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Abstract: Little research has been carried out in terms of modeling and control of analgesia. However,
emerging new technology and recent prototypes paved the way for several ideas on pain modeling
for control. Recently, such an idea has been proposed for measuring the Depth of Analgesia (DoA).
In this paper, that solution is further exploited towards obtaining a novel fractional-order model and
dedicated controller for DoA. First, clinical data from patients undergoing general anesthesia are used
to determine a commensurate fractional-order model of the skin impedance at each sampling period.
Second, we provide a proof of concept indicating that fractional order changes due to variations in the
infused opioid drug (Remifentanil). Third, a fractional-order model for DoA is developed correlating
the changes in the pain index (as the output signal) and the Remifentanil infusion rate (as the input
signal). Standard optimization routines are used to estimate the parameters. A database of 19 real
patients is used. Lastly, a preliminary fractional-order controller is designed and tested in simulation
for the 19 patients. The closed-loop simulation results correspond to the expected clinical outcomes.

Keywords: analgesia modeling; pain index; fractional-order models; closed-loop control of anesthesia

1. Introduction

General anesthesia is a core topic in current surgical procedures, with several research
papers directed towards finding a simple and efficient solution for automatic control of drug
dosing [1–3]. This is envisaged as the most suitable solution to avoid under- or over-dosage
and to offer a dedicated support for decision making for the anesthesiologist [4–6]. General
anesthesia consists of three main components: hypnosis, neuromuscular blockade and
analgesia. Computer-based optimal drug dosage in general anesthesia is currently under-
going extensive research, mainly focused on the regulation of hypnosis and neuromuscular
blockade. For a holistic approach, the regulation of analgesia is equally important.

Analgesia refers to the relief of nociception or pain (if the patient is awake) and is
achieved by an interruption in the nervous system pathway between the sense organ and
brain. The interruption can be performed using several types of analgesics, such as opioids,
i.e., Remifentanil. The opioid drug infusion is currently decided by the anesthesiologist
by monitoring several patient vital signs. Optimal drug dosing would be possible using
computer-controlled analgesia. To achieve this, adequate nociception monitoring is crucial
to give feedback information on the dose–effect response in patients. To date, this has
received limited attention due to the lack of suitable devices for monitoring. Apart from
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the lack of feedback information, a model for analgesia is also required to properly design
a computer algorithm for optimal drug dosing.

There is little research in terms of modeling and control of analgesia. This is mainly due
to the limited choice of monitoring devices and signals to measure the Depth of Analgesia
(DoA) as a relationship between the infusion rate of the opioid drug, Remifentanil, and a
signal that evaluates the nociception level in patients. Although many studies on analgesia
exist, as reported from clinical trials [7–10], there is no established mathematical model that
relates Remifentanil to its effect upon a surgical or nociceptive stimulus. The purpose of
this manuscript is to develop such a mathematical model, which, in turn, will be used to
design a dedicated controller.

The emergence of devices that measure DoA or nociception levels [11,12] enables
the development of preliminary mathematical models and of dedicated controllers. Two
monitoring devices have emerged to be more suitable for estimating DoA based on indices
such as Nociception Level (NOL) [13] or Skin Conductance (SC). These are the commercial
devices Medasense (CE0344, Manufacturer: Medasense Biometrics Ltd., Ramat Gan, Israel))
and Medstorm (CE0413, Manufacturer: Med-Storm Innovation AS, Oslo, Norway) [13,14].
Both devices are built using standard electric circuitry and follow the classical laws of
physics while delivering a signal (either NOL or SC) that is used to quantify a patient’s
physiological pain response (nociception). Recent papers have compared these two com-
mercial monitoring/measuring devices with a prototype AnspecPro monitor and have
validated its utility in estimating nociception levels expressed in terms of various new
indices [11,15]. Much like Medasense and Medtsorm, the AnpsecPro device is designed
and follows the classical laws of physics, with the output being an electrical signal. For the
AnpsecPro device, our previous manuscript has proposed several indexes, similar to the
NOL and SC indexes, to quantify the nociception or DoA. At the same time, an analysis
based on clinical data has been performed to establish a causality between the opioid
(Remifentanil) infusion rate and the proposed nociception indexes. Simple mathematical
models have been derived to link the input (Remifentanil) signal to the output (nociception
index). These models are second-order integer transfer functions [15].

Nonetheless, fractional calculus, as a generalization of integer-order calculus, has been
recently used more frequently to describe physiological phenomena in the human body,
such as fractional-order models for tissues [16], cancer-spreading models [17–21], HIV
dynamics [22,23], virus spreading [24,25], and drug diffusion [26], to mention just a few.

In this paper, we attempt to use fractional calculus to model DoA. Clinical data
available and measured using the AnspecPro device are used as described in [12,15]. The
output signal of the AnspecPro device is the measured skin impedance in a frequency range
of [628.32, 9424.78] rad/s [27]. Skin impedance is measured over a certain period of time
according to the clinical protocol [12,15] with a constant sampling period. First, various
commensurate fractional-order (FO) models are determined for the skin impedance using
frequency domain identification techniques and based on the mean frequency response.
These are compared in terms of accuracy and complexity to establish the best structure of
the impedance model. Next, at each sample, a commensurate FO model for the impedance
is obtained. It is shown that the commensurate fractional order changes due to variations in
the infused Remifentanil drug. The commensurate fractional order, denoted as q, is further
considered a new index for estimating the DoA (output signal) and a correlation with
the Remifentanil infusion rate (input signal) is established as a fractional-order transfer
function. Validation with clinical available data is performed.

