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Abstract: In this article, we focus on examining the existence, uniqueness, and continuous depen-
dence of solutions on initial data for a specific initial boundary value problem which mainly arises
from one-dimensional quasi-static contact problems in nonlinear thermo-elasticity. This problem
concerns a fractional nonlinear singular integro-differential equation of order θ ∈ [0, 1]. The primary
methodology involves the application of a fixed point theorem coupled with certain a priori bounds.
The feasibility of solving this problem is established under the context of data related to a weighted
Sobolev space. Furthermore, an additional result related to the regularity of the solution for the
formulated problem is also presented.
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1. Introduction

In recent years, both linear and nonlinear fractional as well as integer order partial
differential equations have gained significant interest in theoretical and applied mathe-
matics. This surge in attention, spanning over the last three decades, is primarily due
to the instrumental role these equations play in modeling a great number of phenomena
across various scientific and engineering disciplines. The inclusion of an integral compo-
nent within these equations introduces a unique aspect, often interpreted as a memory
or damping term, enriching the complexity and applicability of the models. The problem
(1)–(3) models a general one-dimensional quasi-static contact problem in fractional thermo-
elasticity (thermo-elasticity that uses the fractional heat equation with a Bessel operator).
For ample information, the reader can refer to [1] and the references therein. We also men-
tion that one-dimensional quasi-static contact problems for an integro-differential equation
typically arise also in the context of solid mechanics, particularly when dealing with the
contact between elastic or viscoelastic materials. The term quasi-static implies that the time-
dependent effects are slow enough that inertial forces can be neglected, so the problem is
treated as a series of static problems over time. We physically interpret the one-dimensional
quasi-static contact problem by considering two bodies in contact along a single dimension
(e.g., along a line or axis). The contact may involve compression, adhesion, friction, or other
physical interactions between the two bodies. The integro-differential equation describes
how the displacement (or other relevant physical quantities, such as stress or strain) varies
with position along this dimension and over time, considering both local effects (differential
terms) and nonlocal effects (integral terms). The study of integro-differential equations has
thus become a focal point for researchers specializing in ordinary and partial differential
equations, driven by the equations’ extensive applications in diverse scientific domains.
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These applications range from heat transfer to viscoelasticity, diffusion processes, and
even epidemiology, as evidenced by numerous studies [2–14]. The profound impact of
fractional integro-differential equations in physical and engineering sciences underscore
their significance. The study of singular integro-differential equations has revealed a gap in
various research outcomes, primarily due to the complexity and diverse nature of these
equations. Singular integro-differential equations are characterized by their singularities,
either in the coefficients, the integral part, or in the solution itself, making them significantly
more challenging to analyze and solve compared to regular integro-differential equations.
One of the key gaps is the inconsistency in theoretical results related to the existence and
uniqueness of solutions. While some studies have successfully established these properties
under certain conditions, others have found that slight variations in the equation or bound-
ary conditions can lead to completely different outcomes. This variability is often attributed
to the nature and type of singularities involved. Another gap is observed in the numerical
methods used to solve these equations. Different approaches yield varying degrees of
accuracy and efficiency, and in some cases, certain methods fail to converge or produce
reliable results. Furthermore, the application of singular integro-differential equations
in modeling real-world phenomena also presents discrepancies. Models developed for
similar phenomena using these equations sometimes yield divergent results, reflecting the
sensitivity of the equations to initial conditions and parameter values. In summary, the
gaps in research on singular integro-differential equations are evident in the theoretical
understanding of their properties, the efficacy and reliability of numerical methods, and
the application of these equations in practical situations. For an in-depth understanding of
the qualitative properties of solutions of fractional integro-differential equations, especially
those with local and nonlocal boundary conditions encompassing aspects like existence,
uniqueness, continuous dependence, stability, and controllability, a comprehensive review
of the literature is available in references [15–28]. This body of work provides essential
insights into the complex nature of these equations and their practical implications in
various fields.

Recent studies have made significant progress in understanding the well-posedness
of nonlocal initial boundary value problems for singular integro-differential equations.
These studies contribute significantly to the understanding of nonlocal initial boundary
value problems for singular integro-differential equations, providing insights into their
well-posedness and solution methodologies [29–31].

In the rectangle QT = (0, 1)× [0, T], where 0 < T < ∞, we consider the fractional
nonlinear singular second-order integro-differential equation

∂σ
t θ − ∂2θ

∂x2 − 1
x

∂θ

∂x
+ θ = max

 x∫
0

ηθ(η, t)dη, 0

+ β(x, t), (1)

where ∂σ
t θ indicates the right Caputo fractional derivative of order σ, 0 < σ ≤ 1 [32] given

by

∂σ
t θ =

1
Γ(1 − σ)

t∫
0

θτ(τ)

(t − τ)σ dτ, ∀t ∈ [0, T].

