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Abstract: In this article, a diffusion component in an SIR model is introduced, and its impact is
analyzed using fractional calculus. We have included the diffusion component in the SIR model. in
order to illustrate the variations. Here, we have applied the general fractional derivative to analyze
the impact. The Laplace decomposition technique is employed to obtain the numerical outcomes
of the model. In order to observe the effect of the diffusion component in the SIR model, graphical
solutions are also displayed.
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1. Introduction

The application of mathematical models to analyze biological systems has captured
significant attention in recent decades. Gregor Mendel pioneered this approach by using
mathematics to formulate the laws of heredity, and epidemic modeling dates back to
the 19th century. Notably, Ronald Ross revolutionized epidemiology by introducing
compartmental models such as SIR and SIRS. In [1], Asif et al. offered a comparative study
of the SIR model, while the SEIR model was explored in [2] using advanced modeling
techniques. Nisar et al. examined the dynamics of whooping cough through the SIR model
in [3], and Ergen et al. made predictions regarding disease progression in [4]. Alqarni
et al. provided a focused analysis of whooping cough infection in [5]. Today, mathematical
modeling is indispensable across nearly every facet of life, valued for its precision and
capacity to address complex real-world constraints [6,7].

In recent years, mathematical modeling is becoming more relevant when it comes
together with fractional calculus [8–11]. Fractional calculus is one of the most important
and impactful areas in mathematics due to various useful operators and some very logical
concepts. Fractional calculus gives more precise results due to the memory effect of their
kernels [12–16].

In current time, fractional calculus is receiving much more attention from many
mathematicians and researchers than the integer order system due to the fact that, in
fractional calculus, we have much more freedom to be more accurate than the integer order
system, as, in fractional calculus, we can have infinite points at which we can analyze the
results, while we have limitations in obtaining the results only at integers in the integer
ordered system [17–22]. There has been remarkable work carried out in various fields of
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our real life like biological fields, epidemiology, engineering, physical problems, medical
science, inventory, mechanical problems and many more [23–28].

Now focusing back on our topic, in this paper, we have decided to analyze the effect
of diffusion on the system. To be more specific, we have taken the system of an SIR
model [4,29–32] of pertussis. This is a very highly contagious bacterial infection. This
infection spreads from person to person through social contact. Pertussis has shown
extreme growth in the last few decades. As per a report, around 600,000 deaths per year are
caused by pertussis around the globe. The main reason of its spread is airborne discharge
from the mucous of infected persons. Vaccination has shown some resistance but is not
as effective as it should be. Here, we have taken the SIR model given by G. G. Parra
et al. [6]. We have added a diffusion factor into the existing model to analyze its effect. We
have used the general fractional derivative along with Laplace transformation to achieve
our objective. We have used this particular operator (generalized operator) since we can
obtain three different results by just changing the kernel of the function, and we can
obtain a comparative analytic view by using three different kernels. We have used the
generalized operator here because we can compare the results for a classical operator (RL)
with non-singular and non-local operators. One more important thing with this paper is
the mentioned SIR model is not described by any of the fractional operators till date, so
this is a unique problem which we have tried to discuss and analyze. In this paper, we
have used the Riemann Liouville derivative (a kind of generalized derivative) rather than
Caputo, since our main objective is to analyze the SIR model by generalized fractional
derivatives and not only Caputo. We have also presented the existence and uniqueness of
our novel approach, and this approach is well supported by the graphical results of the
model as well [33–35].

The widespread use of SIR models with fractional derivatives and diffusion coefficients
is limited by their complexity, computational costs and difficulty in interpreting parameters,
despite the fact that they provide a more sophisticated way to model the spread of disease,
especially when memory effects and spatial diffusion are significant.

There are many real world applications of the SIR model which can benefit society.
Some examples are as follows: By taking fractional derivatives into account, a fractional
SIR model takes the memory component into account and permits the illness to spread
based on the system’s past as well as its present condition. It is possible to predict disease
patterns more precisely in places like urban centers or refugee camps, where they may
differ from those in rural regions. The fractional model accounts for differences in the
relative contributions of various areas to the transmission of illness. Vaccines frequently
produce waning immunity, which is immunity that takes longer to develop or fades over
time. This progressive process can be better simulated by a fractional SIR model than by a
normal SIR model. The long-term impacts of vaccination efforts can be better understood
thanks to the fractional method.

This article is divided into seven parts. Part one consists of the introduction of the
article. Section 2 deals with pre-requisites related to the paper. The SIR model [36–39]
is briefly discussed in Section 3, while Section 4 presents the existence and uniqueness
of the solution. In the next segment, we have found the solution of the SIR model by a
general fractional derivative with the help of Laplace transform. Graphical results have
been presented in Section 6, while the paper is concluded in Section 7. A list of references is
attached at the end to acknowledge the researchers and mathematicians.

