A) is the spectrum of det(sαE − A) = 0. The ∗ symbol represents the symmetric
element of a matrix. ⊗ denotes the Kronecker product. For α ∈ (0, 2), a = sin

(
α π

2
)
,

b = cos
(
α π

2
)
, and Θ denotes

[
a b
−b a

]
. diag(·) represents a diagonal matrix. ⌈α⌉ stands for

the rounding of α up to the nearest integer.

2.2. Graph Theory

Consider the case of an MAS comprising a single leader and N followers. The infor-
mation exchanged between N agents is presented as an undirected graph (G). The Laplace

matrix of the graph (G) is defined as L =
[
lij
]
∈ RN×N , where lij =

{
−aij, i = j

∑N
j=1 aij, i ̸= j

and

aij is the element of weighted adjacency matrix A of graph G. aij > 0 means that follower i
communicates with follower j; otherwise, aij = 0. When G is undirected, A is symmetric.
Similarly, hi represents the communication between the leader and follower i, and hi > 0
means follower i receives information from the leader; otherwise, hi = 0.

2.3. Preliminary Lemmas

Consider a continuous linear SFOS with α ∈ (0, 2) described by

EDαx(t) = Ax(t), (1)
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where A, E ∈ Rn×n are the system matrices and rank(E) = m < n. x(t) ∈ Rn represents
the state. Dα denotes the Caputo fractional-order derivative, which is defined as

Dα f (t) =
1

Γ(⌈α⌉ − α)

∫ t

0

f (⌈α⌉)(τ)

(t − τ)α+1−⌈α⌉ dτ,

where Γ(·) is the Euler Gamma function and (1) is represented by the triple (E, A, α).
When E = I, system (1) is simplified to a normal FOS as follows:

Dαx(t) = Ax(t). (2)

Lemma 1 ([47]). System (2) is stable iff |arg(spec(A))| > α π
2 .

Lemma 2 ([48]). Dαx(t) = f (t, x) is asymptotically stable at the equilibrium points if all the
eigenvalues (λJi, i = 1, · · · , n) of the Jacobian matrix (J = ∂ f /∂x) satisfy

|arg(λJi)| > α
π

2
, i = 1, · · · , n,

where f = [ f1, . . . , fn].

Lemma 3 ([49]). Choose two non-singular matrices (U and V) such that

UEV =

[
Im 0
0 0

]
, UAV =

[
A1 A2
A3 A4

]
; (3)

then, system (1) is regular, impulse-free and stable, and defined as admissible iff A4 is non-
singular and ∣∣∣arg

(
spec

(
A1 − A2 A−1

4 A3

))∣∣∣ > α
π

2
.

Lemma 4 ([50]). System (1) is admissible with α ∈ [1, 2) iff there exists a matrix (P ∈ Rn×n)
satisfying

EP = PTET ⩾ 0, sym{Θ ⊗ AP} < 0.

Lemma 5 ([49]). System (1) is admissible with α ∈ (0, 1) iff there exist two matrices (X, Y ∈ Rn×n)
satisfying [

EX EY
−EY EX

]
=

[
XTET −YTET

YTET XTET

]
⩾ 0, sym{A(aX − bY)} < 0.

Remark 1. According to Lemma 1, Figure 1 shows the stability region of system (2) with a
fractional order of α ∈ (0, 1) or [1, 2). Lemmas 4 and 5 are regarded as the natural extension
of Lyapunov stability from normal integer-order systems to SFOSs [49,50].

Lemma 6 ([51]). Given a symmetric constant matrix (Z) and constant matrices (U, V),
the inequality

Z + UFV + VT FTUT < 0

holds for all F satisfying FT F ⩽ S iff there exist some ρ > 0 such that

Z +
[
ρ−1VT ρU

][S 0
0 I

][
ρ−1V
ρUT

]
< 0.
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Figure 1. Stability region of system (2): (a) α ∈ (0, 1); (b) α ∈ [1, 2).

3. Main Results
3.1. System Model Description

Consider an MAS consisting of a leader and N followers, with the dynamic of each
agent modeled by a T-S fuzzy FOSPS. This nonlinear system is described by the fuzzy rules
as follows:

Rule k: If ξ1(t) is Πk1 and · · · and ξp(t) is Πkp,
Then, the dynamic description of each agent is written as

{ E(ε)Dαxi(t) = Akxi(t) + Bkui(t)
yi(t) = Ckxi(t)

(4)

{ E(ε)Dαx0(t) = Akx0(t)
y0(t) = Ckx0(t)

(5)

where

E(ε) =
[

In1 0
0 εIn2

]
, n1 + n2 = n, i = 1, 2, · · · , N;

xi(t) ∈ Rn, ui(t) ∈ Rl , and yi(t) ∈ Rv represent the state, control input and output of
follower i, respectively; x0(t) ∈ Rn and y0(t) ∈ Rv represent the state and output of the
leader, respectively; and system matrices Ak ∈ Rn×n, Bk ∈ Rn×l , and Ck ∈ Rv×n are
constant. Additionally, Πkj represents the fuzzy sets of the premise variables ξ j(t), where
j = 1, · · · , p and k = 1, · · · , r. Here, r represents the number of rules.