The Equation (1) is supplemented by the initial condition

θ(x, 0) = Z(x), x ∈ (0, 1), (2)

and the one-point boundary condition

θx(1, t) = 0, t ∈ [0, T], (3)

where Z(x) ∈ W1
ρ,2((0, 1)), and β ∈ L2(0, T; L2(0, 1)

)
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In Section 2, we will introduce several function spaces and tools that will be frequently
utilized in the subsequent sections. Section 3 focuses on proving the uniqueness of the
solution for the given problem within a specific fractional Sobolev space. In Section 4, we
demonstrate the existence of a solution, with the proof primarily relying on the Schauder
fixed point theorem. Finally, in the last section, we derive an a priori bound, which can
assist in establishing certain regularity results for the solution to the problem described in
Equations (1)–(3).

2. Notations and Preliminaries

Lemma 1 ([33]). Let a nonnegative absolutely continuous function P(t) satisfy the inequality

C∂α
t P(t) ≤ CP(t) + k(t), 0 < α < 1,

for almost all t ∈ [0, T], where C is positive and k(t) is an integrable nonnegative function on [0, T].
Then,

P(t) ≤ P(0)Eα(Ctα) + Γ(α)Eα,α(Ctα)D−α
t k(t),

where

Eα(x) =
∞

∑
n=0

xn

Γ(αn + 1)
, and Eδ,α(x) =

∞

∑
n=0

xn

Γ(δn + α)
,

are the Mittag–Leffler functions.

Lemma 2 ([33]). For any absolutely continuous function v(t) on [0, T], the following inequality
holds:

v(t)C∂α
t v(t) ≥ 1

2

C
∂α

t v2(t), 0 < α < 1.

Lemma 3 ([33]). For F ∈ L2
(

0, T; L2
ρ(0, 1)

)
, the following inequality holds:

D−α
t ∥ F ∥2

L2
ρ((0,1)) ≤

tα−1

Γ(α)

t∫
0

∥ F ∥2
L2

ρ((0,1))dτ.

To study the problem (1)–(3), we use some important function spaces: Let L2
(

0, T; L2
γ(0.1)

)
,

L2
(

0, T; L2
ρ(0.1)

)
be the weighted Hilbert spaces of square integrable functions on QT with

γ = x2, and ρ = x. The inner products in L2
(

0, T; L2
γ(0.1)

)
, L2
(

0, T; L2
ρ(0.1)

)
are, respec-

tively, denoted by (.,.) L2(0,T;L2
γ(0.1)), (.,.) L2(0,T;L2

ρ(0.1)) such that

(u, v)L2(0,T;L2
k(x)(0.1)) =

T∫
0

(u, v)L2
k(x)(0.1)dx, k(x) = γ, ρ.

We also introduce the fractional derivative spaces: the space L2
(

0, T; Hσ
ρ (0, 1)

)
to be

the space of functions U ∈ L2
(

0, T; L2
ρ(0.1)

)
having σ-order Caputo derivative ∂σ

t U ∈

L2
(

0, T; L2
ρ(0.1)

)
, having the norm

∥ U ∥2
L2(0,T;Hσ

ρ (0,1)) = ∥ U ∥2
L2(0,T;L2

ρ(0.1)) + ∥ ∂σ
t U ∥2

L2(0,T;L2
ρ(0.1)),
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and the space L2
(

0, T; H2,σ
γ (0, 1)

)
to be the space of functions V ∈ L2

(
0, T; L2

γ(0.1)
)

such that

Vx,Vxx ∈ L2
(

0, T; L2
γ(0.1)

)
and having σ-order Caputo derivative ∂σ

t V ∈ L2
(

0, T; L2
γ(0.1)

)
,

associated with the norm

∥ V ∥2
L2(0,T;Hσ,2

γ (0,1)) = ∥ ∂σ
t V ∥2

L2(0,T;L2
γ(0.1)) + ∥ V ∥2

L2(0,T;L2
γ(0.1))

+∥ Vx ∥2
L2(0,T;L2

γ(0.1)) + ∥ Vxx ∥2
L2(0,T;L2

γ(0.1)).

