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Abstract: This paper investigates the problem of observer-based control for a class of nonlinear
systems described by the Caputo–Hadamard fractional-order derivative. Given the growing interest
in fractional-order systems for their ability to capture complex dynamics, ensuring their practical
stability remains a significant challenge. We propose a novel concept of practical stability tailored to
nonlinear Hadamard fractional-order systems, which guarantees that the system solutions converge
to a small ball containing the origin, thereby enhancing their robustness against perturbations.
Furthermore, we introduce a practical observer design that extends the classical observer framework
to fractional-order systems under an enhanced One-Sided Lipschitz (OSL) condition. This extended
OSL condition ensures the convergence of the proposed practical observer, even in the presence of
significant nonlinearities and disturbances. Notably, the novelty of our approach lies in the extension
of both the practical observer and the stability criteria, which are innovative even in the integer-order
case. Theoretical results are substantiated through numerical examples, demonstrating the feasibility
of the proposed method in real-world control applications. Our contributions pave the way for
the development of robust observers in fractional-order systems, with potential applications across
various engineering domains.

Keywords: practical stability; Caputo–Hadamard fractional-order derivative; control; observer;
observer-based control

MSC: 93C10; 34A08; 93B07

1. Introduction

Fractional-order systems have emerged as a powerful tool for modeling complex
dynamics that cannot be captured by classical integer-order models. These systems have
been widely used in various fields such as control theory, signal processing, and even
biomedical engineering due to their ability to describe memory and the hereditary proper-
ties inherent in many physical processes. The classical fractional-order derivatives, such as
the Caputo and Riemann–Liouville derivatives, have received considerable attention in
these applications. However, the Caputo–Hadamard fractional-order derivative, despite
its potential broad applicability, remains underexplored in both theory and practice [1,2].
The Caputo–Hadamard fractional-order derivative offers a unique perspective in modeling
systems with nonlocal behavior, memory effects, and processes that evolve over irregular
time scales or domains. Unlike the more commonly used Caputo and Riemann–Liouville
derivatives, which are well-suited for modeling phenomena with smooth and regular
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memory effects, the Caputo–Hadamard derivative is particularly effective in describing
processes where the rate of change depends not just on the current state, but also on the log-
arithmic scale of past states. The Caputo–Hadamard derivative is particularly well-suited
for modeling processes in fractal or irregular media [3]. Many physical systems exhibit
fractal properties, such as porous media, geological formations, and certain biological
tissues. In these cases, traditional fractional derivatives may not adequately capture the
irregularities in the media, whereas the Caputo–Hadamard derivative, with its logarithmic
scaling, can more accurately represent the dynamics of these systems. Anomalous diffu-
sion [4], where the mean square displacement of particles deviates from the linear behavior
predicted by classical Brownian motion, is observed in various complex systems, including
heterogeneous materials, plasma physics, and financial markets. The Caputo–Hadamard
derivative can model such phenomena more effectively by incorporating the nonlocal
and irregular nature of the diffusion process. Also, in systems with long-term memory,
such as viscoelastic materials, where their current state depends on the entire history of
their stress–strain relationship, the Caputo–Hadamard derivative offers an advantage by
considering their history on a logarithmic scale [5]. This makes it possible to model systems
where the influence of past states decays at a rate that varies with the logarithm of time,
rather than at a constant rate.

The motivation behind adopting the Caputo–Hadamard fractional-order derivative
lies in its ability to provide a more flexible and accurate mathematical framework for
describing systems with complex, nonlocal, and irregular dynamics. As the use of fractional-
order models continues to grow in fields such as engineering, physics, and biology, the
need for derivatives like the Caputo–Hadamard, which can better capture the nuances of
real-world systems, becomes increasingly important. The introduction of this derivative
into observer design not only extends our theoretical understanding of fractional calculus
but also opens up new possibilities for practical applications where traditional derivatives
may fall short.

In the context of control systems, observer design is crucial for estimating the un-
measured states of a system, particularly when full-state measurements are impractical
or costly. Traditionally, the focus has been on integer-order systems, where a rich body of
literature exists on observer design methodologies such as the Luenberger observer [6],
sliding mode observers [7], and Kalman filters [8]. These techniques have been refined over
decades to ensure their stability, robustness, and accuracy in various applications ranging
from aerospace to industrial automation [9].

