
Citation: Olaniran, S.F.; Olaniran,

O.R.; Allohibi, J.; Alharbi, A.A. A

Novel Approach for Testing Fractional

Cointegration in Panel Data Models

with Fixed Effects. Fractal Fract. 2024,

8, 527. https://doi.org/10.3390/

fractalfract8090527

Academic Editor: Bruno Carpentieri

Received: 20 July 2024

Revised: 5 September 2024

Accepted: 7 September 2024

Published: 10 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Novel Approach for Testing Fractional Cointegration in Panel
Data Models with Fixed Effects
Saidat Fehintola Olaniran 1 , Oyebayo Ridwan Olaniran 2,* , Jeza Allohibi 3 and Abdulmajeed Atiah Alharbi 3

1 Department of Statistics and Mathematical Sciences, Faculty of Pure and Applied Sciences,
Kwara State University, Malete 1530, Nigeria; saidat.olaniran@kwasu.edu.ng

2 Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Ilorin 1515, Nigeria
3 Department of Mathematics, Faculty of Science, Taibah University,

Al-Madinah Al-Munawara 42353, Saudi Arabia; jlohibi@taibahu.edu.sa (J.A.);
aahharbi@taibahu.edu.sa (A.A.A.)

* Correspondence: olaniran.or@unilorin.edu.ng

Abstract: Fractional cointegration in time series data has been explored by several authors, but panel
data applications have been largely neglected. A previous study of ours discovered that the Chen
and Hurvich fractional cointegration test for time series was fairly robust to a moderate degree of
heterogeneity across sections of the six tests considered. Therefore, this paper advances a customized
version of the Chen and Hurvich methodology to detect cointegrating connections in panels with
unobserved fixed effects. Specifically, we develop a test statistic that accommodates variation in the
long-term cointegrating vectors and fractional cointegration parameters across observational units.
The behavior of our proposed test is examined through extensive Monte Carlo experiments under
various data-generating processes and circumstances. The findings reveal that our modified test
performs quite well comparatively and can successfully identify fractional cointegrating relationships
in panels, even in the presence of idiosyncratic disturbances unique to each cross-sectional unit.
Furthermore, the proposed modified test procedure established the presence of long-run equilibrium
between the exchange rate and labor wage of 36 countries’ agricultural markets.
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MSC: 94A08; 68U10

1. Introduction

While cointegration techniques have proven useful in economic and financial research
for decades in examining equilibrium relationships between non-stationary time series data,
the ability of fractional cointegration to accommodate non-integer degrees of integration
and additional nonstationary elements addresses the limitations of traditional approaches.
Fractional cointegration relaxes assumptions regarding integration orders and potential
randomness in time series, allowing for more robust modelling. As econometric tools
progress to incorporate more complex real-world variations, fractional techniques lend
increased accuracy to describing equilibrium conditions over time. Continued exploration
of fractional specifications holds promise for deeper insights into the dynamics between
financial and economic variables [1–3]. The complex research surrounding fractional coin-
tegration in multivariate time series has led to an abundance of assessment techniques for
detecting such interdependencies. A wealth of studies have created and evaluated various
statistical approaches for testing fractional cointegration, ranging from early explorations
that provided foundational methods to more recent innovations that have built upon pre-
vious work. Among the many contributions to this area of inquiry are tests proposed by
Johansen and Nielsen [1], Marmol and Velasco [4], Chen and Hurvich [5], Johansen [6],
Robinson [7], Nielsen [8], Avarucci and Velasco [9], Łasak [10], Johansen and Nielsen [11],
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Souza et al. [12]—each offering novel ways of quantifying the perplexing dynamics within
nonstationary data comprised of multiple correlated components evolving through fractal
processes over time.

Leschinski et al. [13] uncovered substantial shortcomings in how some fractional
cointegration tests operate with limited data, as evidenced by their thorough Monte Carlo
analysis of these methods with time series. Certain procedures demonstrated weak de-
tection abilities or skewed false-positive rates when short-run elements were interrelated.
This generalization covered the strategies put forth by Nielsen and Shimotsu [14], Nielsen
and Shimotsu [14] (or Robinson and Yajima [15]), Marmol and Velasco [4], and Hualde and
Velasco [16]. While investigating spurious test outcomes with confined samples, their work
highlighted necessary improvements for robust evaluation of cointegrated associations
over the long term.

Thus, this paper builds on the conceptual framework that is based on the founda-
tional role of cointegration techniques in economic and financial research, focusing on
fractional cointegration, which improves traditional models by allowing for non-integer
degrees of integration and capturing more complex, non-linear dynamics in time series
data. Furthermore, in the previous work by Olaniran and Ismail [17], the author specifically
focused on determining the appropriateness of the existing fractional cointegration test
for the fixed effects panel model. The Chen and Hurvich fractional cointegration test [5]
originally developed for time series data was observed to withstand a moderate level of
cross-sectional heterogeneity. Therefore, in this paper, we modified the test procedure to
fully accommodate the fixed effect fractional cointegration structure in panel data.

2. Related Work

Both fractional and standard cointegration were defined concurrently by Engle and
Granger [18], but standard cointegration has received significantly more attention. As a
result, there has been a need to focus heavily on fractional cointegration in recent years due
to the paucity of research, particularly for panel data as opposed to time series data.

Panel data analysis is a means of investigating a specific subject across numerous
places over a fixed length of time, which is becoming increasingly popular among social
and behavioural science academics. Panel data combine time series and cross-sections to
improve data quality and quantity in ways that would be impossible if only one of these
two dimensions were utilized [19].

Standard cointegration only allows integer values for the memory parameters δ and ν,
and unit root theory is used to test for cointegration’s existence. The fractional cointegration
framework, on the other hand, is more general, because it enables fractional values for
the memory parameter and any positive real number for ν − δ. As indicated by the work
of [5,7,20], fractional cointegration recently received significant attention. For time series
data, all of these publications assume that the observed series is either bivariate or that the
cointegrating rank is one.