The function spaces L2
(

0, T; Hσ
ρ (0, 1)

)
, and L2

(
0, T; H2,σ

γ (0, 1)
)

can be defined as the clo-

sure of C∞(0, T; L2(0.1)
)

with respect to the norms (2) and (4), respectively. We denote
by C

(
0, T; L2(0, 1)

)
the Banach space of the set of functions U : [0, T] → L2(0.1) equipped

with the norm
∥ U ∥C([0,T;L2(0.1)) = max

0≤t≤T
∥ U(., t) ∥L2(0,1).

Let W1
γ,2(0, 1) be the set of functions ξ such that ξ, ξx ∈ L2

γ(0, 1) with the norm

∥ u ∥2
W1

γ,2(0,1) = ∥ u ∥2
L2

γ(0.1) + ∥ ux ∥2
L2

γ(0.1).

The following inequalities are needed:
(1) Cauchy ε−inequality which holds for all ε > 0 and for arbitrary λ and µ

λµ ≤ ε

2
λ2 +

1
2ε

µ2, (4)

(2) A Poincaré type inequality (see [34]).{
∥ Λx(ξu) ∥2

L2(0,1) ≤ 1
2∥ u ∥2

L2
ρ(QT)

,

∥ Λ2
x(ξu) ∥2

L2(0,1) ≤ 1
2∥ Λx(ξu) ∥2

L2(QT)
,

(5)

where

Λx(ξu) =
x∫

0

ξu(ξ, t)dξ.

(3) Gronwall’s Belman inequality (see [28] Lemma 4.1).

3. Uniqueness of Solution

Theorem 1. Let Z ∈ W1
ρ,2((0, 1)), and β ∈ L2

(
0, T; L2

ρ(0, 1)
)

. Then, the posed problem (1)–(3)

has at most one solution in L2(0, T; Hσ
ρ ((0, 1)), if it exists.

Proof. Let V1 and V2 be two solutions of problem (1)–(3), and let η(x, t) = V1(x, t)−V2(x, t).
Then, η satisfies the problem

Lη = ∂σ
t η − ∂2η

∂x2 − 1
x

∂η

∂x
+ η = γ1(x, t)− γ2(x, t), (6)

ηx(1, t) = 0, t ∈ (0, T), (7)

η(x, 0) = 0, x ∈ (0, 1), (8)

where

γj(x, t) = max

 x∫
0

ηVj(η, t)dη, 0

, j = 1, 2. (9)
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By direct calculation, we have

(∂σ
t η,Lη)L2

ρ(0,1) =
(

∂σ
t η, ∂σ

t η − 1
x

∂
∂x

(
x ∂η

∂x

)
+ η

)
L2

ρ(0,1)

= ∥ ∂σ
t η ∥2

L2
ρ(0,1) −

(
∂σ

t η, ∂
∂x

(
x ∂η

∂x

))
L2(0,1)

+ (∂σ
t η, η)L2

ρ(0,1)

= ∥ ∂σ
t η ∥2

L2
ρ(0,1) + (∂σ

t η, η)L2
ρ(0,1) + (∂σ

t ηx, ηx)L2
ρ(0,1)

= (∂σ
t η, γ1 − γ2)L2

ρ(0,1).

(10)

and
(η,Lη)L2

ρ(0,1) = (∂σ
t η, η)L2

ρ(0,1) −
(

η, ∂
∂x

(
x ∂η

∂x

))
L2(0,1)

+ ∥ η ∥2
L2

ρ(0,1)

= (∂σ
t η, η)L2

ρ(0,1) + ∥ η ∥2
L2

ρ(0,1) + ∥ ηx ∥2
L2

ρ(0,1)

= (η, γ1 − γ2)L2
ρ(0,1).

(11)

Summing (10), and (11) yields

∥ ∂σ
t η ∥2

L2
ρ(0,1) + ∥ η ∥2

L2
ρ(0,1) + ∥ ηx ∥2

L2
ρ(0,1)

+2(∂σ
t η, η)L2

ρ(0,1) + (∂σ
t ηx, ηx)L2

ρ(0,1)

= (∂σ
t η, γ1 − γ2)L2

ρ(0,1) + (η, γ1 − γ2)L2
ρ(0,1).

(12)

Aplication of Lemma 2 to the last two terms on the left-hand side of Equation (12)
yields

2
1∫

0

xη(x, t) ∂σ
t η(x, t)dx ≥

1∫
0

x∂σ
t η2(x, t)dx = ∂σ

t

1∫
0

xη2(x, t)dx.

That is,
2(∂σ

t η, η)L2
ρ(0,1) ≥ ∂σ

t ∥ η ∥2
L2

ρ(0,1).

Similarly,
(∂σ

t ηx, ηx)L2
ρ(0,1) ≥ ∂σ

t ∥ ηx ∥2
L2

ρ(0,1).