According to the procedures of defuzzification, the global model of T-S fuzzy FOSP-
MASs (4) and (5) is derived as follows:

{ E(ε)Dαxi(t) = ∑r
k=1 ηk(ξ)[Akxi(t) + Bkui(t)]

yi(t) = ∑r
k=1 ηk(ξ)Ckxi(t)

(6)

{ E(ε)Dαx0(t) = ∑r
k=1 ηk(ξ)Akx0(t)

y0(t) = ∑r
k=1 ηk(ξ)Ckx0(t)

(7)

where ηk(ξ) =
∏

p
j=1 ωkj(ξ j(t))

∑r
k=1 ∏

p
j=1 ωkj(ξ j(t))

is the weighting function and ωkj
(
ξ j(t)

)
is the mem-

bership function, satisfying ηk(ξ(t)) ⩾ 0, ∑r
k=1 ηk(ξ(t)) = 1, ∏

p
j=1 ωkj

(
ξ j(t)

)
⩾ 0, and

∑r
k=1 ∏

p
j=1 ωkj

(
ξ j(t)

)
> 0.

Utilizing the complete state information for controller design is often challenging,
owing to economic constraints and measurement limitations. To address this issue and
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design a consensus protocol for fuzzy FOSPMASs (6) and (7), a fuzzy observer is formulated
as follows: {

E(ε)Dα x̂i(t) = ∑r
k=1 ηk(ξ)Ak x̂i(t) + ∑r

k=1 ηk(ξ)Bkui(t) + zi(t)
zi(t) = ∑r

s=1 ηs(ξ)Ws

[
∑N

j=1 aij
(
ỹi(t)− ỹj(t)

)
+ hi ỹi(t)

] (8)

where x̂i(t) signifies the estimated state of follower i and ỹi(t)=yi(t)−∑r
k=1 ηk(ξ)Ck x̂i(t)

represents the error between the actual output (yi) and the weighted sum of estimated
outputs. Furthermore, Ws ∈ Rn×v denotes the gain matrix.

To achieve the consensus of (6) and (7), the following distributed control protocol
based on (8) is designed:

ui(t) =
r

∑
q=1

ηq(ξ)Kq

[
N

∑
j=1

aij
(
x̂i(t)− x̂j(t)

)
+ hi(x̂i(t)− x0(t))

]
. (9)

Let xei(t) = xi(t)− x0(t) and x̂ei(t) = xi(t)− x̂i(t). By substituting (9) into (6) and
subtracting (6) from (8), the error system is written as

E(ε)Dαxei(t) =
r
∑

k=1
ηk(ξ)Akxei(t) +

r
∑

k=1

r
∑

q=1
ηk(ξ)ηq(ξ)BkKq

·
[

N
∑

j=1
aij
(
xei(t)− xej(t)−

(
x̂ei(t)− x̂ej(t)

))
+ hi(xei(t)− x̂ei(t))

]
,

(10)

E(ε)Dα x̂ei(t) =
r
∑

k=1
ηk(ξ)Ak x̂ei(t)−

r
∑

s=1

r
∑

k=1
ηs(ξ)ηk(ξ)WsCk

·
[

N
∑

j=1
aij
(
x̂ei(t)− x̂ej(t)

)
+ hi x̂ei(t)

]
.

(11)

Let x̄e(t)=
[
xT

e (t) x̂T
e (t)

]T , where

xe(t) =
[
xT

e1(t), · · · , xT
eN(t)

]T , x̂e(t)=
[
x̂T

e1(t), · · · , x̂T
eN(t)

]T .

The compact form of systems (10) and (11) is

(IN ⊗ E(ε))Dαxe(t) =

(
IN ⊗

r

∑
k=1

ηk(ξ)Ak

)
xe(t)

+ M ⊗
(

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq

)
(xe(t)− x̂e(t)),

(12)

(IN ⊗ E(ε))Dα x̂e(t) =

(
IN ⊗

r

∑
k=1

ηk(ξ)Ak

)
x̂e(t)− M ⊗

(
r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)WsCk

)
x̂e(t). (13)

where M = L+ diag(h1, h2, · · · , hN).
By combining (12) and (13), the error system is described as

Ē(ε)Dα x̄e(t) = Āx̄e(t), (14)
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where

Ē(ε) =
[

IN ⊗ E(ε) 0
0 IN ⊗ E(ε)

]
, Ā =

[
Ā1 Ā2
0 Ā4

]
,

Ā1 =IN ⊗
r

∑
k=1

ηk(ξ)Ak + M ⊗
(

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq

)
,

Ā2 =− M ⊗
(

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq

)
,

Ā4 =IN ⊗
r

∑
k=1

ηk(ξ)Ak − M ⊗
(

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)WsCk

)
.