Once such a model for the DoA is developed, it can be used for the tuning of an optimal
controller. Nowadays, most of the research for closed-loop control is centered around one
of the key components in anesthesia, namely, depth of hypnosis. This is reflected in the
Bispectral Index (BIS) signal, which is available via electroencephalography (EEG). Several
closed-loop strategies have been developed and proposed for monitoring and maintaining
the BIS signal within acceptable ranges. These range from simple proportional–integral–
derivative (PID) control algorithms to more advanced solutions such as fractional-order
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controllers, event-based algorithms, model predictive control, to name just a few [1,3–6,28].
A second component of anesthesia that is matured in terms of closed-loop testing and
analysis is the neuromuscular blockade [29]. In this case, the available literature has also
introduced and validated several control possibilities, including, for example, PIDs and
model predictive control [30,31]. Some high-quality review papers dealing with closed-
loop control of anesthesia are also available [2,4,5,28]. For DoA, no control strategies
have been proposed so far. In this manuscript, we propose a simple yet efficient and
robust fractional-order controller for regulating the DoA. These fractional-order controllers
are generalizations of the integer-order controllers [32–34] and they pose extra degrees of
freedom, which increase the flexibility of the design [35–37] and allow for better closed-loop
performance, especially in terms of robustness [32–34,38–41].

A feasibility analysis regarding closed-loop control is finally performed by designing
this Proportional Integral–Fractional-Order Proportional Derivative (PI-FOPD) controller.
The fractional-order transfer function with the commensurate fractional order q considered
as the output signal and Remifentanil rate as the input signal is used as a model for
analgesia in the tuning of the dedicated controller. In a practical setting, the AspecPro
device measures the patient skin impedance in a certain frequency range, an electrical
signal, which is used to estimate fractional-order models with commensurate order q(t),
as indicated in Sections 2.2 and 3.1. This occurs at each sampling interval. The signal q(t)
is then considered by the controller as the output signal. Based on a reference value q*,
considered to be equivalent to no pain, the fractional-order control algorithm generates a
control signal that corresponds to an optimal infusion rate for Remifentanil. This control
signal computed by the controller is an electrical signal fed to dedicated micropumps,
which close the loop by supplying the required drug infusion rate.

Establishing a fractional-order model for the DoA is the main target of the current
manuscript. The motivation behind this research consists of the growing trend towards a
complete anesthesia control, which requires the control of not just the depth of hypnosis
and neuromuscular blockade but that of analgesia as well.

The main innovation of the article consists of the following:

• Development and validation of a novel commensurate fractional-order skin impedance
model;

• Development and validation of a novel ‘pain index’ and its correlation to the opioid
(Remifentanil) infusion rate in the absence of surgical stimuli;

• Development and validation of a fractional-order transfer function for analgesia
suitable for closed-loop control;

• Design of a simple preliminary fractional-order controller for analgesia to test its fea-
sibility.

This manuscript is structured as follows. In the next section, a short overview of the
patient database and the clinical trial is introduced, followed by the theoretical background
for fractional-order modeling using frequency and time domain data. A glance at the
theoretical concepts of the optimization algorithms used is also included in Section 2. The
rationale behind using the proposed fractional-order models presented in this section is
further explained in the next section, which also presents the results. Section 3 is organized
in four main subsections. First, the results of the fractional-order impedance model are
presented, followed by the development and validation of the fractional-order model for
the depth of analgesia. An integer-order model is used for comparative purposes in the
third subsection. Finally, the last subsection presents the necessary theoretical background
regarding fractional-order control and tuning, along with the closed-loop simulation results
for 19 patients in the database.

2. Materials and Methods
2.1. The Patient Database

Data from several patients under Total Intravenous Anesthesia were used in this
research. The clinical protocol is described in detail in [12,15], where three non-invasive
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pain monitors (Medasense, Medstorm and AnspecPro) were evaluated in terms of their
effectiveness to represent the nociception–anti-nociception sensitivity of the patients. Data
referring to the DoA were collected with a Remifentanil target-controlled infusion (TCI
model of Minto) to reach an adequate level of analgesia at the moment of intubation. A
total of 70 patients were included in this study and, among these, the Medasense device
was used to collect data from 26 patients, the Medstorm was used for 20 patients and the
AnspecPro was used for 24 patients [12]. All patients in this study were included after their
informed consent was received. Details regarding the inclusion/exclusion requirements
are given in [12].

This trial was carried out in accordance with the defined protocol, which includes
ISO 14155 [42] and is centered on abiding by applicable laws and good clinical practices.
ISO 14155 is a worldwide standard for scientific and ethical excellence that regulates the
design, conduct, record-keeping, and dissemination of research projects involving human
subjects. Furthermore, this trial complied with the legal guidelines specified in European
Regulation (EU) 2017/745 [43]. The Federal Agency for Medicines and Health Products of
Belgium (FAGG) and the Ethics Committee of Ghent University Hospital approved this trial
(EC/BC-08020, FAGG/80M0840, EudraCT: CIV-BE-20-07-0342442020, clinicaltrials.gov:
NCT04986163, principal investigator: Martine Neckebroek). The reader is referred to [12,15]
for more details on the clinical trial and how the data used in this research were collected.