Robinson [21] observed that in the presence of a correlation between Xt and ϵt, the OLS
estimator will be inconsistent, and they proposed a narrowband least-squares estimator
(NBLSE) of the long memory parameter in the frequency domain, which was further
studied in Marinucci and Robinson [20]. Robinson and Yajima [15] presented methods
for finding the cointegrating rank, as in Chen and Hurvich [5], which focused on the
estimation of the space of cointegrating vectors without emphasizing the use of time and
cross-sections.

While Chen and Hurvich [22] tapered a narrowband least-squares estimator of the
cointegration parameter utilizing a family of tapers, alternative approaches exist. Their
methodology changed the data p − 1 times to account for potential (p − 1)th order poly-
nomial trends, rendering the resultant estimator insensitive to deterministic polynomial
trends within the series. However, other scholars propose directly modeling such trends
to comparable effects. After changing these parameters, they propose multiplying the
data by a tapered sequence of constants that are dependent on the positive integer p to
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emphasize more recent observations. Yet, some argue for applying non-linear tapers or
transforming variables prior to estimation to better address non-stationarities. In short,
while their proposal offers one valid method, room remains to explore complementary
techniques addressing cointegration under non-stationary conditions.

Chen and Hurvich [5] developed an innovative test for fractional cointegration based
on their multivariate common-components model, allowing memory parameters to vary
across factors. This novel approach recognizes that the cointegrating rank may exceed
one, with the original vectors split into orthogonal fractional subspaces, yielding errors
with fluctuating memory attributes from vectors drawn across different subspaces. Their
fractional cointegration technique using a common-components structure with changeable
memory dynamics across factors proved insightful for assessing long-run relationships
between nonstationary series. Also, the complex relationships shared between financial
variables often emerge through time. Resolving these intricate connections requires parsing
cointegrating residuals to uncover the inherent long-term patterns. By applying a Gaussian
semiparametric approach using an appropriately scaling bandwidth, one can derive a stable
gauge of the persistence inherently linking economic factors within a specified cointegrating
framework. With this metric in hand, we can neatly isolate cointegrating subsets and
rigorously examine whether fractional processes underlie the observed synchronization.
Such techniques help bring order to the initially chaotic web of interdependencies that
defines economic landscapes.

Ergemen and Velasco [23] explored a large dataset with numerous variables and
time periods using a panel data model containing fixed factors that enable cross-sectional
interdependence, persistent information, and fractionally built-in inaccuracies. Their
investigation gives a broad analysis for stationary and non-stationary signs, as corroborated
through Monte Carlo tests that exhibited effectiveness in implementation. As suggested
in a prior study by Robinson and Velasco [24], the strategy was further expanded to
alternative estimation methods involving fixed effects and the generalized method of
moments: a technique applying instruments to acquire consistent and proficient estimates
from unobservable variables.

Idiosyncratic shocks can be utilized to highlight spatial dependency in a broader model
by permitting nonfactor endogeneity, which results in a cointegrated system analysis in
the traditional sense, as in Ergemen [25]. By comparing mean group estimates with pooled
estimates produced from a homogeneous version of the model, panel unit-root and related
hypothesis testing, as well as slope parameter homogeneity tests, could be constructed.

Leschinski et al. [13] explored fractional cointegration across various econometric ap-
proaches. Nine fractional cointegration tests evaluating spectral density and residual-based
methods were compared. When short-term influences contained interdependences, several
techniques uncovered noticeably amplified sizes. Their efficacy diverged as well, with
power varying between common-component frameworks opposite triangular systems.
Overall, the analysis illuminated how the presence of interconnected transient elements im-
pacts the performance of fractional cointegration testing procedures. It was also found that
the effectiveness of the test procedures diverged substantially between the two modeling
situations. The test procedure of Chen and Hurvich [5] specifically had considerably higher
power for stationary systems under the common component specification, whereas the
techniques of Robinson and Yajima [15] and Hualde and Velasco [16] proved to be less able
to identify fractional cointegration. In contrast, the test by Chen and Hurvich [5] strongly
determined cointegrating associations assuming steady components, and the methodology
of Robinson and Yajima [15] and that of Hualde and Velasco [16] saw diminishing prospects
for detecting fractional cointegrating connections.

The methods proposed by Robinson [7], Nielsen [8], and Zhang et al. [26] are well-
regarded for their robustness to short-term correlation and their simplicity, making them
appealing for various applications. However, none of these works presented a compre-
hensive test for fractional integration and cointegration that was broadly applicable across
all types of panel data, particularly in contexts involving heterogeneity. Olaniran and
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Ismail [17] addressed this gap by evaluating existing fractional cointegration tests in the
context of time series data, focusing on their effectiveness for panel data with fixed ef-
fects and moderate to high heterogeneity. Among the methods reviewed, only Chen and
Hurvich [5] proved to be effective under such conditions.

This paper builds on Olaniran and Ismail [17] by further refining Chen and Hur-
vich [5]’s test to accommodate fractional cointegration in fixed effect panel data that exhibit
varying degrees of heterogeneity across observational units. Compared to prior studies, the
unique contribution of this work lies in its ability to address fractional cointegration more
comprehensively in diverse panel data settings, filling a critical gap in the literature. While
previous methodologies are valuable, they fall short in contexts of significant heterogeneity,
which is increasingly relevant in empirical economic and financial applications. By enhanc-
ing Chen and Hurvich [5]’s test for a wider range of panel data, this paper contributes
an essential tool for researchers dealing with fractional cointegration in complex datasets,
advancing the methodological landscape in this area.