With the growing interest in fractional-order systems, several studies have extended
observer design techniques to this domain. Recent contributions include the development
of fractional-order observers based on the Caputo derivative [10], as well as sliding mode
observers for fractional systems with uncertain dynamics [7]. These efforts aim to bridge
the gap between classical and fractional-order control, yet they largely ignore the practical
considerations essential for real-world applications. In particular, most designs do not
address practical stability—a key feature ensuring that the system solutions converge
toward a desired equilibrium within a specified bounded region, even in the presence of
perturbations and modeling inaccuracies.

Another significant gap in the literature is the extension of stability conditions, such
as the OSL condition, to fractional-order systems. The OSL and Quasi-One-Sided Lips-
chitz (QOSL) conditions have been successfully applied in nonlinear observer designs for
integer-order systems, where they play a critical role in ensuring observer convergence by
restricting the growth rate of nonlinearities [11]. However, there is a lack of work extending
this condition to fractional-order systems, particularly in the context of practical stability.
Ensuring practical stability is essential when dealing with fractional-order systems due to
their inherent sensitivity to perturbations and initial conditions [12].

Numerous studies have explored observer design for fractional-order systems, pri-
marily focusing on the Caputo and Riemann–Liouville fractional derivatives. In [13], a
fractional-order Luenberger observer was proposed for a class of linear fractional-order
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systems. This observer was shown to achieve asymptotic stability under specific conditions
on the system matrices. However, the scope of these results was limited to linear systems,
and their robustness to perturbations and practical stability were not addressed.

In [7], a sliding mode observer was designed for nonlinear fractional-order systems
using the Caputo derivative. This design introduced robustness to uncertainties but lacked
the ability to handle nonlinearities under practical stability constraints. The observer was
designed with global asymptotic stability in mind, but no provision was made for ensuring
convergence to a bounded region, which is crucial in real-world implementations where
perfect convergence may not be achievable due to system disturbances.

Compared to these existing designs, our proposed observer framework introduces
practical stability concepts in the context of Caputo–Hadamard fractional-order systems for
the first time. The extension of the OSL condition to fractional-order systems offers a novel
mechanism for ensuring that the observer error remains bounded, even under nonlinear
and uncertain conditions. Unlike [7,13], our design explicitly addresses practical stability,
making it more suitable for systems where perturbations or modeling inaccuracies are
present.

Observer designs for nonlinear integer-order systems have been extensively studied.
In [14], an observer for nonlinear systems was developed using the OSL condition, ensuring
that the observer error converges to zero under specific conditions. While effective in the
integer-order domain, this approach does not extend naturally to fractional-order systems,
whose memory effects and non-local properties require different analytical tools.

In [15], a robust observer design for nonlinear systems based on backstepping was
introduced. This design achieved global asymptotic stability but was not adapted to
fractional-order dynamics. Moreover, practical considerations such as bounded error
convergence were not considered. The methods in [14,15] assume ideal system models
without considering perturbations, making them less practical for real-world applications.

Our proposed method extends the classical OSL-based observer designs by incorpo-
rating practical stability into the analysis of fractional-order systems. The practical observer
we introduce is novel, even in the integer-order case, and provides a robustness feature
that traditional methods lack. Additionally, our method leverages the Caputo–Hadamard
derivative, which offers a new perspective on fractional-order dynamics not covered in the
integer-order frameworks of [14,15].

The Caputo and Riemann–Liouville derivatives are the most common choices in
fractional calculus for control and observer design. However, the Caputo–Hadamard
derivative offers distinct advantages, particularly when dealing with systems that exhibit
non-local behavior and memory effects over irregular intervals.

In [16], the Caputo derivative was applied to a fractional-order PID controller, demon-
strating its effectiveness in improving the control performance of systems with long memory.
However, no attempt was made to extend this to observer design. In contrast, our work
utilizes the Caputo–Hadamard derivative, which provides more flexibility in capturing
the irregularities of real-world dynamics. This is particularly advantageous in control
applications where classical fractional derivatives may not adequately capture system
behavior over irregular domains.

By focusing on the Caputo–Hadamard derivative, our design benefits from enhanced
modeling capabilities, which are essential in complex, nonlinear systems. This offers
a distinct advantage over existing designs that rely solely on the Caputo or Riemann–
Liouville derivatives.