A graphical representation of the protocol is given in Figure 1.
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Figure 1. Graphical representation of the clinical protocol [13]. The regions of interest are delimited
as indicated. TOF—train of four.

Useful data for developing a model for the DoA begin when the Remifentanil infusion
(blue line) is administered to the patient and end with the start of the intubation. This
corresponds to the analgesia region, depicted in Figure 1, which lasts on average for 145 s
for the considered patients, until intubation. This is a major disturbance, which corrupts the
data for identification and these cannot be used further. Data are collected with a sampling
period of 5 s. As such, the quantity of data for each patient is limited and modeling becomes
a difficult task. Methods to tackle this were proposed in [44]. Table 1 shows the intubation
start time relative to the beginning of the analgesic region considered as time zero.
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Table 1. Biometric data for patients used in this work.

Patient No. Sex Age Height (cm) Weight (kg) Data Until Intubation
(Seconds)

3 F 42 168 70 86

10 M 73 181 83 157

14 X 19 168.7 59 250

21 F 62 168 88 221

24 F 36 168 63 95

25 M 58 179 94 240

33 F 46 170 82 115

35 F 41 167 65 100

38 F 18 163 64 70

39 F 64 158 58 134

41 F 30 156 44 90

48 M 31 170 85 142

54 F 21 166 63 140

56 M 63 168 82 135

59 F 71 167 83 86

63 X 26 170 50 170

64 F 33 172 94 165

66 F 70 165 62 155

70 X 20 155 49 206

In this research, only 19 of the 24 patients that were monitored using the AnspecPro
device (set as MON2) were considered. Their biometric data are indicated in Table 1.
Among these, 4 patients were male (M), 12 awee female (F) and 3 were identified as
transgender (X). Patients ranged from 18 to 73 years old (with an average of 43.36), their
height varied from 155 cm to 181 cm (with an average of height of 167.3 cm) and their
weight varied from 44 to 94 kg (with the average of 70.4 kg).

2.2. Fractional-Order Model Identification Using Frequency Response Data

A generalized continuous time commensurate fractional-order model is represented by:

G(s) =
bnsnq + bn−1s(n−1)q + · · ·+b2s2q + b1sq + b0

ansnq + an−1s(n−1)q + · · ·+ a2s2q + a1sq + a0
(1)

where n is the number of poles/zeros and q is maximum common multiple of powers of
the Laplace operator s. Transfer functions of the form in (1) are defined as the commensu-
rate fractional-order models. The transfer function in (1) will be used to model the skin
impedance, as will be indicated in the next section. The choice of using (1) consists of
its generalized form, which can be further altered to fit experimental data. Additionally,
similar skin impedance models have been used, as will be further discussed in Section 3.

In this study, system identification based on the frequency response is performed.
Given the known frequency behavior of (1) defined as G(j ω), the fractional order q and the
coefficients bi and ai, with i = 1,. . ., n are estimated by minimizing the square norm:

E = wG(jω)
[

an(jω)nq + an−1(jω)(n−1)q + · · ·+ a2(jω)2q + a1(jω)q + a0

]
−[

bn(jω)nq + bn−1(jω)(n−1)q + · · ·+b2(jω)2q + b1(jω)q + b0

] (2)
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where the weights are frequency dependent and computed according to:

w =


ω2−ω1

2ω2
1

, if i = 1
ωi+1−ωi−1

2ω2
i

, if 1 < i < f
ω f −ω f−1

2ω2
f

, if i = f

(3)

assuming a set of available frequencies ωi, i = 1,. . ., f. To improve the quality of the
approximation at low frequencies, the norm in (2) is a modification of the method of Levy
with weights (3) [45]. To estimate the coefficients of (1), q and n need to be supplied.

2.3. Fractional-Order Model Identification Using Time Response Data

Input–output time domain data are also used in this research to determine fractional-
order transfer functions in the following form:

GFO(s) =
k

a1sα1 + a2sα2 + 1
(4)

where k is the static input–output gain and α1 and α2 are fractional orders. The choice of
model in (4) is explained in Section 3.2. The parameters in (4) are estimated by minimizing
the error ∥e(t)∥2

2 given by e(t) = yexp(t)− ysim(t), where yexp and ysim are the experimental
output signal and the simulated one using (4). To simulate the fractional-order model in
(4), the Grunwald–Letnikov method [46] is used. In order to obtain the best fit, the Trust
Region Reflective algorithm is used. The algorithm requires an initial model guess. An
integer-order model is supplied in this case, mathematically described as follows:

GIO(s) =
k

c1s2 + c2s + 1
(5)

where k, c1 and c2 are estimated using input–output data and the Matlab (R2019a) tfest
function. Minimum and maximum values for the exponents α1 and α2 and the coefficients
a1 and a2 are set as constraints for the optimization algorithm as follows: 1 < α1 < 2,
0 < α2 < 1.5, c1/3 < a1 < 3c1 and c2/3 < a2 < 3c2. In the Trust Region Reflective algorithm,
which is used to estimate (4), the gain k is fixed and assumed to be that of (5) and only the
remaining parameters α1, α2, a1 and a2 are estimated.

2.4. Optimization Algorithms

Two optimization routines were used to estimate the fractional-order transfer functions.
The Nelder–Mead (NM) algorithm [47] was used to determine a best-fit fractional model
satisfying the available frequency domain data, whereas the Trust Region Reflective (TRR)
algorithm was employed to determine the best-fit fractional-order model satisfying the
available time domain data.