3. Modified Chen and Hurvich [5] Test for Fixed Effects Panel Model

Consider a balanced panel model with fixed effects estimating cointegration rela-
tionships. The model examines the long-run equilibrium between variables across (n)
individual units over (t) time periods, creating a full sample of (N = n ∗ t) observations.
The model is defined as follows:

uij= αi + θvij + (1 − H)−δε1ij

vij= (1 − H)−νε2ij,
(1)

This framework assumes a constant cointegrating parameter (θ) linking independent
variables

(
vij
)

and dependent variables
(
uij
)

for all (i) individuals. The model controls
for individual-specific characteristics through fixed-effects parameters (αi). Fractional
cointegration exists if two conditions are met. First, the independent and dependent
variables share a common stochastic trend, making them nonstationary yet moving together
in the long run. Second, their linear combination is stationary, implying convergence to
equilibrium in the error correction form. Proper specification requires testing the orders
of integration to validate the theoretical underpinnings of the cointegrating relationship.
Overall, this approach explores how divergences from long-run steady states across units
are self-correcting over repeated time periods. The null hypothesis (H0) of no fractional
cointegration holds if ν = δ, whereas the alternative of cointegration is supported if ν > δ.

The bivariate system described in (1) can be simplified to the Phillips [27] classical
cointegration model if δ equals 0 and ν is equal to 1, known as CI(1, 1). The fractional lag
operator (1 − H)−ν is derived using (1 − H)−ν = Γ(j+ν)

Γ(ν)Γ(j+1) , where the Gamma function

(Γ(h)) is defined as Γ(h) =
∫ ∞

0 ωhe−ωdω.
Equation (1) can be represented as follows:

uij − αi= θvij + (1 − H)−δε1ij

vij= (1 − H)−νε2ij.
(2)

If we let wij = uij − αi, we have the following:

wij= θvij + (1 − H)−δε1ij

vij= (1 − H)−νε2ij.
(3)

It is evident that from the demeaning applied to Equation (1), Equation (3) removes
the individual cross-sectional parameters (αi) from the original model, consequently sim-
plifying the time series representation. As elucidated by Chen and Hurvich [5], the revised
formulation within Equation (3) allows for estimation using the tapered narrow-band
least square (TNBLS) technique; an approach aptly suited for this adjusted specification.
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Nonetheless, one must take care that the demeaning process sufficiently accounts for
individual effects so as not to confound the simplified structure with omitted nuances
across units.

In the paper by Chen and Hurvich [5], a complex-valued taper function
(
qj
)

is defined
as follows for analyzing time series data. The taper function varies the weight applied to
observations across the time period in a smooth manner. It is mathematically expressed
as follows:

qj =
1
2

(
1 − exp−i2π(j−1/2)s−1

)
, j = 1, 2, · · · , s. (4)

Correspondingly, the discrete tapered Fourier transform of a series ηj and the cross-
periodogram are provided by equations using the taper weights to calculate a weighted
sum and power:

ω′
η,k =

(
2π

s

∑
j=1

∣∣∣qp−1
j

∣∣∣2)−0.5 s

∑
j=1

qp−1
j ηj exp−iλk j, (5)

I′ηη,k = ω′
η,kω′

η,k (6)

respectively.
The averaged tapered periodogram estimated using m number of bandwidths is then

determined as the mean of the periodograms across the frequencies. This provides a
smoothed view of the variation between the two time series being examined over different
cycles in the data.

F̂′
ηη,k(m) = 2πs−1

m

∑
k=1

ℜI′ηη,k, 1 ≤ m ≤ s
2

. (7)

Thus, the long-memory parameter θ in Equation (3) was estimated as shown in
Equation (8) below:

θ̂m =
F̂′

vw(m)

F̂′
vv(m)

(8)

where the fixed parameter m ≥ 1. Alternatively, by setting m = s/2 and avoiding differenc-
ing and tapering techniques, we derive the familiar ordinary least squares (OLS) approach.
The OLS estimator provides a simpler means to the same end compared to holding (m)
fixed, foregoing preprocessing of the data. In both cases, the goal is to obtain the most
accurate approximation of θ possible, though the complexity and computational demands
vary depending on the chosen estimation technique.

Theorem 1. In the context of a fixed-effect fractional cointegrated panel model defined by Equation (3)
and adhering to the specified assumptions, the long-memory parameter can be estimated using
Equation (8). Consequently, the modified test statistic is given by MCH = ν̂−δ̂√

VCH/m
, where

VCH = 0.5
(

Γ(4p−3)Γ4(p)
Γ4(2p−1)

)
. Here, p denotes the a priori differencing parameter for Uij =

{
uij, vij

}
.

Under the null hypothesis H0, the test statistic MCH follows a standard normal distribution, i.e.,

MCH
d→ N(0, 1).

Proof. Required to show that:

MCH =
ν̂ − δ̂√
VCH/m

∼ N(0, 1),

under H0.
Suppose we redefine MCH , such that â = ν̂ − δ̂. Then:

MCH =
â√

VCH/m
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and
MCH =

√
m/VCH â. (9)

□

Lemma 1. The characteristics function of a continuous random variable U is defined as
ψu(t) = E

(
eitu).

Thus, the characteristics function of â in (9) is

ψâ(t) = E
(

eitâ
)

E
(

eitâ
)
= ψ(0) + iψ′(0)t + i2ψ′′ (0)t2 + i3O

(
t3
)

,

where i2 = −1. Consequently, the characteristics function of MCH in (9) is:

ψMCH (t)= ψâ

(√
m/VCHt

)
ψâ

(√
m/VCHt

)
= ψ(0) + iψ′(0)

√
m/VCHt + i2ψ′′ (0)

(√
m/VCHt

)2
+ i3O

((√
m/VCHt

)3
)

,
(10)

since ψ(0) = 1, ψ′(0) = 0 ≡ E(â) = 0 under H0, similarly, ψ′′ (0) = VCH ≡ Var(â).
Therefore,

ψâ

(√
m/VCHt

)
= 1 − VCH

(√
m/VCHt

)2
− iO

((√
m/VCHt

)3
)

= 1 − mt2 − iO
(

m3/2
) (11)

If we assume m = s/2, we have

ψâ

(√
m/VCHt

)
= 1 − s

t2

2
− iO

(( s
2

)3/2
)

s→∞→ e−t/2 (12)

Lemma 2. The characteristics function of a Gaussian random variable Q ∼ N(0, 1) with mean 0
and variance 1 is defined as ψQ(t) = E

(
eitQ) = e−t/2.