2. Pre-Requisites

An overview of the recently defined general fractional operator is given in this section.
According to [40], scholars have presented the Caputo ([41]) and Riemann–Liouville (RL)
derivatives of the fractional exponent, which are shown by

C
0 Dγ

t f (t) =
∫ t

0

.
f (s)∇ι(t − s)ds, (1)
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0Dγ
t f (t) =

d
dt

∫ t

0
f (s)∇ι(t − s)ds, (2)

where γ ∈ (0, 1) is power of derivative, f : [0,+∞) → R is a continuous function with
.
f ∈ L1

loc (0,+∞), 0 ⩽ t ⩽ T < +∞, ∇ι is known as kernel. The linear condition is enforced
on the operator,

C
0 Dγ

t (j f (t) + kg(t)) = jC0 Dγ
t f (t) + kC

0 Dγ
t g(t), (3)

0Dγ
t (j f (t) + kg(t)) = j0Dγ

t f (t) + k0Dγ
t g(t). (4)

It is obvious that for any t > 0, ∇ι(t) is met, and a completely function of monotone type
ℑι(t) occurs [11],

∇ι(t) ∗ ℑι(t) =
∫ ∞

0
∇ι(s)ℑι(t − s)ds = 1, (5)

and further, for f ∈ L1
loc (0,+∞), we can rewrite above like

0D−γ
t

[
C
0 Dγ

t f (t)
]
= f (t)− f (0), (6)

where 0D−γ
t represents the Riemann–Liouville integral of fractional order ([42]), given as

0D−γ
t f (t) =

∫ t

0
f (s)ℑι(t − s)ds. (7)

The right Caputo and Riemann–Liouville fractional derivatives are

C
t Dγ

T f (t) =
∫ T

t

.
f (s)∇r(s − t)ds, (8)

tD
γ
T f (t) =

d
dt

∫ T

t
f (s)∇r(s − t)ds (9)

and

tD
−γ
T f (t) =

∫ T

t
f (s)ℑr(s − t)ds. (10)

The integration by the component formula is thus satisfied by the aforementioned fractional
order operators, according to the results in [43].

∫ T

0
f (s)0Dγ

s g(s)ds =
∫ T

0
g(s)s

CDγ
s f (s)ds, (11)

∫ T

0
f (s)0

CDγ
s g(s)ds =

∫ T

0
g(s)sDγ

s f (s)ds. (12)

By changing various kernels into general operator definitions, we can derive three specific
cases of the general operator. In the first case when the kernel is ∇ι(t) = t−γ

Γ(1−γ)
, we have

the power function ℑι(t) = tγ−1

Γ(γ) which reforms the integral operator’s associated kernel (7).

Further, take kernel ∇ι(t) =
B(γ)
1−γ Eγ

(
−γ

1−γ tγ
)

where Eγ and B(γ) are Mittag–Leffler
and normalization functions. Also, we have

ℑι(t) =
1 − γ

B(γ)
δ(t) +

γ

B(γ)Γ(γ)
tγ−1. (13)

So, Equations (1) and (2) may be used to obtain the derivatives of Atangana–Baleanu–
Caputo (ABC) and Atangana–Baleanu–Riemann–Liouville. The AB type integral is [33]

0D−γ
t f (t) =

1 − γ

B(γ)
f (t) +

γ

B(γ)Γ(γ)

∫ t

0
(t − s)γ−1 f (s)ds. (14)
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Now, in the last situation, the Caputo–Fabrizio (CF) derivative ([11]) is found by taking
kernel ∇ι(t) =

B(γ)
1−γ exp

(
−γ

1−γ t
)

.

2.1. Riemann–Liouville’s Fractional Operator

Riemann–Liouville’s fractional operator ([44]) is explained below:

RLDα
x{ f (x)} =

1
Γ(n − α)

dn

dxn

x∫

0

(x − y)n−α−1 f (y)dy, (15)

where α is the order of the derivative, and 0 < α < 1.

2.2. Caputo–Fabrizio Fractional Derivative

Let h ∈ H1(a1, b1), b1 > a1, β ∈ [0, 1]; then, the new Caputo–Fabrizio derivative of
fractional order ([45]) is as follows:

Dβ
t (h(t)) =

M(β)

(1 − β)

t∫

a

h′(x)e[−β t−x
1−β ]dx. (16)

M(α) is a function of normalization such that M(0) = M(1) = 1. If the function does not
belong to H1(a1, b1), then, the derivative is

Dβ
t (h(t)) =

N(ρ)

ρ

t∫

a

h′(x)e[−
t−x

ρ ]dx, N(0) = N(∞) = 1, (17)

and more than that,

lim
ρ→0

1
ρ

e[−
t−x
1−β ] = δ(x − t). (18)

2.3. Atangana–Baleanu Fractional Derivative

Let h ∈ H(0, 1); then, the Atangana–Baleanu fractional derivative (in Caputo) ([17]) of
order α is

Tα(h)(x) =
B(α)
1 − α

x∫

0

Eα

[
− α

1 − α
(x − s)α

]
h′(s)ds, (19)

where B(α) > 0 is a normalizing function which agrees to B(0) = B(1) = 1, and Eα is the
Mittag–Leffler function.