3.2. Equivalent Transformations

In this section, equivalence conditions of the consensus of fuzzy FOSPMASs are
derived by addressing the stability problem of system (14).

Based on graph theory, it is known that matrix M is positive definite. Therefore, an
orthogonal matrix (V) exists such that VT MV = diag(λ1, λ2, · · · , λN), and all eigenvalues
(λi) of the matrix (M) possess positive real parts, where i = 1, 2, · · · , N.

Let X̃e(t) =
[

Xe(t)
T X̂e(t)

T
]T

, where Xe =
(
VT ⊗ IN

)
xe(t) and X̂e =

(
VT ⊗ IN

)
x̂e(t).

According to the properties of the Kronecker product, system (14) is transformed into the
following form:

Ẽ(ε)DαX̃ei(t) = ÃX̃ei(t), (15)

where

Ẽ(ε) =
[

E(ε) 0
0 E(ε)

]
, Ã =

[
Ã1 Ã2
0 Ã4

]
,

Ã1 =
r

∑
k=1

ηk(ξ)Ak + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq,

Ã2 =− λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq,

Ã4 =
r

∑
k=1

ηk(ξ)Ak − λi

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)WsCk.

In order to analyze the stability of system (15), two independent SPSs are constructed
as follows:

E(ε)DαXei(t) = Ã1Xei(t), (16)

E(ε)DαX̂ei(t) = Ã4X̂ei(t). (17)

Lemma 7. System (15) is stable iff systems (16) and (17) are both stable.

Proof. According to Lemma 1, system (15) is stable iff
∣∣arg

(
spec

(
Ẽ−1(ε)Ã

))∣∣ > π
2 α.

The characteristic determinant of system (15) is factorized as

det
(
sαẼ(ε)− Ã

)
= det

(
sαE(ε)− Ã1

)
× det

(
sαE(ε)− Ã4

)
,

which implies that the stability of system (15) is dependent on the stability of two sub-
sidiary systems ((16) and (17)). Thus, system (15) is stable iff systems (16) and (17) are
simultaneously stable.
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Definition 1. The consensus of T-S fuzzy FOSPMASs (6) and (7) is achieved via protocol (9) if

lim
t→∞

∥xi(t)− x0(t)∥ = 0, i = 1, 2, · · · , N.

According to Definition 1 and Lemma 7, in order to achieve the consensus of fuzzy
FOSPMASs (6) and (7), it is necessary for systems (16) and (17) to both be stable. There-
fore, in order to derive the stability conditions of (16) and (17), the following equivalent
transformation is presented.

Matrix E(ε) is decomposed into

E(ε) = E1 + (ε − β)E2,

where the scalar is β > 0, E1 =

[
In1 0
0 βIn2

]
, and E2 =

[
0 0
0 In2

]
.

Let f1(t) = DαXei(t) and xz(t) =
[
XT

ei(t), f T
1 (t)

]T . Then, (16) is derived as

EDαxz(t) =

(
r

∑
k=1

ηk(ξ)Ak1 + (ε − β)A2 + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)B̄kK̄q

)
xz(t), (18)

where E =

[
In 0
0 0

]
, Ak1 =

[
0 In

Ak −E1

]
, A2 =

[
0 0
0 −E2

]
, B̄k =

[
0
Bk

]
, and K̄q =

[
Kq 0

]
.

Similarly, f2(t) = DαX̂ei(t) and x̂z(t) =
[
X̂T

ei(t), f T
2 (t)

]T . Then, (17) is reformulated as

EDα x̂z(t) =

(
r

∑
k=1

ηk(ξ)Āk1 + (ε − β)A2 − λi

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)W̄sC̄k

)
x̂z(t), (19)

where Āk1 =

[
0 Ak
In −E1

]
, W̄q =

[
Wq
0

]
, and C̄k =

[
0 Ck

]
.

Lemma 8. With ε > 0, system (16) is stable iff system (18) is admissible.

Proof. Based on the aforementioned analysis, system (18) is reformulated as

EDαxz(t) =
[

0 In

∑r
k=1 ηk(ξ)Ak + λi ∑r

k=1 ∑r
q=1 ηk(ξ)ηq(ξ)BkKq −E(ε)

]
xz(t). (20)

According to Lemma 3, when U = V = I in (3), then system (20) is admissible iff E(ε)
is non-singular and∣∣∣∣∣arg

(
spec

(
E−1(ε)

(
r

∑
k=1

ηk(ξ)Ak + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq

)))∣∣∣∣∣ > π

2
α. (21)

Then, system (16) is rewritten as

DαXei(t) = E−1(ε)

(
r

∑
k=1

ηk(ξ)Ak + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)BkKq

)
Xei(t).