We now apply Cauchy ε− inequality to the right-hand side of Equation (12), and using the
two precedent inequalities, we obtain

∥ ∂σ
t η ∥2

L2
ρ(0,1) + ∥ η ∥2

L2
ρ(0,1) +

1
2∥ ηx ∥2

L2
ρ(0,1)

+∂σ
t ∥ η ∥2

L2
ρ(0,1) + ∂σ

t ∥ ηx ∥2
L2

ρ(0,1)

≤ δ1
2 ∥ ∂σ

t η ∥2
L2

ρ(0,1) +
1

2δ1
∥ γ1 − γ2 ∥2

L2
ρ(0,1)

δ2
2 ∥ η ∥2

L2
ρ(0,1) +

1
2δ2

∥ γ1 − γ2 ∥2
L2

ρ(0,1).

(13)

We can easily show that

∥ γ1 − γ2 ∥2
L2

ρ(0,1) ≤
1
2
∥ η ∥2

L2
ρ(0,1). (14)

By evoking (14) and choosing δ1 = 1, and δ2 = 2, the inequality (13) can be reduced to

∥ ∂σ
t η ∥2

L2
ρ(0,1) + ∥ ηx ∥2

L2
ρ(0,1) + ∂σ

t ∥ ηx ∥2
L2

ρ(0,1) + ∂σ
t ∥ η ∥2

L2
ρ(0,1)

≤ 3
8∥ η ∥2

L2
ρ(0,1).

(15)
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We infer from the inequality (15) that

∥ ∂σ
t η ∥2

L2(0,t;L2
ρ(0,1)) + ∥ ηx ∥2

L2(0,t;L2
ρ(0,1)) + Dσ−1

t ∥ ηx ∥2
L2

ρ(0,1)

Dσ−1
t ∥ η ∥2

L2
ρ(0,1)

≤ 3
8

t∫
0
∥ η(x, τ) ∥2

L2
ρ(0,1)dτ.

(16)

By ignoring the first three terms, applying Lemma 1, and taking

h(t) =
t∫

0

∥ η(x, τ) ∥2
L2

ρ(0,1)dτ, ∂σ
t h = Dσ−1

t ∥ η ∥2
L2

ρ(0,1), h(0) = 0, (17)

we have

h(t) ≤ 3
8

Γ(σ)Eσ,σ

(
3
8

Tσ

)
D−σ

t (0). (18)

We infer from (17) and (18) that η(x, t) = V1(x, t) − V2(x, t) = 0 for all t ∈ [0, T]. This
implies that V1(x, t) = V2(x, t). Hence, we conclude the uniqueness of the solution of
problem (1)–(3) in the fractional function space L2(0, T; Hσ

ρ ((0, 1)). □

4. Existence of the Solution

Theorem 2. Let Z ∈ W1
ρ,2((0, 1)), and β ∈ L2

(
0, T; L2

ρ(0, 1)
)

be given and satisfy

∥ Z ∥2
W1

ρ,2((0,1)) + ∥ β ∥2
L2(0,T;L2

ρ(0,1)) ≤ C2, (19)

for C2 > 0 small enough and that
Zx(1) = 0. (20)

Then, problem (1)–(3) admit a unique solution θ ∈ L2(0, T; Hσ
ρ ((0, 1)).

Proof. Consider the class of functions

Σ(B) =

θ ∈ L2
(

0, T; L2
ρ(0, 1)

)
, ∥ θ ∥L2(0,T;Hσ

ρ ((0,1)) ≤ B,

∥ ∂σ
t θ ∥L2(0,T;L2

ρ(0,1)) ≤ 2B,
}

.
(21)

where B is a positive constant. Then, for any V ∈ Σ(B), we can solve the problem
∂σ

t θ − ∂2θ
∂x2 − 1

x
∂θ
∂x + θ = IV + β(x, t),

θ(x, 0) = Z(x), x ∈ (0, 1),
θx(1, t) = 0, t ∈ (0, T),

(22)

where

IV = max

 x∫
0

ηV(η, t)dη, 0

. (23)

Problem (22) has a unique solution θ ∈ L2(0, T; Hσ
ρ ((0, 1)) for any V ∈ Σ(B); thus, we can

define a mapping P such that θ = PV. If we prove that P has a fixed point θ in the closed
bounded convex subset Σ(B), then θ will be the solution of our problem (1)–(3). We first
prove that P maps Σ(B) to Σ(B). Let θ = Y + J, such that Y solves{