Most existing observer designs for fractional-order systems aim to achieve asymptotic
stability, ensuring that the observer error converges to zero as time approaches infinity.
However, asymptotic stability may not always be feasible in practical applications, where
disturbances, noise, and modeling inaccuracies are unavoidable. In such cases, achieving
practical stability—where the observer error converges to a bounded region rather than
zero—is often more realistic and sufficient for ensuring satisfactory system performance.
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In [17], practical stability was explored for integer-order systems. While this approach
was effective for dealing with uncertainties, it was not extended to fractional-order systems.
Our work introduces practical stability for nonlinear Caputo–Hadamard fractional-order
systems, providing a robust framework that ensures bounded error convergence. This
makes the observer more resilient to perturbations and modeling uncertainties, thus making
it more applicable in real-world scenarios.

In this work, we propose several novel contributions that address critical gaps in the
existing literature:

• Novel Extension to Practical Observers: We extend the classical observer design
to a practical observer, ensuring its robustness under real-world implementation
conditions. This novel contribution is significant even for integer-order systems and
particularly impactful for fractional-order systems.

• Caputo–Hadamard Fractional-Order Derivative: We introduce the Caputo–Hadamard
fractional-order derivative into the observer design framework. Despite its potential
for describing complex nonlocal properties, this derivative has not been fully explored
in control theory, making our work a pioneering effort in this direction.

• Practical Stability of Nonlinear Fractional-Order Systems: We propose the concept of
practical stability for nonlinear Hadamard fractional-order systems. Practical stability
ensures that the system solutions converge toward a small ball around the origin,
providing robustness against disturbances and perturbations—a vital characteristic
for real-world applications.

• Extension of the OSL Condition: We extend the OSL condition, which is widely used in
nonlinear observer design, to fractional-order systems. This ensures that the practical
observer converges even in the presence of nonlinearities and disturbances, offering a
new stability criterion for fractional-order control systems.

These contributions open up new avenues for designing robust and practical ob-
servers in fractional-order systems, significantly enhancing their applicability in control
engineering.

2. Preliminaries

In this section, some definitions and lemmas are presented [1,2].

Definition 1 [1]. The Hadamard integral of a locally integrable function x of order r > 0 is given
by

Ir
1,tx(t) =

1
Γ(r)

t∫
1

(log(t)− log(s))r−1 x(s)
s

ds, f or t ∈ (1, b].

Definition 2 [1]. The Caputo–Hadamard fractional derivative of an absolutely continuous 0 < r < 1 is
given by

CH Dr
1,t x(t) =

1
Γ(1 − r)

t∫
1

(log(t)− log(s))−rx′(s)ds, f or t ∈ (1, b].

Lemma 1 [1]. Let 0 < r < 1 and R be a constant and symmetric definite positive matrix. Then,

CH Dr
1,t xT Rx(t) ≤ 2xT(t)R CH Dr

1,t x(t).
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Definition 3 [1]. The Mittag–Leffler (ML) functions can be defined with one or two parameters,
respectively, as follows:

Eα(z) =
∞

∑
k=0

zk

Γ(1 + kα)
and Eα,β(z) =

∞

∑
k=0

zk

Γ(β + kα)
, α > 0, β > 0.

Consider the system

CH Dr
1,t x(t) = ϕ(x, t) for t ≥ 1, r ∈ (0, 1] (∗)

Definition 4 [1]. The system (*) is called practically ML stable if ∃ µ, γ > 0, r ≥ 0 such that for
the ∀ x(·) of (*), the inequality

∥x(t)∥ ≤
(
m(∥(x(1)∥) Eα

(
−µ log

(
t)α ))γ

+ r , t ≥ 1,

is satisfied, where m(s) ≥ 0, m(0) = 0, and m is a locally given Lipschitz function.

In this work, we consider the nonlinear fractional-order system

CH Dr
1,t x(t) = Ax + Bu + f (x, u) + Bε(t), t ≥ 1,

y = Cx,
(1)

where f ∈ C(Rn ×Rm,Rn), x ∈ Rn, u ∈ Rm, y ∈ Rq, ε : [1, ∞) → Rm , A ∈ Rn×n, B ∈
Rn×m, C ∈ Rq×n. In this case, we have f (0, u) = 0.

Assumption 1. The unknown disturbance ε is an essentially bounded function, i.e.,

∃δε > 0 such that ∥ ε ∥≜ sup
t≥1

∥ ε(t) ∥≤ δε.