According to Lemma 1, and (21), system (16) is stable iff system (18) is admissible.

According to Lemma 8, the stability conditions of systems (16) and (17) are interpreted
as the admissibility conditions for systems (18) and (19).
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3.3. Consensus Conditions of T-S Fuzzy FOSPMASs

In this section, the LMI criteria for the consensus of fuzzy FOSPMASs (6) and (7) are
proposed by studying the admissibility of systems (18) and (19).

Assumption 1. ξ j(t) and |∂ηk(ξ)/∂ξ j(t)| are in the range of [0, ρ), and ρ is a sufficiently small
scalar.

Theorem 1. Given 0 < ε < ε, the consensus of fuzzy FOSPMASs (6) and (7) with α ∈ [1, 2) and
any ε ∈ [ε, ε] is achieved via protocol (9) if there exist matrices (P1, P2, Hq, and Gs) and positive
scalars (µ1 and µ2) such that

EP1 = PT
1 ET ⩾ 0, (22)

Φkk < 0, k = 1, 2, · · · , r, (23)

Φkq + Φqk < 0, 1 ⩽ k < q ⩽ r, (24)

ET P2 = PT
2 E ⩾ 0, (25)

Ψkk < 0, k = 1, 2, · · · , r, (26)

Ψks + Ψsk < 0, 1 ⩽ k < s ⩽ r, (27)

where

Φkq =

sym
{

Θ ⊗
(

Ak1P1 + λi B̄k Hq
)}

I2 ⊗ PT
1 Θ ⊗ µ1 A2

∗ − 4µ1

(ε−ε)2 I2 0

∗ ∗ −µ1 I2

,

Ψks =

sym
{

Θ ⊗
(

ĀT
k1P2 − λiC̄T

k GT
s
)}

I2 ⊗ PT
2 Θ ⊗ µ2 AT

2
∗ − 4µ2

(ε−ε)2 I2 0

∗ ∗ −µ2 I2

.

The gain matrices are derived as

K̄q = HqP−1
1 , W̄s = P−T

2 Gs.

Proof. Then, (18) is reformulated with β = ε+ε
2 as

EDαxz(t) =

(
r

∑
k=1

ηk(ξ)Ak1 +

(
ε − ε + ε

2

)
A2 + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)B̄kK̄q

)
xz(t)

≜
kq

∑
l=1

τl(xz(t))Al xz(t). (28)

The Jacobian matrix of system (28) J is

∂
kq

∑
l=1

τl(xz(t))Al xz(t)/∂xz(t) =
kq

∑
l=1

∂τl(xz(t))/∂xz(t)Al xz(t) + τl(xz(t))Al .

Based on Assumption 1, the Jacobian matrix of system (28) is seen as a constant
(J = ∑

kq
l=1 τlAl). Based on Lemma 2, system (28) is admissible at the equilibrium points if

|arg(spec(E, J))| > α
π

2
. (29)
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According to ηk(ξ) ⩾ 0, (23) and (24) ensure that the following inequality holds:∆1 I2 ⊗ PT
1 µ1(Θ ⊗ A2)

∗ − 4µ1

(ε−ε)2 I2 0

∗ ∗ −µ1 I2

 < 0, (30)

where

∆1 = sym

{
Θ ⊗

(
r

∑
k=1

ηk(ξ)Ak1P1 + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)B̄k Hq

)}
.

By pre- and post-multiplying (30) by diag
(

I, I√
µ1

, I√
µ1

)
, it is transformed as follows:

∆1
I2⊗PT

1√
µ1

√
µ1(Θ ⊗ A2)

∗ − 4
(ε−ε)2 I2 0

∗ ∗ −I2

 < 0. (31)

According to the Schur complement, (31) is equivalent to

∆1 +
[

I2⊗PT
1√

µ1

√
µ1(Θ ⊗ A2)

][ (ε−ε)2

4 I 0
0 I

][
I2⊗P1√

µ1√
µ1(Θ ⊗ A2)

T

]
< 0. (32)

Considering
∣∣∣ε − ε+ε

2

∣∣∣ ⩽ ε−ε
2 in (32) and Lemma 6 yields

∆1 +

(
ε − ε + ε

2

)
sym{Θ ⊗ A2P1} < 0. (33)

Substituting ∑r
q=1 ηq(ξ)Hq = ∑r

q=1 ηq(ξ)K̄qP1 into (33) yields the following expression:

sym

{
Θ ⊗

((
r

∑
k=1

ηk(ξ)Ak1 +

(
ε − ε + ε

2

)
A2 + λi

r

∑
k=1

r

∑
q=1

ηk(ξ)ηq(ξ)B̄kK̄q

)
P1

)}
< 0. (34)

According to Lemma 4, (29) is guaranteed, and system (28) with α ∈ [1, 2) is admissible
according to (22) and (34).