The Nelder–Mead method is a Black-Box Optimization approach, where the optimiza-
tion of an objective function is performed without any information regarding the analytic
form and gradient of the objective [47,48]. The advantage of the NM algorithm is the quick
convergence combined with a relatively small number of function evaluations. It achieves
decent results compared to computationally expensive problems. With the Nelder–Mead
simplex algorithm, an objective function of n design parameters can be minimized. The
algorithm iteratively updates the worst design in order to converge on the smallest value
of the objective function:

J =
n

∑
k=1

(
xexp(k)−xsim(k)

)2 (6)

where xsim(k) represents the frequency response of the fractional-order model for each
frequency ωk and xexp(k) is the measured frequency response. The algorithm sorts the
solutions, reflects the worst one through the centroid of the remaining ones and checks
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convergence. Extension, contractions and shrinkage are also part of the iterative algorithm.
The algorithm stops whenever convergence is achieved either in the parameters or in the
objective. Convergence in the parameters is achieved whenever the largest differences
between two adjacent solutions is less than a user-specified tolerance value ϵx times the
average of adjacent solutions. Convergence in the objective function is achieved whenever
the difference between the worst and best objective function is less than a user specified
tolerance ϵ f times the best objective function value [47]. In this study, the tolerance values
are set to ϵx = ϵ f = 10−4.

The Trust Region Reflective method [49] is one of the most popular and effective
approaches for solving bounded constrained nonlinear minimizations. It uses non-linear
least squares fitting. The fractional-order model in (4) that needs to be estimated is assumed
to be mathematically defined as a function f (x) of its unknown parameters included in
vector x. An objective function E(x) is defined as the error between the yexp and ysim signals,
as mentioned in Section 2.3. The parameters in vector x need to be estimated such that
the objective function is minimized. Maximum and minimum values for x are specified
as constraints. In the TRR approach, the function f (x) is approximated with a quadratic
function q(x) in a neighborhood N around the current point x and defined as the trust
region. A trial step s is computed by minimizing the area N and evaluating the function
f (x + s) with respect to f (x). Depending on the result, the trust region is kept unchanged
or minimized in the search for the minimum [49] The algorithm stops when a minimum
tolerance value is reached. In this study, the built in Matlab® function lsqnonlin is used to
implement the TRR algorithm for estimation of the parameters in (4).

3. Results
3.1. The Fractional-Order Impedance Mode

Previous research [50] has shown that the skin impedance, measured by the AnspecPro
or the Medstorm devices, behaves as a dynamic system responding to noxious stimuli
(acting as disturbances) or opioid drugs (such as Remifentanil, acting as the manipulated
input). System identification requires persistent excitation of the dynamic process to be
mathematically modeled, a feature built within the AnspecPro device. Unlike the Medstorm
device, which uses data collected at a single frequency, in the case of the AnspecPro device,
a multisinusoidal signal with an amplitude A, phase ϕ and linearly distributed frequencies
over ω = 2π[100:50:1500] rad/s is used as an input [27]:

u(t) =
29

∑
k=1

Aksin(ωkt) + ϕk (7)

The amplitude at each of the k frequencies Ak and the corresponding phase ϕk is
chosen according to the protocol defined in [27,50] The multisine signal in (7) allows for
an improved characterization of the frequency response of the skin impedance over a
wider range of frequency and thus enables the use of system identification techniques. The
AnspecPRO monitoring device used to collect data for analgesia modeling measures the
skin impedance with a sampling period Ts = 5 s. The collected data consist of a vector
of complex numbers denoting the skin impedance at each of the 29 frequencies in ω and
each sampling period. These data are processed and it is possible to obtain in real-time
the frequency response of the skin impedance Z( jωk) at each frequency point and every
sampling period. In this section, a mathematical model for the skin impedance is obtained
based on the frequency response Z( jωk).

Several models for skin impedance have been proposed [27,50,51] in the absence of
opioid drug and for healthy awake individuals. These models were derived based on
physiological insight and are used as a starting point for those developed in this paper.
Existing models [27,50,51] follow a recurrent pattern, a mathematical tool which can mimic
the diffusion phenomena occurring in biological tissues [26]. The recurrent pattern can be
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mathematically represented as an integer-order transfer function with interlacing pole-zero
pairs. Such a simplified model is represented as follows:

ZREC(s) = K
(
s2 + b1s + b2

)(
s2 + b3s + b4

)(
s2 + b5s + 6

)
(s2 + a1s + a2)(s2 + a3s + a4)(s2 + a5s + a6)

(8)

In previous research, a lumped fractional-order impedance model (FOIM) has been
proposed for capturing the skin impedance [50]:

ZFOIM(s) = R +
K

1 +
(

s
p

)β
(9)

where s is the Laplace variable,
(

1
p

)β
is the pseudo-capacitance of the constant phase

element and R and K are the gains at infinite frequencies and at low versus high frequencies,
respectively. Fractional-order models in general and those in (9), in particular, are approxi-
mated in a certain frequency range as transfer functions of a higher order with interlacing
poles and zeros. As such, they are similar to the recurrent models in (8). The justification
of using fractional-order models is three-fold. First, by using fractional-order models as
in (9), a more compact transfer function with fewer parameters is obtained compared to
(8). Secondly, fractional-order models as in (9) have been proposed as a more suitable and
accurate alternative to integer-order models [15–27,50,51] in biological phenomena. Third,
research has shown that in drug diffusion problems, such as that of Remifentanil in the
human body, the phenomena that occur are better captured with non-integer models [26].
All these justify the selection of a fractional-order (FO) transfer function to model the
skin impedance.

