On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory
Abstract
:1. Introduction
2. Notations and Preliminaries
3. Uniqueness of Solution
4. Existence of the Solution
5. A Priori Estimate for the Solution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, P.; Shillor, M. A quasistatic contact problemin thermoelasticity with radiation condition for the temperature. J. Math. Anal. Appl. 1993, 172, 147–165. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Miller, R.K. An integro-differential equation for grid heat conductors with memory. J. Math. Anal. Appl. 1978, 66, 313–332. [Google Scholar] [CrossRef]
- Rcnardy, M. Mathematical analysis of viscoelastic flows. Ann. Rev. Fluid Mech. 1989, 21, 21–36. [Google Scholar] [CrossRef]
- Christensen, R.M. Theory of Viscoelasticity; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Thieme, H.R. A model for the spatio spread of an epidemic. J. Math. Biol. 1977, 4, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Raynal, M. On some nonlinear problems of diffusion. Lect. Notes Math. 1979, 737, 251–266. [Google Scholar]
- Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 54, 3413–3442. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the Rubella disease model. Adv. Differ. Equ. 2020, 2020, 184. [Google Scholar] [CrossRef]
- Baleanu, D.; Khadijeh, G.; Shahram, R.; Mehdi, S. On the existence of solutions of a three steps crisis integro-differential, equation. Adv. Differ. Equ. 2018, 2018, 135. [Google Scholar] [CrossRef]
- Renardy, M.; Hrusa, W.J.; Nohel, J.A. Mathematical Problems in Viscoelasticity, Pitman Monographs & Surveys in Pure & Applied Mathematics; Longman Scientific & Technical: Harlow, UK, 1988; Volume 35. [Google Scholar]
- Renardi, M.; Hrusa, W.J.; Nohel, J.A. Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure & Applied Mathematics; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Agarwal, R.; Alsaedi, A. Existence results for sequential fractional integro-differential equations with nonlocal multi-point and strip conditions. Bound. Value Probl. 2016, 2016, 205. [Google Scholar] [CrossRef]
- Ahmed, B.; Sivasundaram, S. Existence of solutions for nonlinear fractional integro-differential equations with three-point nonlocal fractional boundary conditions. Adv. Differ. Equ. 2020, 2010, 691721. [Google Scholar]
- Ashyralyev, A.; Sharifov, Y.A. Existence and uniqueness of solutions for the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions. Adv. Differ. Equ. 2012, 2012, 594802. [Google Scholar] [CrossRef]
- Baleanu, D.; Nazeni, S.Z.; Rezapour, S. Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv. Differ. Equ. 2013, 2013, 368. [Google Scholar] [CrossRef]
- Ibnelazyz, L.; Guida, K.; Hilal, K.; Melliani, S. Existence results for nonlinear fractional integro-differential equations with integral and antiperiodic boundary conditions. Comput. Appl. Math. 2021, 40, 33. [Google Scholar] [CrossRef]
- Ibnelazyz, L.; Guida, K.; Hilal, K.; Melliani, S. New existence results for nonlinear fractional integrodifferential equations. Adv. Math. Phys. 2021, 5525591. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L. Uniqueness and existence of positive solutions for the fractional integro-differential equation. Bound. Value Probl. 2017, 2017, 12. [Google Scholar] [CrossRef]
- Kumar, J.A.; Malik, M. Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales. J. King Saud Univ. Sci. 2019, 31, 1311–1317. [Google Scholar] [CrossRef]
- Manimaran, S.; Gunasekar, T.; Subramaniyan, G.V.; Samuel, F.P. Existence of solutions for neutral functional integrodifferential evolution equations with non local conditions. Indian J. Sci. Technol. 2015, 8, 358–363. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ntouyas, S.K.; Ahmad, B.; Alhothuali, M.S. Existence of solutions for integro-differential equations of fractional order with non-local three-point fractional boundary conditions. Adv. Differ. Equ. 2013, 2013, 128. [Google Scholar] [CrossRef]
- Agarwal, R.; de Andrade, B.; Siracusa, G. On fractional integro-differential equations with state-dependent delay. Comp. Math. Appl. 2011, 62, 1143–1149. [Google Scholar] [CrossRef]
- Arjunan, M.M.; Kavitha, V. Controllability of impulsive fractional evolution integrodifferential equations in Banach spaces. J. KSIAM 2011, 15, 177–190. [Google Scholar]
- Balachandran, K.; Park, J.Y. Controllability of fractional integrodifferential systems in Banach spaces. Nonlin. Anal. Hybr. Syst. 2009, 3, 363–367. [Google Scholar] [CrossRef]
- Alhazzani, E.; Mesloub, S.; Gadain, H.E. On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions. Fractal Fract. 2024, 8, 189. [Google Scholar] [CrossRef]
- Akhalaia, S.; Ashordia, M.; Talakhadze, M. On the well-posedness of nonlocal boundary value problems for a class of systems of linear generalized differential equations with singularities. Georg. J. 2022, 30. [Google Scholar] [CrossRef]
- Mesloub, S.; Aldosari, F. Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Math. 2021, 6, 9786–9812. [Google Scholar] [CrossRef]
- Suat Ertürk, V.; Amjad, A.; Shah, K.; Kumar, P.; Abdeljawad, T. Existence and stability results for nonlocal boundary value problems of fractional order. Bound. Value Probl. 2022, 2022, 25. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Alikhanov, A.A.A. Priori Estimates for Solutions of Boundary Value Problems for Fractional Order Equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef]
- Mesloub, S. A nonlinear nonlocal mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 2006, 316, 189–209. [Google Scholar] [CrossRef]
- Simon , J. Compact sets in the spaceL p(O,T; B). Ann. Mat. Pura Appl. 1986, 146, 65–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesloub, S.; Alhazzani, E.; Gadain, H.E. On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory. Fractal Fract. 2024, 8, 526. https://doi.org/10.3390/fractalfract8090526
Mesloub S, Alhazzani E, Gadain HE. On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory. Fractal and Fractional. 2024; 8(9):526. https://doi.org/10.3390/fractalfract8090526
Chicago/Turabian StyleMesloub, Said, Eman Alhazzani, and Hassan Eltayeb Gadain. 2024. "On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory" Fractal and Fractional 8, no. 9: 526. https://doi.org/10.3390/fractalfract8090526
APA StyleMesloub, S., Alhazzani, E., & Gadain, H. E. (2024). On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory. Fractal and Fractional, 8(9), 526. https://doi.org/10.3390/fractalfract8090526