Similarly, substituting β = ε+ε
2 into system (19) yields

EDα x̂z(t) =

(
r

∑
k=1

ηk(ξ)Āk1 +

(
ε − ε + ε

2

)
A2 − λi

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)W̄sC̄k

)
x̂z(t). (35)

Based on ηk(ξ) ⩾ 0, the following inequality is derived from (26) and (27):∆2 I2 ⊗ PT
2 µ2

(
Θ ⊗ AT

2
)

∗ − 4µ2

(ε−ε)2 I2 0

∗ ∗ −µ2 I2

 < 0, (36)

where

∆2 = sym

{
Θ ⊗

(
r

∑
k=1

ηk(ξ)ĀT
k1P − λi

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)C̄T
k GT

s

)}
.
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By pre- and post-multiplying (36) by diag
(

I, I√
µ2

, I√
µ2

)
, it is transformed as

∆2
I2⊗PT

2√
µ2

√
µ2
(
Θ ⊗ AT

2
)

∗ − 4
(ε−ε)2 I2 0

∗ ∗ −I2

 < 0. (37)

In the same way, (37) is equivalent to

∆2 +
[

I2⊗PT
2√

µ2

√
µ2
(
Θ ⊗ AT

2
)][ (ε−ε)2

4 I 0
0 I

][ I2⊗P2√
µ2√

µ2
(
Θ ⊗ AT

2
)T

]
< 0. (38)

Lemma 6 and
∣∣∣ε − ε+ε

2

∣∣∣ ⩽ ε−ε
2 yield

∆2 +

(
ε − ε + ε

2

)
sym

{
Θ ⊗ AT

2 P2

}
< 0. (39)

Substituting ∑r
s=1 ηs(ξ)Gs = PT

2 ∑r
q=1 ηq(ξ)W̄s into (39) yields

sym

Θ⊗

( r

∑
k=1

ηk(ξ)Āk1+

(
ε− ε+ε

2

)
A2−λi

r

∑
s=1

r

∑
k=1

ηs(ξ)ηk(ξ)C̄kW̄s

)T

P2

<0. (40)

Given the equivalence between the admissibility of (E, A, α) and that of
(
ET , AT , α

)
,

according to (25) and (40), it is deduced that system (35) with α ∈ [1, 2) is admissible
according to Lemma 4. In summary, (6) and (7) achieve leader-following consensus via
observer-based protocol (9).

Remark 2. The conditions in Theorem 1 involve LMIs with equality constraints, render-
ing them fragile and potentially prone to computational difficulty. Consequently, the
subsequent theorem presents strict LMI conditions to address these issues and enhance
computational accuracy.

Theorem 2. Given 0 < ε < ε, the consensus of fuzzy FOSPMASs (6) and (7) with α ∈ [1, 2) and
any ε ∈ [ε, ε] is achieved via protocol (9) if there exist matrices (X1 > 0, X2 > 0, Y1, Y2, Hq, and
Gs) and positive scalars (µ1 and µ2) such that

Γkk < 0, k = 1, 2, · · · , r, (41)

Γkq + Γqk < 0, 1 ⩽ k < q ⩽ r, (42)

Υkk < 0, k = 1, 2, · · · , r, (43)

Υks + Υsk < 0, 1 ⩽ k < s ⩽ r, (44)

where

Γkq =

sym
{

Θ ⊗
(

Ak1
(
X1ET + S1Y1

)
+ λi B̄k Hq

)}
I2 ⊗

(
X1ET + S1Y1

)T
Θ ⊗ µ1 A2

∗ − 4µ1

(ε−ε)2 I2 0

∗ ∗ −µ1 I2

,

Υks =

sym
{

Θ ⊗
(

ĀT
k1(X2E + S2Y2)− λiC̄T

k GT
s
)}

I2 ⊗ (X2E + S2Y2)
T Θ ⊗ µ2 AT

2
∗ − 4µ2

(ε−ε)2 I2 0

∗ ∗ −µ2 I2

.
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S1, S2 ∈ Rn×(n−m) are arbitrary matrices with full column ranks satisfying ES1 = 0 and
ETS2 = 0. The gain matrices are derived as

K̄q = Hq

(
X1ET + S1Y1

)−1
, W̄s = (X2E + S2Y2)

−TGs.