LY = ∂σ
t Y − ∂2Y

∂x2 − 1
x

∂Y
∂x + Y = IV, (x, t) ∈ Q

Y(x, 0) = 0, Yx(1, t) = 0.
(24)
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and J solves {
LJ = ∂σ

t J − ∂2 J
∂x2 − 1

x
∂J
∂x + J = β(x, t), (x, t) ∈ Q

J(x, 0) = Z(x), Jx(1, t) = 0.
(25)

Consider the scalar products in L2
ρ(0, 1)

(LY, M1Y)L2
ρ(0,1) = (IV, M1Y)L2

ρ(0,1), (26)

(LJ, M2 J)L2
ρ(0,1) = (β, M2 J)L2

ρ(0,1), (27)

where
M1Y = x∂σ

t Y + xY + xYx, (28)

M2 J = x∂σ
t J + xJ + xJx. (29)

Equation (26) reads,(
∂σ

t Y − 1
x

(
x ∂Y

∂x

)
x
+ Y, ∂σ

t Y
)

L2
ρ(0,1)

+
(

∂σ
t Y − 1

x

(
x ∂Y

∂x

)
x
+ Y, Y

)
L2

ρ(0,1)

+
(

∂σ
t Y − 1

x

(
x ∂Y

∂x

)
x
+ Y, Yx

)
L2

ρ(0,1)

= (∂σ
t Y + Y + Yx, IV)L2

ρ(0,1).

(30)

The initial and boundary conditions transform (30) into the equation

∥ ∂σ
t Y ∥2

L2
ρ((0,1)) + (∂σ

t Yx, Yx)L2
ρ((0,1)) + 2(∂σ

t Y, Y)L2
ρ((0,1))

+ 1
2∥ Yx ∥2

L2
ρ((0,1)) + ∥ Y ∥2

L2
ρ((0,1)) + (∂σ

t Y, Yx)L2
ρ((0,1)) + (Y, Yx)L2

ρ((0,1))

= (∂σ
t Y + Y + Yx, IV)L2

ρ(0,1).

(31)

By evoking Lemma 2 and Young’s inequality, we infer from equality (31) that

∥ ∂σ
t Y ∥2

L2
ρ((0,1)) +

1
2 ∂σ

t ∥ Yx ∥2
L2

ρ((0,1)) + ∂σ
t ∥ Y ∥2

L2
ρ((0,1))

+ 1
2∥ Yx ∥2

L2
ρ((0,1)) + ∥ Y ∥2

L2
ρ((0,1))

≤
( γ1

2 + γ4
2
)
∥ ∂σ

t Y ∥2
L2

ρ((0,1)) +
( γ5

2 + γ2
2
)
∥ Y ∥2

L2
ρ((0,1))

+
(

1
2γ5

+ γ3
2 + 1

2γ4

)
∥ Yx ∥2

L2
ρ((0,1))

+
(

1
2γ1

+ 1
2γ3

+ 1
2γ2

)
∥ IV ∥2

L2
ρ((0,1)).

(32)

After choosing γ1 = 1/2,γ2 = 1/4,γ3 = 1,γ4 = 1,γ5 = 1, inequality (32) reduces to

∥ ∂σ
t Y ∥2

L2
ρ((0,1)) + ∥ Y ∥2

L2
ρ((0,1)) + ∂σ

t ∥ Y ∥2
L2

ρ((0,1)) + ∂σ
t ∥ Yx ∥2

L2
ρ((0,1))

≤ 14
(
∥ Yx ∥2

L2
ρ((0,1)) + ∥ IV ∥2

L2
ρ((0,1))

)
.

(33)

In the same fashion, we have

∥ ∂σ
t J ∥2

L2
ρ((0,1)) + ∥ J ∥2

L2
ρ((0,1)) + ∂σ

t ∥ J ∥2
L2

ρ((0,1)) + ∂σ
t ∥ Jx ∥2

L2
ρ((0,1))

≤ 14
(
∥ Jx ∥2

L2
ρ((0,1)) + ∥ β ∥2

L2
ρ((0,1))

)
.

(34)
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Integration of both sides of (33), and (34), respectively, yields the inequalities

t∫
0

(
∥ ∂σ

τY(., τ) ∥2
L2

ρ((0,1)) + ∥ Y(., τ) ∥2
L2

ρ((0,1))

)
dτ

+Dσ−1∥ Y ∥2
L2

ρ((0,1)) + Dσ−1∥ Yx ∥2
L2

ρ((0,1))

≤ 14

(
t∫
0
∥ Yx(., τ) ∥2

L2
ρ((0,1))dτ +

t∫
0
∥ IV ∥2

L2
ρ((0,1))dτ

)
,

(35)

t∫
0

(
∥ ∂σ

τ J(., τ) ∥2
L2

ρ((0,1)) + ∥ J(., τ) ∥2
L2

ρ((0,1))

)
dτ

+Dσ−1∥ J ∥2
L2

ρ((0,1)) + Dσ−1∥ Jx ∥2
L2

ρ((0,1))

≤ 14

(
t∫
0
∥ Jx(., τ) ∥2

L2
ρ((0,1))dτ +

t∫
0
∥ β(., τ) ∥2

L2
ρ((0,1))dτ

)
.