2.4. Laplace Transform

The Laplace transformation ([46]) is an important transform in mathematics. It usually
converts the system to an algebraic system, which is easily solvable. The Laplace transform
of f (t) is represented by L{ f (t)} and is explained as

L{ f (t)} =

∞∫

0

e−st f (t)dt , s > 0. (20)

2.4.1. Laplace Transform of Riemann–Liouville Fractional Differential Operator

The Laplace transform of Riemann–Liouville’s fractional derivative is explained below:

L
{

CDγg(t)
}
= [sL(g(t))− g(0)]s(γ−1). (21)
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2.4.2. Laplace Transform of Caputo–Fabrizio Fractional Differential Operator

The Laplace transformation of CF operator is as follows:

L
{

CFDγg(t)
}
=

1
2

.
B(γ)(2 − γ)

1 − γ
.
sL{g(t)} − g(0)

s + γ
1−γ

. (22)

2.4.3. Laplace Transform of Atangana–Baleanu Fractional Differential Operator

Let ABCDα f (t) be the Atangana–Baleanu fractional differential operator of any func-
tion f (t); then, the Laplace transform of the Atangana–Baleanu fractional differential
operator is defined as follows:

L
{

ABCDα f (t)
}
=

M(α)

1 − α

pαL{ f (t)} − pα−1 f (0)
pα + α

1−α

. (23)

3. SIR Model

We have considered an SIR model ([1,47,48]) having three compartments or sub classes
for the given population, namely, susceptible class S(t), infected class I(t) and recovered
class R(t). The total population is represented by N and is defined as N = S + I + R.

In this system, to study the effect of diffusion, we added the diffusion term in each
equation of the system; hence, the system reduces to

dS
dt = µ − µS − NγSI + α ∂2S

∂x2
dI
dt = NγSI − µI − νI + α ∂2 I

∂x2
dR
dt = νI − µR + α ∂2R

∂x2





, (24)

with the condition that S+ I + R = 1. In this system, µ is the birth rate, γ is the transmission
rate, ν is the recovery rate, and N is the total population and is supposed to be constant.
Here, α is the diffusion constant of susceptible, infected and recovered classes, respectively.
One important thing to be noted is that we have taken the interval [0, 0.25] as the domain
for the given SIR model. Here, the initial conditions for S(t), I(t) and R(t) are given as
follows:

S0 = c1 exp
(
−10x2), 0 ≤ x ≤ 0.25,

I0 = c2 exp
(
−100x2), 0 ≤ x ≤ 0.25,

R0 = c3, 0 ≤ x ≤ 0.25.
(25)

In coming sections, we will use model (25) and set of conditions (25) to achieve our objective.

4. Existence and Uniqueness of Result

Here, we will establish the existence of the result of the model for all three different
kernels of the generalized derivative.

4.1. In Caputo–Fabrizio Derivative Case
4.1.1. Theorem 1

Define N1, N2, N3 and their connection to the variables.

Proof. The given system is as follows:

CF
0 Dβ

t S(t) = µ − µS − NγSI, (26)

CF
0 Dβ

t I(t) = NγSI − µI − νI, (27)

CF
0 Dβ

t R(t) = νI − µR. (28)
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Here, 0 < β ≤ 1. Then, converting the above model into integral equations,

S(t)− S(0) = CF
0 Iβ

t [µ − µS − NγSI], (29)

I(t)− I(0) = CF
0 Iβ

t [NγSI − µI − νI], (30)

R(t)− R(0) = CF
0 Iβ

t [νI − µR]. (31)

Then, by Nieto’s definition, we obtain

S(t) = S(0) + 2(1−β)
(2−β)B(β) [µ − µS − NγSI]

+ 2β
(2−β)B(β)

t∫
0
[µ − µS − NγSI]ds,

I(t) = I(0) +
2(1 − β)

(2 − β)B(β)
[NγSI − µI − νI] +

2β

(2 − β)B(β)

t∫

0

[NγSI − µI − νI]ds,

and

R(t) = R(0) +
2(1 − β)

(2 − β)B(β)
[νI − µR] +

2β

(2 − β)B(β)

t∫

0

[νI − µR]ds.

Furthermore, consider the kernels are

N1(t, S) = µ − µS − NγSI,

N2(t, I) = NγSI − µI − νI,

N3(t, R) = νI − µR.