Proof. Assume that there exist matrices (X1 > 0, X2 > 0, Y1, Y2, Hq, and Gq) and scalars
(µ1 > 0 and µ2 > 0) such that (41) and (44) hold. Let

P1 = X1ET + S1Y1 , P2 = X2E + S2Y2.

Then, using (41) and (44), it is easy to verify P1, P2, Hq, and Gq and scalars µ1 > 0
and µ2 > 0 satisfying (22) and (27). Therefore, according to Theorem 1, (6) and (7)
achieve consensus.

Theorem 3. Given 0 < ε < ε, the consensus of fuzzy FOSPMASs (6) and (7) with α ∈ (0, 1) and
any ε ∈ [ε, ε] is achieved via protocol (9) if there exist matrices (X1, X2, Y1, Y2, Hq, and Gs) and
positive scalars (µ1 and µ2) such that[

EX1 EY1
−EY1 EX1

]
=

[
XT

1 ET −YT
1 ET

YT
1 ET XT

1 ET

]
⩾ 0, (45)

Πkk < 0, k = 1, 2, · · · , r, (46)

Πkq + Πqk < 0, 1 ⩽ k < q ⩽ r, (47)

[
ETX2 ETY2
−ETY2 ETX2

]
=

[
XT

2 E −YT
2 E

YT
2 E XT

2 E

]
⩾ 0, (48)

Ωkk < 0, k = 1, 2, · · · , r, (49)

Ωks + Ωsk < 0, 1 ⩽ k < s ⩽ r, (50)

where

Πkq =

sym
{

Ak1(aX1 − bY1) + λi B̄k Hq
}

(aX1 − bY1)
T µ1 A2

∗ − 4µ1

(ε−ε)2 I 0

∗ ∗ −µ1 I

,

Ωks =

sym
{

ĀT
k1(aX2 − bY2)− λiC̄T

k GT
s
}

(aX2 − bY2)
T µ2 AT

2
∗ − 4µ2

(ε−ε)2 I 0

∗ ∗ −µ2 I

.

The the gain matrices are chosen as

K̄q = Hq(aX1 − bY1)
−1, W̄s = (aX2 − bY2)

−TGs.

Proof. The proof parallels that of Theorem 1 based on Lemma 5, which is omitted here
for brevity.

Theorem 4. Given 0 < ε < ε, the consensus of fuzzy FOSPMASs (6) and (7) with α ∈ (0, 1) and
any ε ∈ [ε, ε] is achieved via protocol (9) if there exist matrices (X1, X2, Y1, Y2, Q1, Q2, Hq, and
Gs), and positive scalars (µ1 and µ2) such that[

X1 Y1
−Y1 X1

]
> 0, (51)

Ξkk < 0, k = 1, 2, · · · , r, (52)
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Ξkq + Ξqk < 0, 1 ⩽ k < q ⩽ r, (53)[
X2 Y2
−Y2 X2

]
> 0, (54)

Λkk < 0, k = 1, 2, · · · , r, (55)

Λks + Λsk < 0, 1 ⩽ k < s ⩽ r, (56)

where

Ξkq =

sym
{

Ak1
(
(aX1 − bY1)ET + S1Q1

)
+ λi B̄k Hq

} (
(aX1 − bY1)ET + S1Q1

)T
µ1 A2

∗ − 4µ1

(ε−ε)2 I 0

∗ ∗ −µ1 I

,

Λks =

sym
{

ĀT
k1((aX2 − bY2)E + S2Q2)− λiC̄T

k GT
s
}

((aX2 − bY2)E + S2Q2)
T µ2 AT

2
∗ − 4µ2

(ε−ε)2 I 0

∗ ∗ −µ2 I

.

S1 and S2 satisfy the conditions in Theorem 2. The gain matrices are chosen as

K̄q = Hq

(
(aX1 − bY1)ET + S1Q1

)−1
, W̄s = ((aX2 − bY2)E + S2Q2)

−TGs.

Proof. Assume that there exist matrices (X1, X2, Y1, Y2, Q1, Q2, Hq, and Gq) and scalars
(µ1 > 0 and µ2 > 0) such that (51)–(56) hold. Let

X̄1 = X1ET + a−1S1Q1, Ȳ1 = Y1ET , X̄2 = X2E + a−1S2Q2, Ȳ2 = Y2E.

Using (51) and (56), it is easy to verify X̄1, X̄2, Ȳ1, Ȳ2, Hq, and Gq and scalars µ1 > 0
and µ2 > 0, satisfying (45) and (50). Therefore, according to Theorem 3, the consensus of
(6) and (7) is achieved.