(36)

If we discard the first three terms on the LHS of (35) and apply Lemma 1 with

ξ(t) =
t∫

0

∥ Yx(., τ) ∥2
L2

ρ((0,1))dτ, ∂σ
t ξ = Dσ−1∥ Yx ∥2

L2
ρ((0,1)), ξ(0) = 0, (37)

we obtain the inequality

t∫
0
∥ Yx(., τ) ∥2

L2
ρ((0,1))dτ

≤ 14Γ(σ)Eσ,σ(14tσ)D−σ−1
t

(
∥ IV ∥2

L2
ρ((0,1))

)
.

(38)

By virtue of Lemma 3, inequality (38) and (35) reads

t∫
0

(
∥ ∂σ

τY(., τ) ∥2
L2

ρ((0,1)) + ∥ Y(., τ) ∥2
L2

ρ((0,1))

)
dτ

+Dσ−1∥ Y ∥2
L2

ρ((0,1)) + Dσ−1∥ Yx ∥2
L2

ρ((0,1))

≤ C∗
t∫
0
∥ IV ∥2

L2
ρ((0,1))dτ,

(39)

where

C∗ = 14

{
1 +

14TσΓ(σ)Eσ,σ(14 tσ)

Γ(σ + 1)

}
. (40)

By symmetry, we also have

t∫
0

(
∥ ∂σ

τ J(., τ) ∥2
L2

ρ((0,1)) + ∥ J(., τ) ∥2
L2

ρ((0,1))

)
dτ

+Dσ−1∥ J ∥2
L2

ρ((0,1)) + Dσ−1∥ Jx ∥2
L2

ρ((0,1))

≤ C∗∗
(

t∫
0
∥ β ∥2

L2
ρ((0,1))dτ + ∥ Z ∥2

W1
2,ρ((0,1))

)
,

(41)

where
C∗∗ = Max{C∗, 1}. (42)

We conclude from (39) and (41) that

∥ Y ∥2
L2(0,T;Hσ

ρ ((0,1)) ≤ C∗
T∫
0

∥ IV ∥2
L2

ρ((0,1))dτ, (43)
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and

∥ J ∥2
L2(0,T;Hσ

ρ ((0,1)) ≤ C∗∗

 T∫
0

∥ β ∥2
L2

ρ((0,1))dτ + ∥ Z ∥2
W1

2,γ((0,1))

. (44)

Since θ = Y + J implies that

∥ θ ∥2
L2(0,T;Hσ

ρ ((0,1))

≤ ∥ Y ∥2
L2(0,T;Hσ

ρ ((0,1)) + ∥ J ∥2
L2(0,T;Hσ

ρ ((0,1))

≤ C∗
T∫
0
∥ IV ∥2

L2
ρ((0,1))dτ + C∗∗

(
T∫
0
∥ β ∥2

L2
ρ((0,1))dτ + ∥ Z ∥2

W1
2,γ((0,1))

)
,

(45)

and since
IV ∈ L2

(
0, T; L2

ρ((0, 1)), β ∈ L2(0, T; L2
ρ((0, 1))

and Z ∈ W1
ρ,2((0, 1)),

then, according to (45), we have

∥ θ ∥2
L2(0,T;Hσ

ρ ((0,1)) ≤ C∗C1 + C∗∗C2. (46)

It also follows from (39) and (41) that

∥ ∂σ
t Y ∥2

L2(0,T;L2
ρ((0,1)) ≤ C∗

T∫
0

∥ IV ∥2
L2

ρ((0,1))dτ ≤ C∗C1, (47)

and

∥ ∂σ
t J ∥2

L2(0,T;L2
ρ((0,1)) ≤ C∗∗

 T∫
0

∥ β ∥2
L2

ρ((0,1))dτ + ∥ Z ∥2
W1

2,γ((0,1))

 ≤ C∗∗C2 (48)

If we choose B ≥
√

C∗C1 + C∗∗C2, then we conclude from (46)–(48) that

∥ θ ∥2
L2(0,T;Hσ

ρ ((0,1)) ≤ B, and ∥ ∂σ
t θ ∥L2(0,T;L2(0,1)) ≤ 2B. (49)

Hence, θ ∈ Σ(B), and consequently, the mapping P maps Σ(B) into itself. □

We will now show that the mapping P : Σ(B) → Σ(B) is continuous. Let θ1,θ2 ∈ Σ(B),
and let ω1 = P(θ1) and ω2 = P(θ2).