Proof. The characteristic function ψQ(t) of a random variable Q is defined as the expected
value of eitQ, where i is the imaginary unit and t ∈ R:

ψQ(t) = E
(

eitQ
)
=
∫ ∞

−∞
eitq fQ(q) dq

where fQ(q) is the probability density function (PDF) of the standard normal distribution
N(0, 1). For a standard normal random variable Q, the PDF is given by the following:

fQ(q) =
1√
2π

e−q2/2

Thus, the characteristic function becomes the following:

ψQ(t) =
1√
2π

∫ ∞

−∞
eitqe−q2/2 dq



Fractal Fract. 2024, 8, 527 7 of 16

Now, combining the exponential terms eitq and e−q2/2 into a single exponent, we obtain
the following:

ψQ(t) =
1√
2π

∫ ∞

−∞
e−(q2/2)+itq dq

Next, we complete the square for the exponent −
(
q2/2

)
+ itq:

−
(

q2/2
)
+ itq = −1

2

(
q2 − 2itq

)
= −1

2

(
q2 − 2itq

)
This can be rewritten as follows:

−1
2
(q − it)2 +

t2

2

Thus, the characteristic function becomes the following:

ψQ(t) =
1√
2π

∫ ∞

−∞
e−

1
2 (q−it)2

e−
t2
2 dq

The integral
∫ ∞
−∞ e−

1
2 (q−it)2

dq is the Gaussian integral, which evaluates to
√

2π. Therefore,
the characteristic function simplifies to the following:

ψQ(t) =
1√
2π

·
√

2π·e− t2
2 = e−

t2
2

This proves that the characteristic function of Q ∼ N(0, 1) is as follows:

ψQ(t) = e−
t2
2

Thus, MCH
d→ N(0, 1) under H0. □

Remark 1. The theorem establishes that for a fixed effect fractional cointegrated panel model as
defined in Equation (3), fulfilling assumptions A1 and A2, the long-memory parameter can be

effectively estimated using Equation (8). The modified test statistic MCH = d̂−γ̂√
VCH/m

converges in

distribution to the standardized normal distribution under H0 (i.e., MCH
d→ N(0, 1) under H0).

4. Simulation Study

To analyze the performance of a balanced fixed effect panel model, we start by consid-
ering a scenario where n represents the number of cross-sectional units and t denotes the
time periods, leading to a total sample size N = n × t. The model is defined as follows:

uij= αi + θvit + (1 − H)−δϵ1ij,

vij= (1 − H)−νϵ2ij.
(13)

Here, uit and vit are the dependent and independent variables, respectively. The term
µi represents the fixed effects specific to each cross-sectional unit, capturing the unobserved
heterogeneity. The parameters θ, δ, and ν are constants that need to be estimated, with β
being the cointegration parameter. The model includes the lag operator (1 − H), which
accounts for the fractional differencing in the error terms ϵ1ij and ϵ2ij.

In our model, the intercepts αi are assigned fixed values of 5, 10, 15, 20, and 25 for
the units i = 1, 2, . . . , 5. These intercepts reflect the fixed effects across the different cross-
sectional units, highlighting the variation in the baseline levels of the dependent variable
across units. To evaluate the performance of the model in finite samples, we conducted
Monte Carlo simulations. The data

(
uij, vij

)′ were generated using the specified model
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with θ = 1. The error terms ϵij =
(
ϵ1ij, ϵ2ij

)′ follow a Gaussian white noise process, where
E
(
ϵij
)
= 0, Var

(
ϵ1ij
)
= Var

(
ϵ2ij
)
= 1, and Cov

(
ϵ1ij, ϵ2ij

)
= ρ. We examined scenarios with

ρ = 0.0 and ρ = 0.5 to understand the impact of different levels of correlation between the
error terms.

The sample sizes considered in the simulations were N = 500, 1250, and 5000, corre-
sponding to time periods t = 100, 250, and 1000, respectively. By varying the sample sizes,
we aimed to assess how the model performs under different conditions of data availability.
Larger sample sizes allow for more robust estimates and better convergence properties,
while smaller sample sizes can highlight potential issues related to finite sample biases.
This approach helps in understanding the practical applicability of the model in different
empirical contexts.

Similar methodologies have been employed in previous studies, such as those by [17,28–32].
These studies have explored various aspects of panel data models, including fractional
cointegration and the effects of different parameter settings on model performance. By
comparing our results with these prior works, we can validate our findings and contribute
to the broader literature on fractional cointegration in panel data models.

Table 1 presents the size for the original and modified Chen and Hurvich test. At
ν = δ = 0.3 corresponding to the weakly stationary fractional panel model, for the
three chosen significance levels, the original Chen and Hurvich test sizes were highly
overestimated. In fact, the null hypothesis was 100% incorrectly rejected. On the other hand,
the sizes of the modified Chen and Hurvich test were found to be close to the threshold
values. These results were equally observed for both low and moderate correlation values.
At ν = δ = 0.6 corresponding to the moderate non-stationary fractional panel model, for
the three chosen significance levels, the sizes of the original Chen and Hurvich test were
highly overestimated; in fact, the null hypothesis was at least 58% incorrectly rejected.
On the other hand, the modified Chen and Hurvich test sizes were found to be close to
the threshold values. These results were equally observed for both low and moderate
correlation values. At ν = δ = 0.9 corresponding to a high non-stationary fractional panel
model, for the three chosen significance levels, the sizes of both the original and modified
Chen and Hurvich test were slightly overestimated. These results were equally observed
for both low and moderate correlation values. In addition, the sizes of both tests were
inconsistent with increasing sample sizes.