In what follows, the measured experimental data for one patient are considered
to be the frequency response Z( jωk) at each of the 29 frequencies in the range
ω = 2π[100 : 50 : 1500] rad/s. These data were collected over a period of time, as in-
dicated in Table 1, corresponding to M samples, with the sampling period Ts, thus resulting
in a different Zi( jωk) at each sampling period i = 1,. . .,M. In this section, an averaged
fractional-order impedance model was firstly derived. To estimate the averaged fractional-
order impedance model denoted as Z( jωk), for each frequency, the measured frequency

response was averaged over time: Z (jωk) =

M
∑

i=1
Zi(jωk)

M . Various fractional orders were
considered, and the results evaluated in terms of the cost function in (6) for all frequencies
in the range of 2π[100 : 50 : 1500] rad/s.

To abide by low-complexity models, commensurate fractional-order models were
considered in the following form:

ZFO(s) =
b4s4q + b3s3q + b2s2q + b1sq + b0

a4s4q + a3s3q + a2s2q + a1sq + a0
(10)

where bj and aj, with j = 1, 2, 3, 4 are coefficients that need to be estimated and q is the
commensurate fractional order. A commensurate order larger than four was not consid-
ered suitable due to the limited availability of clinical data for validation in a frequency
range of 29 values. At the same time, models exhibiting non-minimum phase dynamics
were disregarded due to mismatch of physiological properties. Both pole-zero commen-
surate fractional-order models and all pole-only commensurate fractional-order models
were considered.

The drawback of the NM algorithm consists of the dependence of the search perfor-
mance upon the initial points. To achieve good optimization results, it is crucial to provide
proper initialization. Several combinations of the initial q parameters were tested by trial
and error. Using frequency domain identification tools, as described in Section 2, unstable
transfer functions were obtained for commensurate fractional orders q < 1. Stable transfer
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functions were obtained for q in the range of [1, 2]. To estimate the fractional-order models,
an initial starting value q* = 1.5 was used in the optimization method for all patients. For
simplicity, only the results for patient 70 are presented here, although the same conclusions
can be drawn by analyzing the results for different patients. Table 2 summarizes the cost
functions obtained with the various fractional-order (FO) models.

Table 2. Cost function and model complexity for impedance modeling.

Number of poles na and zeros nb
of the FO models

na = 4
nb = 4

na = 3
nb = 3

na = 2
nb = 2

na = 4
nb = 0

na = 3
nb = 0

na = 2
nb = 0

Cost function J as defined in (6) 5.1544 6.2547 5.6648 8.0844 7.3194 6.4329

Based on the results in Table 2, the minimum value of the cost function J = 5.1544
is obtained for fourth-order models with nb = 4 and na = 4. To reduce the complexity of
the impedance model, a simplified fractional-order transfer function was preferred with
na = 2 and nb = 0 and a corresponding J = 6.4329, 25% larger compared to the more complex
fourth-order model. The final fractional-order impedance model has the following form:

ZFO(s) =
b0

a2s2q + a1sq + a0
(11)

The resulting fractional-order impedance model for patient 70 is given in the next
equation and the validation with clinical data is indicated in Figure 2a:

ZFO_P70(s) =
6924

2.87·10−12s3.148 + 7.36·10−6s1.574 + 1
(12)

Figure 2 portrays the validation of the FO impedance models, similar to (12), for three
other patients included in the database. Notice that the magnitude approximation is more
accurate. The phase is highly corrupted by noisy data, especially at high frequencies. To be
able to apply the system identification algorithm from Section 2, the clinical (initial) data
were smoothened and filtered using the Matlab® programming tool. The plots in Figure 2,
however, depict the raw data.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 9 of 22 
 

 

Table 2. Cost function and model complexity for impedance modeling. 

Number of poles na and zeros nb of the FO models na = 4 
nb = 4 

na = 3 
nb = 3 

na = 2 
nb = 2 

na = 4 
nb = 0 

na = 3 
nb = 0 

na = 2 
nb = 0 

Cost function J as defined in (6) 5.1544 6.2547 5.6648 8.0844 7.3194 6.4329 

Based on the results in Table 2, the minimum value of the cost function J = 5.1544 is 
obtained for fourth-order models with nb = 4 and na = 4. To reduce the complexity of the 
impedance model, a simplified fractional-order transfer function was preferred with na = 
2 and nb = 0 and a corresponding J = 6.4329, 25% larger compared to the more complex 
fourth-order model. The final fractional-order impedance model has the following form: 𝑍ிை(𝑠) = ௕బ௔మ௦మ೜ା௔భ௦೜ା௔బ  (11)

The resulting fractional-order impedance model for patient 70 is given in the next 
equation and the validation with clinical data is indicated in Figure 2a: 𝑍ிை_௉଻଴(𝑠) = ଺ଽଶସଶ.଼଻∙ଵ଴షభమ௦య.భరఴା଻.ଷ଺∙ଵ଴షల௦భ.ఱళరାଵ  (12)

Figure 2 portrays the validation of the FO impedance models, similar to (12), for three 
other patients included in the database. Notice that the magnitude approximation is more 
accurate. The phase is highly corrupted by noisy data, especially at high frequencies. To 
be able to apply the system identification algorithm from Section 2, the clinical (initial) 
data were smoothened and filtered using the Matlab® programming tool. The plots in Fig-
ure 2, however, depict the raw data. 