□

4.1.2. Theorem 2

Show that N1, N2 and N3 satisfy the Lipschitz condition.

Proof. We shall prove for N1 at first. Assume S and S1 are two functions; hence,

∥ N1(t, S)− N1(t, S1) ∥ ≤ ∥ µ − µS − NγSI − {µ − µS1 − NγS1 I} ∥,
= ∥ µ(S1 − S) + NγI(S1 − S) ∥,
= ∥ µ + NγI ∥∥ S1 − S ∥,

∥ N1(t, S)− N1(t, S1) ∥ ≤ H∥ S1(t)− S(t) ∥,
where ∥ µ + NγI ∥ ≤ H < 1.

Similarly,

∥ N2(t, I)− N2(t, I1) ∥ ≤ ∥ NγSI − µI − νI − {NγSI1 − µI1 − νI1} ∥,
≤ ∥ (µ + ν − NγS) ∥∥ I1(t)− I(t) ∥.

∥ N2(t, I)− N2(t, I1) ∥ ≤ H1∥ I1(t)− I(t) ∥,
where ∥ (µ + ν − NγS) ∥ ≤ H1 < 1.

and
∥ N3(t, R)− N3(t, R1) ∥ ≤ ∥ νI − µR − {νI − µR1} ∥,

≤ ∥ µ ∥∥ R1(t)− R(t) ∥.

∥ N3(t, R)− N3(t, R1) ∥ ≤ H2∥ R1(t)− R(t) ∥,
where ∥ µ ∥ ≤ H2 < 1.
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Now, by recursive relation,

Sn(t) =
2(1 − β)

(2 − β)B(β)
N1(t, Sn−1) +

2β

(2 − β)B(β)

t∫

0

N1(s, Sn−1)ds, (32)

In(t) =
2(1 − β)

(2 − β)B(β)
N2(t, In−1) +

2β

(2 − β)B(β)

t∫

0

N2(s, In−1)ds, (33)

and

Rn(t) =
2(1 − β)

(2 − β)B(β)
N3(t, Rn−1) +

2β

(2 − β)B(β)

t∫

0

N3(s, Rn−1)ds. (34)

Now, consider the difference between two successive terms is

Un(t) = Sn(t)− Sn−1(t)

= 2(1−β)
(2−β)B(β)

N1(t, Sn−1) +
2β

(2−β)B(β)

t∫
0

N1(s, Sn−1)ds

− 2(1−β)
(2−β)B(β)

N1(t, Sn−2)− 2β
(2−β)B(β)

t∫
0

N1(s, Sn−2)ds,

Un(t) =
2(1−β)

(2−β)B(β)
N1(t, Sn−1)− 2(1−β)

(2−β)B(β)
N1(t, Sn−2)

+ 2β
(2−β)B(β)

t∫
0
{N1(s, Sn−1)− N1(s, Sn−2)}ds.

Now,

∥ Un(t) ∥ = ∥ Sn(t)− Sn−1(t) ∥
= ∥ 2(1−β)

(2−β)B(β)
N1(t, Sn−1)− 2(1−β)

(2−β)B(β)
N1(t, Sn−2) +

2β
(2−β)B(β)

t∫
0
{N1(s, Sn−1)− N1(s, Sn−2)}ds ∥,

≤ 2(1−β)
(2−β)B(β)

∥ N1(t, Sn−1)− N1(t, Sn−2) ∥+ 2β
(2−β)B(β)

∥
t∫

0
{N1(s, Sn−1)− N1(s, Sn−2)}ds ∥,

But N1 satisfies the Lipschitz condition so

∥ Un(t) ∥ ≤ 2(1 − β)

(2 − β)B(β)
H∥ Sn−1 − Sn−2 ∥+ 2β

(2 − β)B(β)
J

t∫

0

∥ Sn−1 − Sn−2 ∥ds.

Similarly, we can obtain

∥ Wn(t) ∥ ≤ 2(1 − β)

(2 − β)B(β)
H1∥ In−1 − In−2 ∥+ 2β

(2 − β)B(β)
J1

t∫

0

∥ In−1 − In−2 ∥ds,

and

∥ Qn(t) ∥ ≤ 2(1 − β)

(2 − β)B(β)
H2∥ Rn−1 − Rn−2 ∥+ 2β

(2 − β)B(β)
J2

t∫

0

∥ Rn−1 − Rn−2 ∥ds.

□

4.1.3. Theorem 3

Show that the SIR system with fractional order is the minimal model of dynamics.
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Proof. By the recursive technique, we obtain

∥ Un(t) ∥ ≤ ∥ S(0) ∥+
{

2(1 − β)H
(2 − β)B(β)

}n
+

{
2βJt

(2 − β)B(β)

}n
,

∥ Wn(t) ∥ ≤ ∥ I(0) ∥+
{

2(1 − β)H1

(2 − β)B(β)

}n
+

{
2βJ1t

(2 − β)B(β)

}n
,

and

∥ Qn(t) ∥ ≤ ∥ R(0) ∥+
{

2(1 − β)H2

(2 − β)B(β)

}n
+

{
2βJ2t

(2 − β)B(β)

}n
.