Table 1. Simulation results of empirical type I error rates for both the original test proposed by Chen
and Hurvich [5], denoted as TCH , and the modified version of the same test, referred to as MCH , are
evaluated across a range of parameters. This evaluation considers varying levels of the parameter
ν, which represents the fractional differencing parameter, different correlation levels denoted by ρ,
different levels of significance denoted by γ, and various sample sizes denoted by N.

γ = 0.01 γ = 0.05 γ = 0.10

ν Method/N 500 1250 5000 500 1250 5000 500 1250 5000

ρ = 0

0.3
TCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCH 0.019 0.015 0.014 0.060 0.053 0.048 0.090 0.092 0.080

0.6
TCH 0.896 0.917 0.871 0.967 0.976 0.946 0.980 0.989 0.966
MCH 0.032 0.023 0.018 0.077 0.067 0.057 0.116 0.118 0.097

0.9
TCH 0.041 0.041 0.050 0.131 0.109 0.132 0.198 0.169 0.195
MCH 0.031 0.027 0.045 0.095 0.082 0.110 0.152 0.151 0.173

ρ = 0.5

0.3
TCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCH 0.018 0.015 0.009 0.054 0.051 0.045 0.089 0.089 0.071

0.6
TCH 0.747 0.724 0.577 0.891 0.870 0.778 0.937 0.934 0.846
MCH 0.024 0.018 0.019 0.077 0.063 0.056 0.116 0.108 0.097

0.9
TCH 0.017 0.017 0.040 0.073 0.071 0.102 0.136 0.119 0.148
MCH 0.027 0.021 0.041 0.079 0.075 0.102 0.132 0.129 0.154
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Table 2 shows the empirical power for the two tests at varying significance levels. The
effect sizes (ESs) ES = ν − δ vary between 0.3 and 0.6. At lower ESs, when both ν and δ are
greater than 0.5, the empirical power of the original Chen and Hurvich test was found to
be significantly lower compared to the modified test, which in most cases achieved 100%
power. However, when ν is greater than 0.5 but δ < 0.5, the empirical power of the original
Chen and Hurvich test competes with the modified test. Also, when both ν and δ are less
than 0.5, the empirical power of the original Chen and Hurvich test is slightly higher than
the modified test.

Table 2. Simulation results of empirical power for both the original test proposed by Chen and
Hurvich [5], denoted as TCH , and the modified version of the same test, referred to as MCH , are
evaluated across a range of parameters. This evaluation considers varying levels of the parameters ν

and δ, which represent the fractional differencing parameter for the series and residual, respectively;
different correlation levels denoted by ρ; different levels of significance denoted by γ; and various
sample sizes denoted by N.

γ = 0.01 γ = 0.05 γ = 0.10

δ Method/N 500 1250 5000 500 1250 5000 500 1250 5000

ν = 0.9 0.6 TCH 0.073 0.243 0.869 0.183 0.370 0.911 0.267 0.440 0.924
MCH 0.881 0.992 1.000 0.946 0.999 1.000 0.965 1.000 1.000

0.3 TCH 0.106 0.297 0.901 0.228 0.404 0.942 0.311 0.480 0.956
MCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ν = 0.6 0.3 TCH 0.880 0.897 0.815 0.968 0.968 0.930 0.986 0.985 0.959
MCH 0.877 0.995 1.000 0.954 1.000 1.000 0.978 1.000 1.000

0 TCH 0.866 0.900 0.890 0.966 0.969 0.963 0.983 0.985 0.979
MCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ν = 0.4 0.1 TCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCH 0.943 0.999 1.000 0.849 0.995 1.000 0.970 1.000 1.000

Figures 1 and 2 were used to confirm the distribution of the proposed test statistic
MCH under both H0 and H1. Under H0, the proposed density function was found to be
approximately close to an N(0, 1) distribution. However, under H1, a Gaussian distribution
with different mean and variance values is suspected.

Fractal Fract. 2024, 1, 0 9 of 16

Table 2 shows the empirical power for the two tests at varying significance levels. The
effect sizes (ESs) ES = ν − δ vary between 0.3 and 0.6. At lower ESs, when both ν and δ are
greater than 0.5, the empirical power of the original Chen and Hurvich test was found to
be significantly lower compared to the modified test, which in most cases achieved 100%
power. However, when ν is greater than 0.5 but δ < 0.5, the empirical power of the original
Chen and Hurvich test competes with the modified test. Also, when both ν and δ are less
than 0.5, the empirical power of the original Chen and Hurvich test is slightly higher than
the modified test.

Table 2. Simulation results of empirical power for both the original test proposed by Chen and
Hurvich [5], denoted as TCH , and the modified version of the same test, referred to as MCH , are
evaluated across a range of parameters. This evaluation considers varying levels of the parameters ν

and δ, which represent the fractional differencing parameter for the series and residual, respectively;
different correlation levels denoted by ρ; different levels of significance denoted by γ; and various
sample sizes denoted by N.

γ = 0.01 γ = 0.05 γ = 0.10

δ Method/N 500 1250 5000 500 1250 5000 500 1250 5000

ν = 0.9 0.6 TCH 0.073 0.243 0.869 0.183 0.370 0.911 0.267 0.440 0.924
MCH 0.881 0.992 1.000 0.946 0.999 1.000 0.965 1.000 1.000

0.3 TCH 0.106 0.297 0.901 0.228 0.404 0.942 0.311 0.480 0.956
MCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ν = 0.6 0.3 TCH 0.880 0.897 0.815 0.968 0.968 0.930 0.986 0.985 0.959
MCH 0.877 0.995 1.000 0.954 1.000 1.000 0.978 1.000 1.000

0 TCH 0.866 0.900 0.890 0.966 0.969 0.963 0.983 0.985 0.979
MCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ν = 0.4 0.1 TCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCH 0.943 0.999 1.000 0.849 0.995 1.000 0.970 1.000 1.000

Figures 1 and 2 were used to confirm the distribution of the proposed test statistic
MCH under both H0 and H1. Under H0, the proposed density function was found to be
approximately close to an N(0, 1) distribution. However, under H1, a Gaussian distribution
with different mean and variance values is suspected.