 
(a) 

Figure 2. Cont.



Fractal Fract. 2024, 8, 539 10 of 22
Fractal Fract. 2024, 8, x FOR PEER REVIEW 10 of 22 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Examples of validation of averaged impedance FO model using averaged clinical data 
obtained with AnspecPRO (a) for patient 70; (b) for patient 3; (c) for patient 10; (d) for patient 25. 

3.2. The Fractional-Order Analgesia Model 
The ‘pain index’ (as a measure of nociception during anesthesia) is defined in what 

follows as a means to evaluate changes in the measured skin impedance due to variations 
in the progression rate of the opioid drug Remifentanil. Figure 3 shows the drug 

Figure 2. Examples of validation of averaged impedance FO model using averaged clinical data
obtained with AnspecPRO (a) for patient 70; (b) for patient 3; (c) for patient 10; (d) for patient 25.

3.2. The Fractional-Order Analgesia Model

The ‘pain index’ (as a measure of nociception during anesthesia) is defined in what
follows as a means to evaluate changes in the measured skin impedance due to variations in
the progression rate of the opioid drug Remifentanil. Figure 3 shows the drug progression
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rate over a period of 80 s for patient 70. Skin impedance was measured over this period
of time at every Ts = 5 s. To evaluate changes in the measured skin impedance due to
variation in the Remifentanil input, a fractional-order model as in (11) is estimated at each
sampling period. For the NM algorithm, the initial starting guess for the commensurate
fractional order in (11) is considered to be q* = 1.5, similarly to Section 3.1. At each sample,
the previous model is used as an initial guess. Table 3 includes the commensurate fractional
orders of the impedance model obtained using the optimization routine at each sampling
instant during the 80 s interval. After this point, the administered Remifentanil drug
remains constant and the commensurate fractional order q does not exhibit any significant
variations. From a control engineering perspective, it is assumed that the steady state has
been reached.
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Table 3. Commensurate fractional order at each sample for patient 70.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

q 1.63 1.62 1.56 1.53 1.53 1.54 1.55 1.54 1.52 1.54 1.56 1.58 1.58 1.57 1.55 1.54

A correlation between the Remifentanil input in Figure 3b and the commensurate
fractional order q in Table 3 and Figure 3a shows that an increase in the drug rate leads to
changes in q. Similar results are obtained for other patients under study, as indicated in
Figures 4–6. As such, the commensurate fractional order of the impedance q will be further
considered the ‘pain index’ and the output q(t) of the analgesia model. The input to this
model is the Remifentanil progression rate, denoted as Remi(t).
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As shown in Figures 4–6, there is a lack of data both in terms of quantity and quality,
with poor information signals available from the patient. As such, pharmacokinetic–
pharmacodynamic (PK-PD) compartmental models are difficult to be developed. The
compartmental modeling approach assumes the drug is intravenously applied to the blood
compartment and diffused in the muscle and fat compartments before reaching a hypo-
thetical effect site compartment. This final compartment represents the effect of the drug
on the nervous system [50]. Differential equations are used to model the pharmacokinetic
compartments [51,52]:

.
x1(t) = −(k10 + k12 + k13)x1(t) + k21x2(t) + k31x3(t).
x2(t) = k12x1(t)− k21x2(t).
x3(t) = k13x1(t)− k31x3(t)

(13)

where xi(t) are concentrations in the blood (central), muscle, and fat compartments and
kij are the drug transfer rates from the i-th to the j-th compartment. From a control engi-
neering perspective, the muscle compartment

.
x2(t) is a fast-acting compartment, which

is characterized in a simplified approach as a small, parasitic time constant compared to
the central compartment.

.
x1(t). In a controller design approach, this compartment can be

neglected, as its effect is minimal. The central compartment is responsible for the rise time
and rapid onset of the drug, whereas the fat compartment represented by

.
x3(t) is charac-

terized by very slow dynamics, which lead to a sluggish effect close to the steady-state
value. From this point of view, in control engineering, the muscle and fat compartments
bring little information on the overall dynamics, with the main dynamics generated by the
blood compartment. Thus, the integer-order model in (13) can be simplified to a first-order
transfer function, with time constant τ1.

The effect site compartment is modeled by the following differential equation:

.
xe(t) = −k0exe(t)− k1ex1(t) (14)
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where ke0 is the drug metabolic rate and k1e is the drug transfer rate from the central
compartment to the effect site, which can be written as a first-order transfer function:

xe(t)
x1(t)

= −
k1e
k0e

1
k0e

s + 1
(15)

The dynamics of the integer-order model in (15) are mainly characterized by the time
constant τ2 = 1

k0e
.