Remark 3. Table 1 shows that this paper focuses on FOSPMASs with α ∈ (0, 1) or [1, 2),
which are more complex and have a wider range of order α. Some early literature, includ-
ing [30,36], decomposed SPSs into fast subsystems and slow subsystems. However, this
approach needs to assume that the fast subsystem matrix is non-singular, which is not
applicable to non-standard SPSs. In contrast, the method proposed in this paper is based
on a full-order model, which overcomes the limitation of decomposition and avoids the
above assumption.

Table 1. Comparison of existing methods.

Ref. Range of α Observer Fuzzy MASs SPSs Non-Limitations to SPSs

[30] 1 × ✓ × ✓ ×
[34] 1 ✓ × × ✓ ✓
[36] 1 × × × ✓ ×
[38] 2 ✓ × × ✓ ✓
[39] (0, 1) ✓ × ✓ ✓ ✓
[45] (0, 1) × ✓ × ✓ ✓
[52] (0, 2) ✓ ✓ ✓ × -
[53] (0, 1) × ✓ × × -
[54] (0, 1) × × × ✓ ✓

Ours (0, 1), [1, 2) ✓ ✓ ✓ ✓ ✓
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4. Numerical Examples

This section presents two demonstrative instances that highlight the effectiveness of
the control protocol in achieving the consensus of fuzzy FOSPMASs with an orders of α in
(0, 1) and [1, 2).

Example 1. The capacitor and inductor have fractional characteristics in the circuit; the inductance
value is very small and prone to pathological problems. The volt-ampere characteristic of the
diode is nonlinear. This nonlinear circuit model is taken as a node of an MAS. With parasitic
parameters and fractional-order characteristics, the MAS is very complex, and the consensus
problem is difficult to solve. Thus, by approximating the volt-ampere characteristic as a quadratic
function and constructing a T-S fuzzy model, Theorem 4 is used to achieve the consensus of the
nonlinear FOSPMASs.

Consider a T-S fuzzy FOSPMAS composed of one leader and four followers; the behavior of
each agent is described by the fractional-order RLC circuit model as shown in Figure 2.

Figure 2. RLC circuit with a diode.

The capacitor and inductor have fractional characteristics with an order of α. L represents a
very small parasitic inductance. R1, and R2 denote the resistances of the corresponding resistors. R3
is a diode, and its characteristic function is approximated as R3 = 1/0.4 + 0.15V2

D(t). It is known
that the relationships between voltages are VD(t) = VC(t) and VS(t) = −VC(t). The dynamic of
each agent is subsequently described as follows:{

CDαVC(t) = −VC(t)
R2

− VC(t)
R3

+ iL(t)
LDαiL(t) = VS(t)− VC(t) + R1iL(t) + u(t)

(57)

Let xi1(t) = VC(t), xi2(t) = iL(t), and ε = L; then, the circuit model (57) is reformulated as
follows:[

Dαxi1(t)
εDαxi2(t)

]
=

[
− 1

R2C − 1
C
(
0.4 + 0.15x2

i1(t)
) 1

C
−2 R1

][
xi1(t)
xi2(t)

]
+

[
0
1

]
ui(t), (58)

where i = 1, 2, 3, 4.
The parameters are chosen as C = 0.3 F, ε = 0.02 H, R1 = 0.1 Ω, R2 = 0.5 Ω, and α = 0.5.

It is assumed that x11(t) belongs to [−2, 2]. Subsequently, the fuzzy rules are set as follows:
Rule 1: If the value of x11(t) is approximately 0, then{

E(ε)Dαxi(t) = A1xi(t) + B1ui(t)
yi(t) = C1xi(t)

and

{
E(ε)Dαx0(t) = A1x0(t)
y0(t) = C1x0(t)
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Rule 2: If the value of x11(t) is approximately ±2, then{
E(ε)Dαxi(t) = A2xi(t) + B2ui(t)
yi(t) = C2xi(t)

and

{
E(ε)Dαx0(t) = A2x0(t)
y0(t) = C2x0(t),

where

E(ε) =
[

1 0
0 ε

]
, A1 =

[
−8 3
−2 0.1

]
, A2 =

[
−10 3
−2 0.1

]
,

B1 = B2 =
[
0 1

]T , C1 = C2 =
[
1 0.5

]
.

The fuzzy weighting function is selected as η1(ξ(t)) = 1 − 0.25x2
11(t), η2(ξ(t)) = 1 −

η1(ξ(t)). The matrix (M) is expressed as follows:

M = L+ diag(h1, h2, 0, 0) =


3 −0.5 0 −0.5

−0.5 3 −0.5 0
0 −0.5 2 −0.5

−0.5 0 −0.5 2

.

Based on the modeling and analysis of the power system, the connection relationships and
interactions of the system are abstracted into a undirected topology graph, as depicted in Figure 3.

Figure 3. Weighted undirected graph.