We observe that ω = ω1 − ω2 satisfies

∂σ
t ω − ∂2ω

∂x2 − 1
x

∂ω

∂x
+ ω = U(t, x), (50)

where U(t, x) = max

(
x∫
0

ηθ1(η, t)dη, 0

)
− max

(
x∫
0

ηθ2(η, t)dη, 0

)
ω(x, 0) = 0, ωx(1, t) = 0.

(51)

It is clear that
∥ U(x, t) ∥2

L2(0,T;L2
ρ((0,1)) ≤ ∥ θ1 − θ2 ∥2

L2(0,T;L2
ρ((0,1)), (52)

and
∥ ω(x, t) ∥2

L2(0,T;L2
ρ((0,1)) ≤ ∥ θ1 − θ2 ∥2

L2(0,T;L2
ρ((0,1)). (53)

That is,
∥ P(θ1)−P(θ2) ∥L2(0,T;L2

ρ((0,1)) ≤ ∥ θ1 − θ2 ∥L2(0,T;L2
ρ((0,1)). (54)
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Consequently, the mapping P : Σ(B) → Σ(B) is continuous. The set Σ(B) is compact, due
to the following:

Theorem 3. Let F0 ⊂ F ⊂ F1 with compact embedding (see [35]). Suppose that α, λ ∈ (0, ∞) and
T > 0. Then,

W =
{

θ : θ ∈ Lα(0, T; F), ∂δ
t θ ∈ Lλ(0, T; F1)

}
is compactly embedded in Lα(0, T; F), that is the bounded sets are relatively compact in Lα(0, T; F).

Remark that P(Σ(F)) ⊂ Σ(F) ⊂ L2(0, T; L2
ρ((0, 1)). Then apply Schauder fixed point

theorem to conclude that mapping P has a fixed point θ ∈ Σ(B).

5. A Priori Estimate for the Solution

We will establish a priori estimate for the solution of the posed problem (1)–(3) in the
function space L2

(
0, T; H2,σ

γ (0, 1)
)

. That is, we may expect the solution of (1)–(3) to be in

L2
(

0, T; H2,σ
γ (0, 1)

)
, with γ = x2.

Theorem 4. Let L2
(

0, T; H2,σ
γ (0, 1)

)
, solve (1)–(3). Then, the following a priori estimate is true

∥ θ ∥2
L2(0,T;H2,σ

γ (0,1)) ≤ D
(
∥ Z ∥2

W1
2,γ((0,1)) + ∥ β ∥2

L2(0,T;L2
ρ(0,1))

)
, (55)

where

D = max
{

2,
T1−σ

(1 − σ)Γ(1 − σ)

}
. (56)

Proof. Note that

1∫
0

x2
(

∂σ
t θ − ∂2θ

∂x2 − 1
x

∂θ

∂x
+ θ

)2

dx =

1∫
0

x max

 x∫
0

ηθ(η, t)dη, 0

+ xβ

2

dx. (57)

Then,
1∫
0

x2(∂σ
t θ)2dx +

1∫
0

[
∂

∂x

(
x ∂θ

∂x

)]2
dx +

1∫
0

x2θ2dx + 2(∂σ
t θ, θ)L2

γ(0,1)

−2
(

xθ, ∂
∂x

(
x ∂θ

∂x

))
L2(0,1)

− 2
(

x∂σ
t θ, ∂

∂x

(
x ∂θ

∂x

))
L2(0,1)

=
1∫
0

[
x max

(
x∫
0

ηθ(η, t)dη, 0

)
+ xβ

]2

dx.

(58)

The last two terms on the LHS of (58) can be evaluated as

−2
(

xθ,
∂

∂x

(
x

∂θ

∂x

))
L2(0,1)

= 2∥ θx ∥2
L2

γ(0,1) + 2(xθ, θx)L2(0,1), (59)

−2
(

x∂σ
t θ, ∂

∂x

(
x ∂θ

∂x

))
L2(0,1)

= 2(∂σ
t θx, θx)L2

γ(0,1) + 2(x∂σ
t θ, θx)L2(0,1),

(60)

and
1∫

0

[
∂

∂x

(
x

∂θ

∂x

)]2
dx = ∥ θxx ∥2

L2
γ(0,1). (61)
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We now evaluate the expression