In the rest of the paper, assumption 1 is considered for all results.

3. Observer Design for Lipschitz Fractional-Order Systems

In this section, we introduce the necessary assumptions, provide key definitions,
and present a theorem that establishes the main result of observer design in Lipschitz
fractional-order systems.

Assumption 2. (A, C) is observable and ∃ θ > 0 such that

−θS − ATS − SA + CTC = 0, (2)

when ST = S > 0.

Definition 5. f (x, u) is Lipschitz continuous with a Lipschitz constant r, meaning that there
exists a constant r > 0 such that for all x1, x2 ∈ Rn, and u ∈ Rm

∥ f (x1, u)− f (x2, u)∥ ≤ r∥x1 − x2∥, (3)

Given the system described in Equation (1), where certain state variables cannot be
directly measured, and under Assumption 2, we propose the following observer to estimate
the state:

CH Dr
1,t x̂(t) = Ax̂ + Bu + f (x̂, u)− βS−1CT(Cx̂ − y), t ≥ 1 , (4)

where β ≥ 1.
Theorem 1 presents practical stability under condition (3).
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Theorem 1. If condition (3) is met and Assumption 2 holds, and if

λmin

(
θS + (2β − 1)CTC

)
− 2rλmax(S)− 1 > 0 (5)

then (4) is a practical observer of system (1).

Proof. See Appendix A. □

4. Observer Design for OSL and Quasi-OSL Fractional-Order Systems

In this section, we provide essential definitions and present theorems that establish
the primary result for observer design in OSL fractional-order systems.

Definition 6. f (x, u) is an OSL inRn with an OSL constant v, meaning that for any x, x̂ ∈ Rn and
u ∈ Rm, the following inequality holds:

⟨S f (x, u)− S f (x̂, u), x − x̂⟩ ≤ v∥x − x̂∥2. (6)

We introduce the theorem.

Theorem 2. If condition (6) is satisfied and Assumption 2 holds, and if

λmin(θS + (2β − 1)CTC)− 2v − 1 > 0 (7)

then (4) is a practical observer of system (1).

Proof. See Appendix B. □

Now, when a quasi-OSL condition is introduced, we have the following definition:

Definition 7. f (x, u) is a quasi-OSL in Rn with an OSL constant symmetric matrix M, i.e.,

⟨S f (x, u)− S f (x̂, u), x − x̂⟩ ≤ (x − x̂)T M(x − x̂), ∀ x, x̂ ∈ Rn, u ∈ Rm (8)

where M is a real symmetric matrix.

Theorem 3. Consider system (1) under the quasi-OSL condition (8). If Assumption 2 holds and if

λmin(θS + (2β − 1)CTC)− 2λmax(M)− 1 > 0 (9)

then (4) yields practical stable for (1).

Proof. If one supposes V(e) = eTSe where e = x̂ − x, then we have

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2eTS∆ f − 2eTSBε(t)

Then, using (10), one can have

CH Dr
1,t V(e) ≤ −λmin

(
θS + (2β − 1)CTC

)
∥e∥2 + 2eT Me + 2δε∥S∥∥B∥∥e∥

≤ −
[
λmin

(
θS + (2β − 1)CTC

)
− 2λmax(M)− 1

]
∥e∥2+µ2

Then, (9) guarantees the practical stability of the considered observer. □
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5. Separation Principle

In this section, we outline the necessary assumptions, introduce a key lemma, and
present a theorem that encapsulates the main result for the separation principle in fractional-
order systems. In our case, we assume that the nominal linear component of the system is
controllable. A review of the literature reveals that several studies have addressed more
complex nonlinear scenarios, as discussed in references [18,19].

Assumption 3. The pair (A, B) is stabilizable. There exists a matrix K such that Re(λ(A + BK)) < 0,
and a Lyapunov function for the linear system can be chosen as xTPx, where P = PT > 0, such that

P(A + BK) + (A + BK)T P = −Q, Q > 0 (10)

We present Lemma 2.

Lemma 2. Assume that Assumption 3 and condition (3) are satisfied, and the constant r fulfills the
inequality

−λmin(Q) + 2rλmax(P) + 1 < 0 (11)

Thus, the feedback control law u(x) = Kx globally stabilizes system (1) in the sense of
Mittag–Leffler stability.