Hence, the results are validated and found to be continuous as well. So,

S(t) = Sn(t) + An(t),
I(t) = In(t) + Cn(t),
R(t) = Rn(t) + Ln(t),

where An, Cn and Ln are remainders of series solution. So,

S(t)− Sn(t) =
2(1−β)

(2−β)B(β)
N1(t, Sn) +

2β
(2−β)B(β)

t∫
0

N1(s, Sn)ds,

S(t)− Sn(t) =
2(1−β)

(2−β)B(β)
N1(t, S − An(t)) +

2β
(2−β)B(β)

t∫
0

N1(s, S − An(s))ds.

Similarly, we have

I(t)− In(t) =
2(1−β)

(2−β)B(β)
N2(t, I − Cn(t)) +

2β
(2−β)B(β)

t∫
0

N2(s, I − Cn(s))ds,

and

R(t)− Rn(t) =
2(1−β)

(2−β)B(β)
N3(t, R − Ln(t)) +

2β
(2−β)B(β)

t∫
0

N3(s, R − Ln(s))ds.

Now, it is clear that,

S(t)− Sn(t) =
2(1 − β)

(2 − β)B(β)
N1(t, S − An(t)) +

2β

(2 − β)B(β)

t∫

0

N1(s, S − An(s))ds,

S(t)− S(0)− 2(1−β)N1(t,S)
(2−β)B(β)

− 2β
(2−β)B(β)

t∫
0

N1(s, S)ds = An(t)

+ 2(1−β)N1(t,S−An(t))
(2−β)B(β)

+ 2β
(2−β)B(β)

t∫
0

N1(s, S − An(s))ds.

Now,

∥ S(t)− 2(1−β)N1(t,S)
(2−β)B(β)

− S(0)− 2β
(2−β)B(β)

t∫
0

N1(s, S)ds ∥ ≤ ∥ An(t) ∥

+
{

2(1−β)H
(2−β)B(β)

+ 2β
(2−β)B(β)

Jt
}
∥ An(t) ∥,

∥ I(t)− 2(1−β)N2(t,I)
(2−β)B(β)

− I(0)− 2β
(2−β)B(β)

t∫
0

N2(s, I)ds ∥ ≤ ∥ Cn(t) ∥

+
{

2(1−β)H1
(2−β)B(β)

+ 2β
(2−β)B(β)

J1t
}
∥ Cn(t) ∥,

and

∥ R(t)− 2(1−β)N3(t,R)
(2−β)B(β)

− R(0)− 2β
(2−β)B(β)

t∫
0

N3(s, R)ds ∥ ≤ ∥ Ln(t) ∥

+
{

2(1−β)H2
(2−β)B(β)

+ 2β
(2−β)B(β)

J2t
}
∥ Ln(t) ∥.
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Now, making n → ∞ , we obtain

S(t) = S(0) +
2(1 − β)N1(t, S)
(2 − β)B(β)

+
2β

(2 − β)B(β)

t∫

0

N1(s, S)ds,

I(t) = I(0) +
2(1 − β)N3(t, I)
(2 − β)B(β)

+
2β

(2 − β)B(β)

t∫

0

N2(s, I)ds,

and

R(t) = R(0) +
2(1 − β)N5(t, R)
(2 − β)B(β)

+
2β

(2 − β)B(β)

t∫

0

N3(s, R)ds.

□

Based on the aforementioned equations, we can state that the system’s solution exists.
Similarly, when we modify the kernel, we can also demonstrate that the remaining

two cases have a solution.

4.2. Uniqueness of Result

Here, we are going to prove that the results mentioned in the above section are totally
solitary. For this, we suppose that there exists another set of results for the set up given by
Equations (26)–(28), say, S(t), I(t) and R(t). Then, we have

S(t)− S1(t) =
2(1−β)

B(β)(2−β) [N1(t, S)− N1(t, S1)]

+ 2(β)
B(β)(2−β)

∫ t
0 [N1(s, S)− N1(s, S1)]ds,

(35)

and on taking norm both sides, we obtain

∥ S − S1 ∥ = 2(1−β)
B(β)(2−β) [∥ N1(t, S)− N1(t, S1) ∥]

+ 2(β)
B(β)(2−β)

∫ t
0 [∥ N1(s, S)− N1(s, S1) ∥]ds,

(36)

using Lipchitz condition, we obtain

∥ S − S1 ∥ <
2(1 − β)

B(β)(2 − β)
HZ +

(
2(β)

B(β)(2 − β)
J1Zt

)n
, (37)

which is true for all n. So,
S = S1, (38)

Similarly, I = I1, and R = R1. So, the uniqueness of the solution is proven.
In the same way, we can also show the uniqueness of the solution for the other two

cases.