Figure 1. Normal Q–Q plot of the modified [5] test under H0.Figure 1. Normal Q–Q plot of the modified [5] test under H0.



Fractal Fract. 2024, 8, 527 10 of 16Fractal Fract. 2024, 1, 0 10 of 16

Figure 2. Normal Q–Q plot of the modified [5] test under H1.

5. Application to the Monthly Price Estimates of 36 Countries

The validity of the proposed MCH test procedure was ascertained using the monthly
average estimates of the exchange rate and labor wage in agricultural markets for 36
countries. The aim here is to determine if there is a fractional cointegrating relationship
between the United States Dollar (USD) exchange rate of each country and the labor wage.
These 36 countries are classified as having similar agricultural economies according to the
World Bank Development Economics Data Group (DECDG). The dataset was extracted
from the World Bank Microdata Library. The dataset covers the period from January 2007
to June 2024 for 27 of the 36 countries, from January 2008 to June 2024 for Armenia, Guinea,
and Myanmar, from January 2009 to June 2024 for Yemen, from January 2011 to June 2024
for the Republic of Congo and the Syrian Arab Republic, from January 2012 to June 2024
for Iraq and Lebanon, and from January 2017 to June 2024 for Libya.

Suppose we let EXit represent the USD exchange rate for i = 1, . . . , 36 countries
and t = 1, . . . , 210; 198; 186; 162; 150; 90 months, and LWit represents the labor wage. The
underlying fractional cointegration model used to test the cointegration hypothesis is given
by the following:

LWij = αi + θEXij + ∆−δϵ1ij

EXij = ∆−νϵ2ij.
(14)

We estimated the fractional cointegration parameters ν and δ by applying a bandwidth
parameter ηm = 0.75, which corresponds to m = t0.75 for each individual country as well
as for the combined panel of countries. The hypotheses tested to determine if the two
variables exhibit fractional cointegration are as follows:
H0 : EXij and LWij are not fractionally cointegrated if ν = δ.
H1 : EXij and LWij are fractionally cointegrated if (ν > δ). If the null hypothesis is rejected,
it implies there is a long-run relationship between the exchange rate and labor wage such
that if there is a deviation, it is only temporary.

Figure 3 shows the time plot of exchange rate EX(t) and labou=r wage LW(t) for
Afghanistan, Armenia, Bangladesh, Burkina Faso, Burundi, Cameroon, Central African
Republic, Chad, Democratic Republic of Congo, Republic of Congo, Gambia, and Guinea.
The plots show that co-movement, which is an indication of the cointegration between
the exchange rate and labor wage, is suspected across the 12 countries, and that it is more
evident in Gambia.

Figure 2. Normal Q–Q plot of the modified [5] test under H1.

5. Application to the Monthly Price Estimates of 36 Countries

The validity of the proposed MCH test procedure was ascertained using the monthly
average estimates of the exchange rate and labor wage in agricultural markets for 36 coun-
tries. The aim here is to determine if there is a fractional cointegrating relationship between
the United States Dollar (USD) exchange rate of each country and the labor wage. These
36 countries are classified as having similar agricultural economies according to the World
Bank Development Economics Data Group (DECDG). The dataset was extracted from the
World Bank Microdata Library. The dataset covers the period from January 2007 to June
2024 for 27 of the 36 countries, from January 2008 to June 2024 for Armenia, Guinea, and
Myanmar, from January 2009 to June 2024 for Yemen, from January 2011 to June 2024 for
the Republic of Congo and the Syrian Arab Republic, from January 2012 to June 2024 for
Iraq and Lebanon, and from January 2017 to June 2024 for Libya.

Suppose we let EXit represent the USD exchange rate for i = 1, · · · , 36 countries
and t = 1, · · · , 210; 198; 186; 162; 150; 90 months, and LWit represents the labor wage. The
underlying fractional cointegration model used to test the cointegration hypothesis is given
by the following:

LWij= αi + θEXij + ∆−δϵ1ij

EXij= ∆−νϵ2ij.
(14)

We estimated the fractional cointegration parameters ν and δ by applying a bandwidth
parameter ηm = 0.75, which corresponds to m = t0.75 for each individual country as well
as for the combined panel of countries. The hypotheses tested to determine if the two
variables exhibit fractional cointegration are as follows:

H0 : EXij and LWij are not fractionally cointegrated if ν = δ.
H1 : EXij and LWij are fractionally cointegrated if (ν > δ). If the null hypothesis is rejected,
it implies there is a long-run relationship between the exchange rate and labor wage such
that if there is a deviation, it is only temporary.

Figure 3 shows the time plot of exchange rate EX(t) and labou = r wage LW(t) for
Afghanistan, Armenia, Bangladesh, Burkina Faso, Burundi, Cameroon, Central African
Republic, Chad, Democratic Republic of Congo, Republic of Congo, Gambia, and Guinea.
The plots show that co-movement, which is an indication of the cointegration between
the exchange rate and labor wage, is suspected across the 12 countries, and that it is more
evident in Gambia.
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Figure 3. Time plot of exchange rate EX(t) and labor wage LW(t) for Afghanistan, Armenia,
Bangladesh, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Democratic Republic
of Congo, Republic of Congo, Gambia, and Guinea.

Figure 4 shows the time plot of exchange rate EX(t) and labor wage LW(t) for Guinea-
Bisau, Haiti, Indonesia, Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, and
Mauritania. The plots show that co-movement, which is an indication of the cointegration
between the exchange rate and labor wage, is suspected across the 12 countries, and that it
is more evident in Indonesia, Haiti, and Malawi.

Figure 5 shows the time plot of the exchange rate EX(t) and labor wage LW(t) for
Mozambique, Myanmar, Niger, Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri
Lanka, Sudan, Syrian Arab Republic, and Yemen Republic. The plots show that co-
movement, which is an indication of the cointegration between the exchange rate and
labor wage, is suspected across the 12 countries, and that it is more evident in Nigeria,
South Sudan, Yemen Rep., and the Syrian Arab Republic.