The pharmacodynamic part of the model is mathematically represented by a nonlinear
Hill curve, which is ultimately reduced to a gain in steady state. This models the drug
diffusion from effect site to their final effect. With all of the above considerations, the
final simplified integer-order transfer function for DoA would be a damped second-order
system of the form:

HDoA(s) =
k

(τ1s + 1)(τ2s + 1)
(16)

As indicated in [26], for drug diffusion in the human body, a much better approach is
a fractional-order model. In what follows, such a fractional-order model is proposed with
two stable overdamped poles, no zeros and time delays:

HDoA(s) =
k

a1sα1 + a2sα2 + 1
=

q(s)
Remi(s)

(17)

where k is the steady-state gain between the drug progression rate Remi(s) as the input and
the nociception index q(s) as the output, with a1 and a2 as real coefficients, where α1 and
α2 are the fractional orders. The fractional-order model in (17) considers the “pain index”
(the fractional order of the impedance model q) as the output to be controlled, while the
input is the Remifentanil progression rate. The TRR algorithm presented in Section 2 is
used to estimate the parameters of (17), resulting in the following fractional-order model
for analgesia for patient 70:

HDoA70(s) =
−0.24

1087.9s1.84 + 99.38s0.89 + 1
=

q(s)
Remi(s)

(18)

Figure 3a presents the ‘pain index’ q as indicated in Table 3, as well as the validation
of the fractional-order model in (18). Similar results were obtained for the other patients
included in this study, as indicated in Table 4.

The performance measure used to evaluate the accuracy of the models is represented
by the Goodness Of Fit (GOF), defined as follows:

GOF = 100·

1 −

√
n
∑

i=1

(
qexp(i)− qsim(i)

)2

√
n
∑

i=1

(
qexp(i)− qmean(i)

)2

 [%] (19)

where qsim is the simulated model output from (17), qexp is the commensurate fractional
orders of the impedance model computed at each sample i and qmean is their mean value.
Figures 4–6 show the validation of the fractional-order models (17) for three other patients
included in the study. In these cases, the best GOF was obtained, according to Table 4.
The performance measure GOF in Table 4 is similar to that obtained in [12] for different
analgesia models. The computed Integral of Squared Error (ISE) is also indicated in Table 4.
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Table 4. Estimated parameters of the fractional-order analgesia models for all patients under study.

Patient No. K a1 a2 α1 α2 ISE GOF [%]

3 −0.636 14,518 105 1.9 0.89 0.006 35.86

10 −0.33 21,699 753 2 1.16 0.049 26.81

14 −0.245 12,650 285 1.95 1.09 0.023 23.98

21 −0.84 8500 245 1.86 0.88 0.135 12.77

24 −0.525 22,445 335 1.88 0.94 0.012 53.52

25 −0.7 11,003 130 1.79 0.87 0.025 18.48

33 −0.45 7800 280 1.93 1.06 0.018 24.32

35 −0.715 3166.5 124.21 1.83 0.84 0.186 12.59

38 −0.8 3961.4 309.46 2 1.15 0.369 5.64

39 −0.11 1380.6 360.43 1.81 1.1 0.002 2.39

41 −0.33 12,361 785.42 2 1.26 0.192 4.86

48 −0.18 9500 470 1.88 0.88 0.011 23.20

54 −0.09 16,742 287.53 1.86 0.99 0.001 16.30

56 −0.2 9171.8 172.19 1.88 0.87 0.043 4.24

59 −0.35 4063 22.16 1.95 0.69 0.019 23.66

63 −1.38 5575.2 450 1.67 0.86 0.1323 25.66

64 −0.9 10,400 340 1.93 0.87 0.024 17.11

66 −0.104 7573 50.534 1.99 0.78 0.018 21.88

70 −0.24 1087.9 99.38 1.84 0.89 0.011 24.95

Remark No. 1: The fractional-order model in (17) is a measure of reference of analgesia
related to the level of Remifentanil, considering a zero-nociception setting. The resulting
model is validated for increasing levels of Remifentanil, according to the Minto model. As
such, the proposed fractional-order model is a reference model for further investigation
related to the level of nociception.

Remark No. 2: The signal can be influenced by the administered hypnotic (Propofol).
However, during the period of time in which the data were used to derive the model, the
level of hypnotics is stable and considered to be constant in every patient.

Remark No. 3: No fractional-order transfer function models for DoA have been pro-
posed so far. Previous research reported in [15] mentions integer-order models for DoA
of the form (16), where a different nociception index is considered the output signal. The
settling times reported in [15] for the 19 patients are similar to those obtained in this
manuscript for the developed fractional-order models. The gains, however, differ due to
the different types of nociception index considered as a mean of evaluation the DoA.

3.3. Comparison with Integer-Order Analgesia Model

To validate the advantage of using fractional-order models, an integer-order one is
estimated for patient 24. In this case, the best fit was obtained according to the GOF in
Table 4. The obtained fractional-order model is given as follows:

HDoA24(s) =
−0.525

22445s1.88 + 335s0.94 + 1
(20)

An integer-order model was estimated using the same TRR algorithm and the same
constraints, leading to:

HDoA24_IO(s) =
−0.525

22200s2 + 430s + 1
(21)
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The validation of the two models with respect to the computed commensurate order
q is given in Figure 7. The GOF for the fractional-order model is computed as 53.52%,
whereas the GOF for the integer-order model is 39.94%. This shows that the fractional-order
model is more accurate, yielding an improvement of approximately 25% compared to the
integer-order model. Considering the quality and quantity of the experimental data, such
an improvement is desirable for a subsequent design of the controllers.
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3.4. A Simplified Preliminary Fractional-Order Controller Design for Analgesia