5. Solution of SIR Model Based on General Fractional Derivative by Using
Laplace Transform

Here, to study the effect of diffusion, we add the diffusion term in each equation of
the system:

dS
dt = µ − µS − NγSI + α ∂2S

∂x2
dI
dt = NγSI − µI − νI + α ∂2 I

∂x2
dR
dt = νI − µR + α ∂2R

∂x2





. (39)



Fractal Fract. 2024, 8, 537 10 of 21

But we are interested in the solution by using the general operator of fractional order. So,
we develop another system with the general fractional operator of order β. Hence,

cDβS(t) = µ − µS − NγSI + α ∂2S
∂x2

cDβ I(t) = NγSI − µI − νI + α ∂2 I
∂x2

cDβR(t) = νI − µR + α ∂2R
∂x2





, (40)

where cDβ represents the general operator of fractional order β. Now, applying Laplace
transform on both sides in the first equation of system (40), we obtain

L
{

cDβS(t)
}
= L

{
µ − µS − NγSI + α

∂2S
∂x2

}
. (41)

By incorporating the various kernels into the various general operator definitions, we may
derive three specific cases of the general operator. In the first case, when the kernel is
∇ι(t) = t−ξ

Γ(1−ξ)
, we have the power function ℑι(t) = tξ−1

Γ(ξ) reforming the integral operator’s
associated kernel.

In the next condition, take kernel ∇ι(t) = B(ξ)
1−ξ Eξ

(
−ξ

1−ξ tξ
)

, where Eξ and M(ξ) are
Mittag–Leffler and normalization functions. We also have

ℑι(t) =
1 − ξ

B(ξ)
δ(t) +

ξ

B(ξ)Γ(ξ)
tξ−1. (42)

So, this may be used to obtain the derivatives of AB–Caputo and AB–Riemann–Liouville.
The AB type integral is

0D−ξ
t f (t) =

1 − ξ

B(ξ)
f (t) +

ξ

B(ξ)Γ(ξ)

∫ t

0
(t − s)ξ−1 f (s)ds. (43)

Now, in the last situation, the CF derivative is found by taking kernel ∇ι(t) =
B(ξ)
1−ξ exp

(
−ξ

1−ξ t
)

.
Since it is clear that the general fractional derivative can be further converted into three
different operators, namely Riemann–Liouvilles, Atangana–Baleanu and Caputo–Fabrizio,
and we have already discussed their Laplace transform in the pre-requisites section, now,
we will obtain the numerical solution of the model in each case:

5.1. Case I: Caputo–Fabrizio Operator

Now, taking Equation (41) and changing the kernel to Caputo–Fabrizio, we obtain

L
{

CFDβS(t)
}
= L

{
µ − µS − NγSI + α

∂2S
∂x2

}
. (44)

Now, using Equation (22),we have

pL{S(t)} − S(0)
p + β(1 − p)

= L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(45)

or,

pL{S(t)} − S(0) = {p + β(1 − p)}L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(46)

or,

pL{S(t)} = S(0) + {p + β(1 − p)}L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(47)

or,

L{S(t)} =
S(0)

p
+

{
1 + β

(
1
p
− 1

)}
L
{

µ − µS − NγSI + α
∂2S
∂x2

}
. (48)
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Now, operating inverse Laplace transform on both sides, we obtain

S(t) = S(0) + L−1
[{

1 + β

(
1
p
− 1

)}
L
{

µ − µS − NγSI + α
∂2S
∂x2

}]
, (49)

or by the iterative technique, we obtain

Sn+1(t) = S(0) + L−1
[{

1 + β

(
1
p
− 1

)}
L
{

µ − µSn − NγSn In + α
∂2Sn

∂x2

}]
. (50)

Similarly, we can have other expressions

In+1(t) = I(0) + L−1
[

p + β(1 − p)
p

L
{

NγSn In − µIn − νIn + α
∂2 In

∂x2

}]
, (51)

and

Rn+1(t) = R(0) + L−1
[

p + β(1 − p)
p

L
{

νIn − µRn + α
∂2Rn

∂x2

}]
. (52)

Equations (50)–(52)denote the required mathematical solution of the model in the CF case.