Figure 3. Time plot of exchange rate EX(t) and labor wage LW(t) for Afghanistan, Armenia,
Bangladesh, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Democratic Republic
of Congo, Republic of Congo, Gambia, and Guinea.

Figure 4 shows the time plot of exchange rate EX(t) and labor wage LW(t) for Guinea-
Bisau, Haiti, Indonesia, Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, and
Mauritania. The plots show that co-movement, which is an indication of the cointegration
between the exchange rate and labor wage, is suspected across the 12 countries, and that it
is more evident in Indonesia, Haiti, and Malawi.

Figure 5 shows the time plot of the exchange rate EX(t) and labor wage LW(t) for
Mozambique, Myanmar, Niger, Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri
Lanka, Sudan, Syrian Arab Republic, and Yemen Republic. The plots show that co-
movement, which is an indication of the cointegration between the exchange rate and
labor wage, is suspected across the 12 countries, and that it is more evident in Nigeria,
South Sudan, Yemen Rep., and the Syrian Arab Republic.
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Figure 4. Time plot of exchange rate EX(t) and labor wage LW(t) for Guinea-Bisau, Haiti, Indonesia,
Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, and Mauritania.

Table 3 presents the estimates of the fractional cointegration parameters ν, δ, and θ,
along with the proposed test statistic MCH and its corresponding p-value P(Q > |MCH |)
for 36 countries and their panels. The p-value P(Q > |MCH |) refers to the probability that
a standard normal random variable Q ∼ N(0, 1) takes a value greater than the absolute
value of the test statistic MCH . Also, the results allow us to assess whether there is evidence
of fractional cointegration between the exchange rate and labor wage in these countries.
The fractional cointegration relationship is deemed significant if the test statistic MCH is
sufficiently large and the p-value is below a conventional threshold (e.g., 0.05).

The majority of the countries exhibit significant fractional cointegration, as indicated by
p-values less than 0.05. For example, Afghanistan (MCH = 8.42, P(Q > |MCH |) = 0.0000),
Bangladesh (MCH = 7.12, P(Q > |MCH |) = 0.0000), and Burkina Faso (MCH = 3.16,
P(Q > |MCH |) = 0.0010) all show strong evidence of fractional cointegration. This means
that in these countries, the exchange rate and labor wage share a long-term equilibrium
relationship, with deviations from this equilibrium expected to revert over time.

Figure 4. Time plot of exchange rate EX(t) and labor wage LW(t) for Guinea-Bisau, Haiti, Indonesia,
Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, and Mauritania.

Table 3 presents the estimates of the fractional cointegration parameters ν, δ, and θ,
along with the proposed test statistic MCH and its corresponding p-value P(Q >|MCH |)
for 36 countries and their panels. The p-value P(Q >|MCH |) refers to the probability that
a standard normal random variable Q ∼ N(0, 1) takes a value greater than the absolute
value of the test statistic MCH . Also, the results allow us to assess whether there is evidence
of fractional cointegration between the exchange rate and labor wage in these countries.
The fractional cointegration relationship is deemed significant if the test statistic MCH is
sufficiently large and the p-value is below a conventional threshold (e.g., 0.05).

The majority of the countries exhibit significant fractional cointegration, as indicated by
p-values less than 0.05. For example, Afghanistan (MCH = 8.42, P(Q >|MCH |) = 0.0000),
Bangladesh (MCH = 7.12, P(Q >|MCH |) = 0.0000), and Burkina Faso (MCH = 3.16,
P(Q >|MCH |) = 0.0010) all show strong evidence of fractional cointegration. This means
that in these countries, the exchange rate and labor wage share a long-term equilibrium
relationship, with deviations from this equilibrium expected to revert over time.
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Figure 5. Time plot of exchange rate EX(t) and labor wage LW(t) for Mozambique, Myanmar, Niger,
Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri Lanka, Sudan, Syrian Arab Republic, and
Yemen Republic.

Conversely, ten countries do not exhibit significant fractional cointegration, as their
p-values exceeded the 0.05 threshold. For instance, Cameroon (MCH = −0.82, P(Q >
|MCH |) = 0.7940), the Democratic Republic of Congo (MCH = −2.30, P(Q > |MCH |) =
0.9890), and Libya (MCH = −1.54, P(Q > |MCH |) = 0.9380) did not show evidence of a
fractional cointegrating relationship between their exchange rates and labor wages. For
these countries, the lack of significant cointegration suggests that the two variables do not
share a stable long-term relationship.

The panel data results, which aggregate the information across all 36 countries, in-
dicate significant fractional cointegration (MCH = 2.23, P(Q > |MCH |) = 0.0130). This
aggregated finding underscores the presence of a common long-term relationship between
exchange rates and labor wages across the entire sample of countries, reinforcing the ro-
bustness of the individual country results, most especially for the 26 countries that showed
evidence of long-run fractional cointegrating relationships.

Figure 5. Time plot of exchange rate EX(t) and labor wage LW(t) for Mozambique, Myanmar, Niger,
Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri Lanka, Sudan, Syrian Arab Republic, and
Yemen Republic.

Conversely, ten countries do not exhibit significant fractional cointegration, as their
p-values exceeded the 0.05 threshold. For instance, Cameroon (MCH = −0.82, P(Q >|MCH|)
= 0.7940), the Democratic Republic of Congo (MCH = −2.30, P(Q >|MCH |) = 0.9890),
and Libya (MCH = −1.54, P(Q >|MCH |) = 0.9380) did not show evidence of a fractional
cointegrating relationship between their exchange rates and labor wages. For these coun-
tries, the lack of significant cointegration suggests that the two variables do not share a
stable long-term relationship.