Proof. See Appendix C. □

Now, consider system (1) with the u(x̂) = Kx̂ given in Lemma 2, where Q = I. Thus,
Theorem 4 is presented.

Theorem 4. Condition (3) is fulfilled and if assumptions (2) and (3) are satisfied, and if

r <
1
2

inf

(
1

λmax(P)
,

λmin
(
θS + (2β − 1)CTC

)
− 1

λmax(S)

)
, β ≥ 1, (12)

then the system

CH Dr
1,t x̂(t) = Ax̂ + BKx̂ + f (x̂, Kx̂)− βS−1CTCe, t ≥ 1

CH Dr
1,t e(t) =

(
A − βS−1CTC

)
e + f (x̂, Kx̂)− f (x̂ − e, Kx̂)− Bε(t), t ≥ 1

(13)

is practically stable.

Proof. One defines V1(x̂) = x̂T Px̂ and V2(e) = eTSe.
One supposes the function

V(x̂, e) = ςV1(x̂) + V2(e),

where µ > 0. Then, we have

CH Dr
1,t V(x̂, e) = ςCH Dr

1,t V1(x̂) + CH Dr
1,t V2(e)

From (13) and Lemma 1, it follows that

CH Dr
1,t V1(x̂) ≤ x̂T

[
P(A + BK) + (A + BK)T P

]
x̂ + 2x̂T P f (x̂, Kx̂)− 2βx̂T PS−1CTCe

Now, considering (10) and the Cauchy–Schwarz inequality,

CH Dr
1,t V1(x̂) ≤ −λmin(Q)∥x̂∥2 + 2x̂T P f (x̂, Kx̂) + 2βλmax(P)∥x̂∥

∥∥∥S−1
∥∥∥∥∥∥CTC

∥∥∥∥e∥,

knowing that f (0, u) = 0 and using condition (3),
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CH Dr
1,t V(x̂, e) ≤ ς[−λmin(Q) + 2rλmax(P)]∥x̂∥2 + 2ςβλmax(P)

∥∥∥S−1
∥∥∥∥∥∥CTC

∥∥∥∥e∥∥x̂∥+ CH Dr
1,t V2(e)

If (12) is satisfied, we have presented in the proof of Theorem 3.1 that

CH Dr
1,t V2(e) ≤ −l∥e∥2+µ2 with l = λmin

(
θS + (2β − 1)CTC

)
− 2rλmax(S)− λmin(Q) > 0

So, one has

CH Dr
1,t V(x̂, e) ≤ −ςa∥x̂∥2 + 2ςb∥e∥∥x̂∥ − l∥e∥2+µ2

where
a = 1 − 2rλmax(P) > 0,

b = βλmax(P)
∥∥S−1

∥∥∥∥CTC
∥∥ > 0

Thus, if we choose ς such that ς < al/b2, system (13) is practically stable. □

6. Illustrative Examples

Example 1. One supposes

CDα
t0,t x1(t) = 3x2 + u + 0.1sin(x2) +

t
t2+1 , t ≥ 1

CDα
t0,t x2(t) = x1 + 0.1sin(x1), t ≥ 1

(14)

where
x = (x1, x2)

T ∈ R2, y = Cx = x1

We can present system (1) as CDα
t0,t x(t) = Ax + Bu + f (x, u) + Bε(t), where

A =

[
0 3
1 0

]
, B =

[
1
0

]
, f (x, u) = 0.1

[
sin(x2)
sin(x1)

]
and ε(t) =

t
t2 + 1

.

Using Lemma 2, we show that u(x) = −4x2 − x1 practically stabilizes the nominal
part. In fact, by solving (10) and choosing Q = I, one obtains

P =

[
1 0.5

0.5 1.5

]
= PT > 0

Furthermore, we have r = 0.11 < λmin(Q)
2λmax(P) ≃ 0.2769, thus the feedback system is

practically stable. With θ = 7, (A, C) is observable. By solving (2), we find

S =

[
0.1660 −0.0811
−0.0811 0.0695

]
= ST > 0

where β = 1, and one has r = 0.1 <
λmin(θS+CTC)

2λmax(S)
≃ 0.736, thus, (12) holds. Based

on Theorem 4, system (16) is practically stabilizable throughout u(x̂) = −4x̂2 − x̂1. By
fixing x̂10 = −1, x̂20 = 2, x10 = −1.5, and x20 = −1, Figures 1 and 2 show the curves’
evolution for both the actual and estimated states when α = 0.5. These figures clearly
demonstrate the practical stability of all signals, thereby validating our theoretical results.
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Figure 2. The actual state x2 and its corresponding estimate for Example 1.