5.2. Case II: Riemann–Liouville’s Operator

Again using the Equation (41) and changing the kernel to the Riemann–Liouville case,
we have

L
{

RLDβS(t)
}
= L

{
µ − µS − NγSI + α

∂2S
∂x2

}
. (53)

Now, using the Equation (21), we obtain

pβL{S(t)} − pβ−1S(0) = L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(54)

or,

pβL{S(t)} = pβ−1S(0) + L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(55)

or,

L{S(t)} =
S(0)

p
+

1
pβ

L
{

µ − µS − NγSI + α
∂2S
∂x2

}
. (56)

Further, taking inverse Laplace transform on both sides, we obtain

S(t) = S(0) + L−1
[

1
pβ

L
{

µ − µS − NγSI + α
∂2S
∂x2

}]
. (57)

Now, by the iterative technique, we obtain

Sn+1(t) = S(0) + L−1
[

1
pβ

L
{

µ − µSn − NγSn In + α
∂2Sn

∂x2

}]
. (58)

Similarly, we can have

In+1(t) = I(0) + L−1
[

1
pβ

L
{

NγSn In − µIn − νIn + α
∂2 In

∂x2

}]
, (59)

and

Rn+1(t) = R(0) + L−1
[

1
pβ

L
{

νIn − µRn + α
∂2Rn

∂x2

}]
. (60)

Equations (58)–(60) denote the required mathematical solution of the model in the RL case.
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5.3. Case III: Atangana–Baleanu Operator

Now, taking Equation (41) and changing the kernel to the Atangana–Baleanu case, we
obtain

L
{

ABCDβS(t)
}
= L

{
µ − µS − NγSI + α

∂2S
∂x2

}
. (61)

Now, using the Equation (23), we obtain

M(β)

(1 − β)
.
pβL{S(t)} − pβ−1S(0)

pβ + β
1−β

= L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(62)

or,

M(β)

(1 − β)
.pβL{S(t)} − pβ−1S(0) =

(
pβ +

β

1 − β

)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(63)

or,

pβL{S(t)} − pβ−1S(0) =
(1 − β)

M(β)

(
pβ +

β

1 − β

)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(64)

or,

pβL{S(t)} = pβ−1S(0) +
(1 − β)

M(β)

(
pβ +

β

1 − β

)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}
(65)

or,

L{S(t)} =
S(0)

p
+

(1 − β)

M(β)

(
1 +

βp−β

1 − β

)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}
. (66)

Furthermore, taking inverse Laplace transform on both sides, we have

S(t) = S(0) + L−1
[
(1 − β)

M(β)

(
1 +

βp−β

1 − β

)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}]
(67)

or,

S(t) = S(0) + L−1

[(
1 − β + βp−β

)

M(β)
L
{

µ − µS − NγSI + α
∂2S
∂x2

}]
. (68)

Now, by the iterative technique, we obtain

Sn+1(t) = S(0) + L−1

[(
1 − β + βp−β

)

M(β)
L
{

µ − µSn − NγSn In + α
∂2Sn

∂x2

}]
(69)

Similarly, we can obtain

In+1(t) = I(0) + L−1

[(
1 − β + βp−β

)

M(β)
L
{

NγSn In − µIn − νIn + α
∂2 In

∂x2

}]
, (70)

and

Rn+1(t) = R(0) + L−1

[(
1 − β + βp−β

)

M(β)
L
{

νIn − µRn + α
∂2Rn

∂x2

}]
. (71)

Equations (69)–(71) denote the required mathematical solution of the model in the ABC case.

6. Numerical and Graphical Results

Now, we have also numerically analyzed the SIR model for the better understanding of
the diffusion ([6]). During the investigation, we have also used some initial conditions ([1])
and parameter values. To be clear, we have not generated any new data for this research.
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Our objective is to analyze the model with a new approach and to find something new for
society. Here, we have also taken the value of diffusion coefficient α between 0 and 1. The
details of the numeric values are explained in Table 1:

Table 1. Table of parameters used.

S.N. Variable Symbol Value

1 Birth rate µ 0.04

2 Recovery rate ν 24

3 Transmission rate γ 123

Using the above mentioned values of parameters, along with c1 = 0.0009, c2 = 0.0004
and c3 = 0.7 in the mathematical results found in the previous section, for time to be fixed
as 0 ≤ t ≤ 2.5, we can plot the graphs in each case for various factors:

From graphs, we can see that there is a significant impact of the diffusion coefficient
of each variable (i.e., susceptible, infected and recovered classes) (Figures 1–13). From
Figures 13–21, we can see that infection is going down as we increase the diffusion co-
efficient in all the cases. Figures 1–9 show the changes in various factors for τ = 0.7,
while Figures 10–12 show changes in S, I and in R for x = 0.15, α = 0.001 and τ = 0.7.
In Figures 22–24, we see an interesting outcome that the Atangana–Baleanu derivative is
showing the lowest peak as compared to other two, when discussing the susceptible and
infected class, while in recovery, the Riemann–Liouville derivative is showing better results
than the other two. Since we have used the presented model with a unique approach, the
presented results are better than the results of [1].
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Figure 9. Graph of recovered with respect to t, for τ = 0.7 and α = 0.001 in ABC case.