The panel data results, which aggregate the information across all 36 countries, indicate
significant fractional cointegration (MCH = 2.23, P(Q >|MCH |) = 0.0130). This aggregated
finding underscores the presence of a common long-term relationship between exchange
rates and labor wages across the entire sample of countries, reinforcing the robustness of
the individual country results, most especially for the 26 countries that showed evidence of
long-run fractional cointegrating relationships.
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Table 3. Fractional cointegration parameter ν, δ, θ estimates and proposed test statistic and p-value
MCH and P(Q >|MCH |) for 36 countries and their panels.

N θ̂ ν̂ δ̂ MCH P(Q > |MCH|) Fractional Cointegration?

Afghanistan 210 −0.60 0.87 −0.25 8.42 0.0000 Yes
Bangladesh 210 −0.66 0.45 −0.50 7.12 0.0000 Yes
Burkina Faso 210 0.59 0.34 −0.08 3.16 0.0010 Yes
Burundi 210 0.00 0.43 0.08 2.65 0.0040 Yes
Cameroon 210 0.63 −0.02 0.09 −0.82 0.7940 No
Central African Republic 210 0.62 0.32 −0.07 2.91 0.0020 Yes
Chad 210 0.64 0.35 0.03 2.40 0.0080 Yes
Congo, Dem. Rep. 210 0.27 0.12 0.43 −2.30 0.9890 No
Gambia, The 210 −0.08 0.46 0.00 3.45 0.0000 Yes
Guinea-Bissau 210 0.62 0.36 0.00 2.67 0.0040 Yes
Haiti 210 0.10 0.62 0.53 0.70 0.2430 No
Indonesia 210 0.00 0.76 0.04 5.40 0.0000 Yes
Kenya 210 −0.28 0.35 −0.21 4.20 0.0000 Yes
Lao PDR 210 0.44 −0.21 −0.05 −1.18 0.8800 No
Liberia 210 0.10 0.73 0.01 5.35 0.0000 Yes
Malawi 210 1.36 0.89 0.01 6.54 0.0000 Yes
Mali 210 0.56 0.33 0.06 2.01 0.0220 Yes
Mauritania 210 −1.31 0.34 −0.02 2.66 0.0040 Yes
Mozambique 210 −0.06 0.83 −0.11 7.04 0.0000 Yes
Niger 210 0.59 0.33 0.11 1.63 0.0510 Yes
Nigeria 210 1.50 0.67 0.00 4.99 0.0000 Yes
Philippines 210 −0.60 0.63 0.34 2.17 0.0150 Yes
Senegal 210 0.60 0.28 0.04 1.81 0.0350 Yes
Somalia 210 0.00 0.05 −0.08 0.92 0.1790 No
South Sudan 210 0.51 0.88 0.02 6.47 0.0000 Yes
Sri Lanka 210 1.37 0.02 0.91 −6.62 1.0000 No
Sudan 210 0.41 0.56 0.36 1.52 0.0640 Yes
Armenia 198 0.18 1.00 0.05 6.93 0.0000 Yes
Guinea 198 0.38 −0.01 0.10 −0.78 0.7830 No
Myanmar 198 0.10 0.78 −0.02 5.85 0.0000 Yes
Yemen, Rep. 186 0.80 0.59 −0.13 5.07 0.0000 Yes
Congo, Rep. 162 0.76 −0.23 −0.05 −1.22 0.8890 No
Syrian Arab Republic 162 0.80 0.43 −0.09 3.48 0.0000 Yes
Iraq 150 0.00 0.01 −0.14 0.92 0.1790 No
Lebanon 150 0.00 0.48 0.01 3.08 0.0010 Yes
Libya 90 0.00 −0.43 −0.15 −1.54 0.9380 No
Panel 6732 1.17 0.85 0.77 2.23 0.0130 Yes

6. Conclusions

In this paper, we proposed a modified Chen and Hurvich test for fixed-effect frac-
tional cointegrated panels. An illustration is demonstrated using the simulation of several
fractional cointegrated panels with varying real-valued orders spanning through weak
stationarity to high non-stationarity. The test converges to a standard normal distribu-
tion under the null hypothesis and diverges under the alternative. The simulation results
showed that the proposed test maintained the imposed Type I error rate with a considerably
low type II error, which resulted in high power. Although the proposed test exhibited high
power for nonstationary panels, the type I error is not significantly different from the origi-
nal Chen and Hurvich test. Thus, there is still room for improvement in the validity of the
test for series with ν close to 1. Furthermore, the panel results from the monthly estimates
from the 36 countries’ markets confirm the presence of a common fractional cointegration
relationship across the entire sample. This highlights the generalizability and robustness of
the findings, suggesting that the observed cointegration patterns are not isolated incidents
but rather indicative of broader economic dynamics in agricultural markets.
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In addition, the modified Chen and Hurvich test proposed in this study offers a
practical tool for researchers and analysts working with fixed-effect fractional cointegrated
panels, particularly in economic and financial datasets where traditional cointegration
methods may fall short. By demonstrating robust performance across various simulations,
the test provides a reliable approach for identifying cointegration relationships, even in
nonstationary data. Its application to real-world data from 36 countries’ markets highlights
its utility in understanding global economic dynamics, particularly in agriculture. The test’s
ability to maintain high power while controlling type I error makes it valuable for accurately
detecting long-term equilibrium relationships, which can inform better decision-making in
policy, finance, and market analysis.

Furthermore, the outcomes of this research have significant social implications, particu-
larly in understanding the interconnectedness of global agricultural markets. By confirming
the presence of fractional cointegration relationships between exchange rates and labor
wages across multiple countries, this study sheds light on the broader economic forces
influencing wages and prices in agriculture. This insight is crucial for policymakers and
stakeholders working to address global economic inequalities, stabilize agricultural mar-
kets, and ensure fair wages for workers. Moreover, the findings provide a more nuanced
view of how global economic factors are linked, potentially contributing to more equitable
and informed strategies for economic development and labor policy. Overall, this study
underscores the importance of considering fractional cointegration in understanding the
interplay between exchange rates and labor wages in the global agricultural economy.
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