In Figure 1, the actual state x1 and its corresponding estimate for Example 1 are plotted
over time. This figure depicts how the states converge towards a small neighborhood
around the origin, indicating practical stability. Despite the presence of the nonlinear terms
and external disturbance ε(t) = t

t2+1 , the error between the actual state x1 and its estimate
stabilizes, demonstrating the effectiveness of the control law.

Figure 2 displays the evolution of the actual state x2 and its estimate over time, starting
from initial conditions x20 = −1 and x̂20 = 2. The graph illustrates that the estimated states
converge to the actual states, thereby validating the effectiveness of the observer design.
The closeness of the estimated states to the actual states over time reinforces the practical
stability of the system when the observer is applied.
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Example 2. Consider the system

CDα
t0,t x1(t) = 2x2 +

(
1
7

)√
x1

2 + x22 + t2

t2+1 , t ≥ 1
CDα

t0,t x2(t) = x1 + u +
(

1
7

)
sin(x1), t ≥ 1

(15)

where
x = (x1, x2)

T ∈ R2, y = Cx = x1

We can present system (15) as CDα
t0,t x(t) = Ax + Bu + f (x, u) + Bε(t), where

A =

[
0 2
1 0

]
, B =

[
0
1

]
, f (x, u) =

1
7

[√
x1

2 + x22

sin(x1)

]
and ε(t) =

t2

t2 + 1
.

Based on Lemma 2, the control law u(x) = −3x1 − x2 practically stabilizes the nominal
part. In fact, by solving (10) and choosing Q = I, one obtains:

P =

[
1.125 0.25
0.25 1

]
= PT > 0

Furthermore, we have r = 1/7 ≃ 0.14 < λmin(Q)
2λmax(P) ≃ 0.378, thus, the feedback system

is practically stable. On the other hand, with θ = 5.2, solving Equation (2) yields

S =

[
0.2327 −0.105
−0.105 0.0808

]
= ST > 0

where β = 1. We have r ≃ 0.14 <
λmin(θS+CTC)

2λmax(S)
≃ 0.4669, so condition (12) holds, and,

based on Theorem 4, system (15) is practically stabilizable throughout u(x̂) = −3x̂1 − x̂2.
Fixing x̂10 = −1 , x̂20 = 2 , x10 = −1.5 , and x20 = 1.

Figure 3 depicts the actual states x1 and x2 and their estimates for Example 2, with α = 0.5.
These figures demonstrate the practical stability of all signals, thereby confirming the theoretical
results.
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7. Conclusions

This paper addresses the observer-based control problem for nonlinear systems gov-
erned by the Caputo–Hadamard fractional-order derivative. By introducing the novel
concept of practical stability, we ensure that the system solutions converge towards a
small ball around the origin, thus enhancing their robustness to disturbances. A practical
observer design is developed under the OSL condition, which is extended to fractional-
order systems. This novel approach guarantees convergence despite nonlinearities and
disturbances. Our theoretical findings are supported by numerical examples, offering new
insights for robust observer design in fractional-order systems and paving the way for
future research in areas such as adaptive control and fault-tolerant systems. Moreover, this
work opens up potential applications in various engineering fields, including the control
of complex industrial processes, autonomous systems, and biomedical engineering. The
concepts presented could also be adapted to address emerging challenges in the control of
systems with time-varying delays and uncertainties, contributing to the development of
more resilient and flexible control strategies.
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Appendix A

Proof of Theorem 1. If one supposes

e = x̂ − x

then

CH Dr
1,t e(t) = Ax̂ + Bu + f (x̂, u)− βS−1CT(Cx̂ − y)− Ax − Bu − f (x, u)− Bε(t)

=
(

A − βS−1CTC
)
e + ∆ f − Bε(t),

where ∆ f = f (x̂, u)− f (x, u). One also supposes

V(e) = eTSe

Based on Lemma 1, one obtains

CH Dr
1,t V(e) ≤ 2eT(t)SCDα

t0,t e(t), , ∀t ≥ t0

≤
[
eT(A − βS−1CTC

)T
+ ∆ f T

]
Se + eTS

[(
A − βS−1CTC

)
e + ∆ f

]
− 2eTSBε(t)