−2(xLθ, θx)L2(0,1) = −2

max

 x∫
0

ηθ(η, t)dη, 0

+ β, xθx


L2(0,1)

. (62)

Computation of the terms on the LHS of (62) leads to

2∥ θx ∥2
L2(0,1) − 2(x∂σ

t θ, θx)L2(0,1) − 2(xθ, θx)L2(0,1)

= −2

(
max

(
x∫
0

ηθ(η, t)dη, 0

)
+ β, xθx

)
L2(0,1)

.
(63)

Observe that the combination of (58)–(63) and the use of Lemma 2 yield

∥ ∂σ
t θ ∥2

L2
γ(0,1) + ∥ θ ∥2

L2
γ(0,1) + 2∥ θx ∥2

L2
γ(0,1) + 2∥ θx ∥2

L2(0,1)

+∥ θxx ∥2
L2

γ(0,1) + ∂σ
t ∥ θx ∥2

L2
γ(0,1) + ∂σ

t ∥ θ ∥2
L2

γ(0,1)

≤
1∫
0

[
x max

(
x∫
0

ηθ(η, t)dη, 0

)
+ xβ

]2

dx

−2

(
max

(
x∫
0

ηθ(η, t)dη, 0

)
, xθx

)
L2(0,1)

− 2(xθx, β)L2(0,1).

(64)

We now estimate the RHS of (64) in the following way:

1∫
0

x max

 x∫
0

ηθ(η, t)dη, 0

+ xβ

2

dx ≤ 2
3
∥ θx ∥2

L2(0,1) + 2∥ β ∥2
L2

γ(0,1), (65)

−2

max

 x∫
0

ηθ(η, t)dη, 0

, xθx


L2(0,1)

≤ δ1
2
3
∥ θ ∥2

L2
γ(0,1) +

1
δ1
∥ θx ∥2

L2(0,1), (66)

−2(xθx, β)L2(0,1) ≤ δ2∥ θx ∥2
L2(0,1) +

1
δ21

∥ β ∥2
L2

γ(0,1). (67)

The insertion of (65)–(67) into (64) gives

∥ ∂σ
t θ ∥2

L2
γ(0,1) + ∥ θ ∥2

L2
γ(0,1) + 2∥ θx ∥2

L2
γ(0,1) + 2∥ θx ∥2

L2(0,1)

+∥ θxx ∥2
L2

γ(0,1) + ∂σ
t ∥ θx ∥2

L2
γ(0,1) + ∂σ

t ∥ θ ∥2
L2

γ(0,1)

≤
(

2
3∥ θx ∥2

L2
γ(0,1) + 2∥ β ∥2

L2
γ(0,1) + δ1

2
3∥ θ ∥2

L2
γ(0,1) +

1
δ1
∥ θx ∥2

L2(0,1)

δ2∥ θx ∥2
L2(0,1) +

1
δ2
∥ β ∥2

L2
γ(0,1)

)
.

(68)

Upon the choices δ1 = 1,δ2 = 1, the inequality (68) reduces to

∥ θ ∥2
H2,σ

γ (0,1) + ∂σ
t ∥ θx ∥2

L2
γ(0,1) + ∂σ

t ∥ θ ∥2
L2

γ(0,1) ≤ 9∥ β ∥2
L2

γ(0,1). (69)

The integration of (69) yields

∥ θ ∥2
L2(0,T;H2,σ

γ (0,1)) + Dσ−1∥ θx ∥2
L2

γ(0,1) + Dσ−1∥ θ ∥2
L2

γ(0,1)

≤ 9∥ β ∥2
L2(0,t;L2

γ(0,1)) +
T1−σ

(1−σ)Γ(1−σ)

(
∥ Zx ∥2

L2
γ(0,1) + ∥ Z ∥2

L2
γ(0,1)

)
≤ D

(
∥ Z ∥2

W1
2,γ((0,1)) + ∥ β ∥2

L2(0,T;L2(0,1))

)
.

(70)
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where D > 0 is given by (56). Once we drop the last two terms on the LHS, we obtain the a
priori estimate (55) from which we deduce the uniqueness of the solution of problem (1)–(3)
in the fractional Sobolev space L2

(
0, T; H2,σ

γ (0, 1)
)

. □

6. Conclusions

The well-posedness of a one-point IBVP for a one-dimensional fractional nonlinear
integro-differential equation of order between zero and one is investigated. The Schauder
fixed point theorem is applied to establish the existence of the solution. The feasibility of
solving this problem is established under the context of data related to a weighted Sobolev
space. Furthermore, an additional result related to the regularity of the solution for the
formulated problem is also presented.
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