With ε = 0.001 and ε = 0.04, by solving LMIs (51) and (56) in Theorem 4, the feasible
solutions are obtained as

K̄1 =
[
0.4367 −0.0916 0 0

]
,

K̄2 =
[
0.4371 −0.0916 0 0

]
,

W̄1 =
[
1.4511 0.1933 0 0

]T ,

W̄2 =
[
1.4562 0.1938 0 0

]T .

Let ε = 0.02. The tracking errors and estimation errors are depicted in Figures 4 and 5,
respectively. A consensus error of zero means that each follower converges toward the leader, which
demonstrates that the system achieves consensus by using the observer-based protocol (9), indicating
the practical applicability and efficacy of the proposed method with α ∈ [1, 2). Model simulation is
shown in the Appendix A.
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Figure 4. State errors between leader and followers in Example 1.

Figure 5. Estimation errors of followers in Example 1.

Example 2. Considering T-S fuzzy FOSPMASs (6) and (7) within the topology presented in
Figure 3, the fuzzy rules of the system are established in the following manner:

Rule 1: If xe11(t) is Πk1, then{
E(ε)Dαxi(t) = A1xi(t) + B1ui(t)
yi(t) = C1xi(t)

and

{
E(ε)Dαx0(t) = A1x0(t)
y0(t) = C1x0(t)

Rule 2: If xe11(t) is Πk2, then{
E(ε)Dαxi(t) = A2xi(t) + B2ui(t)
yi(t) = C2xi(t)

and

{
E(ε)Dαx0(t) = A2x0(t)
y0(t) = C2x0(t).
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The remaining parameters are proposed as follows:

α = 1.2, E(ε) =

1 0 0
0 1 0
0 0 ε

, A1 =

−5 9 5
12 −5 13
5 −10 −5

, A2 =

−4 5 5
5 −18 15
5 −10 −5

,

B1 =
[
1 1 0.5

]T , B2 =
[
0.5 0.5 1

]T ,

C1 =
[
1 0.5 1

]
, C2 =

[
0.5 1 0.5

]
.

Assuming that state xe11(t) belongs to [−1, 1], the fuzzy weighting function is selected as
η1(ξ(t)) = cos2(xe11), η2(ξ(t)) = 1 − η1(ξ(t)).

Considering ε = 0.001 and ε = 0.03, the feasible solutions are presented based on LMIs (41)
and (44) in Theorem 2 as follows:

K̄1 =
[
0.1193 −0.2976 −0.1530 0 0 0

]
,

K̄2 =
[
−0.0783 0.1285 0.0181 0 0 0

]
,

W̄1 =
[
−0.0009 −0.5099 0.0147 0 0 0

]T ,

W̄2 =
[
0.0150 0.4288 0.0108 0 0 0

]T .

Figures 6 and 7 present the simulation results of the error system (14) with ε = 0.02. As
depicted in Figure 6, the state of follower agents exhibits a successful tracking of the state of the
leader agent, indicating that the consensus issue of fuzzy FOSPMASs (6) and (7) with α ∈ [1, 2) is
solved by the criteria in Theorem 2.

Figure 6. State errors between leader and followers in Example 2.
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Figure 7. Estimation errors of followers in Example 2.

5. Conclusions

In this paper, a T-S fuzzy FOSPMAS with α ∈ (0, 2) is modeled and studied to
more accurately describe actual complex systems. The consensus problem of T-S fuzzy
FOSPMASs is transformed into admissibility assessment of fuzzy SFOSs (18) and (19). In
contrast to the methodologies in proposed in previous literature, the proposed method
not only overcomes the pathological problem arising from multiple time scales but is
also applicable to both standard and non-standard SPMASs. Theorems 1 and 3 provide
sufficient conditions for achieving consensus with α ∈ (0, 1) and [1, 2). Furthermore,
strict LMI criteria are proposed in Theorems 2 and 4, which are solved easily with the
LMI toolbox. In practical applications, the proposed method can be used to simulate the
dynamic behavior of helicopter swarms in complex flight environments. There are still
some difficulties in dealing with the consensus problem of fuzzy FOSPMASs with input
saturation and actuator faults. In the future, the fault-tolerant control and fault detection
problem of fuzzy FOSPMASs will be studied.
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Appendix A

The simulation of the fuzzy FOSPMAS model is depicted in Figure A1. This simulation
model essentially encompasses fuzzy logic controllers, m functions, fractional-order opera-
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tors, and integer-order integrators, the latter two of which are combined into fractional-
order integrators with initial values. Notably, due to constraints in space, only a part of the
simulation model pertaining to fuzzy FOSPMASs is shown. In practical cases, the precise
number of state variables and fuzzy rules and the corresponding system description are
tailored to suit actual scenarios or application requirements.

Figure A1. Fuzzy FOSPMAS model simulation.
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