≤ eT
[(

A − βS−1CTC
)TS + S

(
A − βS−1CTC

)]
e + 2eTS∆ f − 2eTSBε(t)

≤ eT(ATS − 2βCTC + SA
)
e + 2eTS∆ f − 2eTSBε(t)
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We have

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2eTS∆ f − 2eTSBε(t)

And so

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2∥e∥∥S∥∥∆ f ∥+ 2∥S∥∥B∥∥ε(t)∥∥e∥

Using Assumption 1, we deduce that

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2∥e∥∥S∥∥∆ f ∥+ 2δε∥S∥∥B∥∥e∥

Let µ = δε ∥ S ∥∥ B ∥. Using the fact that

2µ ∥ e ∥≤ µ2+ ∥ e ∥2 .

then, using (5), one can have

CH Dr
1,t V(e) ≤ −λmin

(
θS + (2β − 1)CTC

)
∥e∥2 + 2rλmax(S)∥e∥2+µ2+ ∥ e ∥2

Thus, if (5) is fulfilled, we have CHDr
1,tV(e) ≤ −l∥e∥2+µ2 with l = λmin

(
θS+ (2β− 1)CTC

)
−

2rλmax(S)− 1 > 0.
Similar to the proof of Theorem 1 in [20], we find the practical stability of the error

system. □

Appendix B

Proof of Theorem 2.
The proof of Theorem 2 follows a similar approach to that of Theorem 1. One supposes

that e = x̂ − x, so
CH Dr

1,t e(t) =
(

A − βS−1CTC
)

e + ∆ f − Bε(t)

Consider V(e) = eTSe. Based on Lemma 1, we have

CH Dr
1,t V(e) ≤ 2eT(t)SCDα

t0,t e(t), , ∀t ≥ t0

≤
[
eT(A − βS−1CTC

)T
+ ∆ f T

]
Se + eTS

[(
A − βS−1CTC

)
e + ∆ f

]
− 2eTSBε(t)

≤ eT
[(

A − βS−1CTC
)TS + S

(
A − βS−1CTC

)]
e + 2eTS∆ f − 2eTSBε(t)

≤ eT(ATS − 2βCTC + SA
)
e + 2eTS∆ f − 2eTSBε(t)

Now using (6), we have

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2eTS∆ f − 2eTSBε(t)

Using Assumption 1, we deduce that

CH Dr
1,t V(e) ≤ −θeTSe + (1 − 2β)eTCTCe + 2eTS∆ f + 2δε∥S∥∥B∥∥e∥

Let µ = δε ∥ S ∥∥ B ∥. Using the fact that

2µ ∥ e ∥≤ µ2+ ∥ e ∥2 .

then, using (6), one can have

CH Dr
1,t V(e) ≤ −λmin

(
θS + (2β − 1)CTC

)
∥e∥2 + 2v∥e∥2+µ2+ ∥ e ∥2



Fractal Fract. 2024, 8, 531 13 of 14

If (7) is fulfilled, we have CH Dr
1,t V(e) ≤ −l∥e∥2+µ2 with l = λmin

(
θS + (2β − 1)CTC

)
−

2v − 1 > 0.
Thus, the origin of the error equation is practically stable. □

Appendix C

Proof of Lemma 2.
One supposes Q = QT > 0 and solves (10) for P > 0. One considers system (1),

where u(x) = Kx, and one chooses V1(x) = xT Px. One then finds that

CH Dr
1,t V1(x) ≤ −xTQx + 2xT P f (x, Kx) + 2xT PBε(t)

Using condition (3) and Assumption 1 and knowing that f (0, u) = 0, then

CH Dr
1,t V1(x) ≤ [−λmin(Q) + 2rλmax(P)]∥x∥2 + 2δε∥P∥∥B∥∥e∥

Let µ = δε ∥ P ∥∥ B ∥. Using the fact that

2µ ∥ e ∥≤ µ2+ ∥ x ∥2 .

it yields
CH Dr

1,t V1(x) ≤ [−λmin(Q) + 2rλmax(P)]∥x∥2 + µ2+ ∥ x ∥2

CH Dr
1,t V1(x) ≤ [−λmin(Q) + 2rλmax(P) + 1]∥x∥2 + µ2

If (11) is fulfilled, then u(x) = Kx practically stabilizes the system (1). □
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