Figure 10. Graph of susceptible, infected and recovered class with respect to t, for x=0.15, α = 0.001
and τ = 0.7 in CF case.
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and τ = 0.7 in RL case.

Figure 9. Graph of recovered with respect to t, for τ = 0.7 and α = 0.001 in ABC case.
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7. Conclusions

In this study, we analyzed the fractional ordered SIR model under the general fractional
derivative using the Laplace transform approach. The presence and uniqueness of outcomes
were examined using the fixed point method. Once more, the general derivative technique
was used to obtain some numerical results for the suggested model. For various fractional
orders and for every general derivative scenario, numerical results have been illustrated.
By displaying the relationship between two numbers, the graphical depiction demonstrates
the greater significance of the fractional order analysis of mathematical models than integer
order analysis. As we all know that there is limited predication available for integer
ordered derivatives compared to fractional ordered derivatives, in which we can have a
large amount of observations available between two integer points. There may also be
significant differences in the susceptible, infected and recovered populations when we
change the diffusion coefficient and equation’s order.

Now, if we talk about the future research or extending work, then we can also analyze
the presented model with the reproduction number, which will certainly give some new
and valuable findings for the presented model. There are vast and numerous possibilities
in epidemiological modeling using fractional derivatives over integer ordered derivatives,
and this will certainly allow for better forecasting and prediction to take more precise
corrective steps in the context of real-world situations.
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4. Ergen, K.; Çilli, A.; Yahnıoğlu, N. Predicting epidemic diseases using mathematical modelling of SIR. Acta Phys. Pol. 2015, 128.
5. Alqarni, M.M.; Nasir, A.; Alyami, M.A.; Raza, A.; Awrejcewicz, J.; Rafiq, M.; Ahmed, N.; Shaikh, T.S.; Mahmoud, E.E. A SEIR

Epidemic Model of Whooping Cough-Like Infections and Its Dynamically Consistent Approximation. Complexity, 2022, 2022,
3642444.

6. González-Parra, G.; Arenas, A.J.; ; Chen-Charpentier, B.M. Combination of nonstandard schemes and Richardson’s extrapolation
to improve the numerical solution of population models. Math. Comput. Model. 2010, 52, 1030–1036.

Figure 24. Graph of recovered with CF, RL and ABC derivative for τ = 0.7 and α = 0.001.

7. Conclusions

In this study, we analyzed the fractional ordered SIR model under the general fractional
derivative using the Laplace transform approach. The presence and uniqueness of outcomes
were examined using the fixed point method. Once more, the general derivative technique
was used to obtain some numerical results for the suggested model. For various fractional
orders and for every general derivative scenario, numerical results have been illustrated.
By displaying the relationship between two numbers, the graphical depiction demonstrates
the greater significance of the fractional order analysis of mathematical models than integer
order analysis. As we all know that there is limited predication available for integer
ordered derivatives compared to fractional ordered derivatives, in which we can have a
large amount of observations available between two integer points. There may also be
significant differences in the susceptible, infected and recovered populations when we
change the diffusion coefficient and equation’s order.

Now, if we talk about the future research or extending work, then we can also analyze
the presented model with the reproduction number, which will certainly give some new
and valuable findings for the presented model. There are vast and numerous possibilities
in epidemiological modeling using fractional derivatives over integer ordered derivatives,
and this will certainly allow for better forecasting and prediction to take more precise
corrective steps in the context of real-world situations.



Fractal Fract. 2024, 8, 537 20 of 21

Author Contributions: This study was directed by M.N.M., who also carried out all the mathematical
computations. I.A. constructed the study map. R.S.D. summarised the data into tables and drew the
figures/graphs. B.S.A. formatted the final paper. The draft was read, corrected and polished by all
the authors. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23002).

Data Availability Statement: Availability of statistics and materials: Availability of statistics is
already cited in the article.

Acknowledgments: Authors extend their gratitude to all the reviewers whose suggestations helped
to uplift the quality of the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Asif, M.; Jan, S.U.; Haider, N.; Al-Mdallal, Q.; Abdeljawad, T. Numerical modeling of npz and sir models with and without

diffusion. Results Phys. 2020, 19, 103512. [CrossRef]
2. Asif, M.; Khan, Z.A.; Haider, N.; Al-Mdallal, Q. Numerical simulation for solution of SEIR models by meshless and finite

difference methods. Chaos Solitons Fractals 2020, 141, 110340. [CrossRef]
3. Ahmed, N.; Ali, M.; Rafiq, M.; Khan, I.; Nisar, K.S.; Rehman, M.A.; Ahmad, M.O. A numerical efficient splitting method for

the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in
bio-medical engineering. Comput. Methods Programs Biomed. 2020, 190, 105350. [CrossRef] [PubMed]
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