A Proportional Integral–Fractional-Order Proportional Derivative (PI-FOPD) con-
troller is designed for analgesia models as indicated in (17). Fractional-order controllers
are generalizations of their integer-order counterparts [32–34]. As such, they come with
increased flexibility and better closed-loop performance, especially in terms of robust-
ness [32–34,38–41]. The challenges of controlling the DoA, mathematically represented by
the fractional-order model in (17), reside in the parameter uncertainty and great variability,
as shown in Table 4. These parameter variations are due to patient variability [53,54]. A
controller designed for a nominal patient model needs to be robust to tackle these modeling
uncertainties. A PI controller is first designed to meet the requirements of zero steady-state
errors. The FOPD controller is designed in series with the PI controller to enhance the
stability of the control system, and reduce the overshoot and the settling time. The transfer
function of the dedicated PI-FOPD controller is given as follows:

HC(s) = kp

(
1 +

ki
s

)
(1 + kdsµ) (22)

where kp, ki and kd are the proportional, integral and derivative gains, and µ ∈ (0, 1)
is the fractional order of differentiation. To tune the parameters of the controller, a set
of three performance specifications is addressed. The first one refers to the settling time
requirement, addressed via a desired gain crossover frequency ωc:

|HOL(jωc)| = |HC(jωc)||HDoA(jωc)| (23)

where HDoA(jωc) is the frequency response of the patient model in (17) and HOL(jωc)
stands for the loop frequency response. The larger the ωc is, the faster the settling time
would be. The second performance criteria refer to the overshoot requirement. This is
mathematically addressed in the frequency domain using the phase margin (PM) equation:

∠HOL(jωc) = ∠HC(jωc) +∠HDoA(jωc) = −π + PM (24)
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Theoretically, the larger the PM is, the smaller the overshoot would be. A large PM
typically means a better stability of the closed-loop system as well. Finally, to address
patient variability in the model (in terms of gain variations), the iso-damping condition is
specified as a third design criterion:

d∠HOL(jω)

dω

∣∣∣∣
ω=ωc

=
d∠HC(jω)

dω

∣∣∣∣
ω=ωc

+
d∠HDoA(jω)

dω

∣∣∣∣
ω=ωc

= 0 (25)

To solve the system of three Equations (23)–(25), the Matlab® “fsolve” function is
used, which implements the Levenberg–Marquardt algorithm [55,56]. The nominal patient
model considered in this section for the design of the controller is patient 24 with the
fractional-order model given in (20). The imposed gain crossover frequency is ωc = 0.08
and PM = 70◦. For the nominal patient model in (20), the parameters of the PI-FOPD
controller were determined as follows: kp = 34.17, ki = 0.034, kd = 51.8 and µ = 0.63. The
Bode diagram of the loop transfer function for the designed controller and the nominal
model in (20) is given in Figure 8, clearly showing that the design specifications were met.
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Figure 9a,b shows the closed-loop simulation results for the pain index q for all patients
in Table 1, as well as the corresponding Remifentanil progression rate. The amplitude of
the pain index q was normalized for a more accurate comparison. The results in terms
of overshoot and settling time are indicated in Table 5. The results correspond to the
pharmacological properties of Remifentanil, with a rapid onset of action of approximately
1 min [57]. In some cases, the settling time is significantly less than 1 min and well above
5 min (more than 300 s), as indicated in Table 5. The overshoot for the nominal patient P24
is 5% and remains small (maximum 10%) for all other patients included in this case study.
The Remifentanil maximum drug rate indicated in Figure 9b corresponds to experimental
data, as seen in Figures 4–6, for example. However, the drug rate is maintained at a higher
level (similarly to [54] for a longer period of time, which leads to a faster settling time for
some patients (less than 60 s, as indicated in Table 5). The steady-state value of Remifentanil
drug rate is approximately 0.4 µg/kg/min, corresponding to clinical data [58,59]



Fractal Fract. 2024, 8, 539 18 of 22

Fractal Fract. 2024, 8, x FOR PEER REVIEW 18 of 22 
 

 

 
(a) 

 
(b) 

Figure 9. Closed-loop simulation results (a) normalized output q for all patients in Table 1, (b) cor-
responding Remifentanil drug input. 

Table 5. Performance indexes for the closed-loop simulation results obtained with the proposed 
fractional-order controller. 

Patient No. Overshoot Settling Time (s) 
24 5% 61 
3 10% 43 

10 7% 68 
14 8% 63 
21 0% 68 
25 4% 33 
33 5% 36 
35 0% 30 
38 6% 28 
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sponding Remifentanil drug input.

Table 5. Performance indexes for the closed-loop simulation results obtained with the proposed
fractional-order controller.

Patient No. Overshoot Settling Time (s)

24 5% 61

3 10% 43

10 7% 68

14 8% 63

21 0% 68

25 4% 33

33 5% 36
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Table 5. Cont.

Patient No. Overshoot Settling Time (s)

35 0% 30

38 6% 28

39 0% >300

41 8% 45

48 0% >300

54 0% 105

56 0% 168

59 10% 28

63 0% 97

64 3% 94

66 8% >300

70 0% >300

4. Conclusions

Extensive research is now being conducted on automatic control in general anesthesia,
with an emphasis not just on hypnosis modeling and control but on a comprehensive
strategy that also addresses hemodynamic parameters, analgesia, etc. Due to a lack of
specialized monitoring devices, little research has been carried out on nociception and how
opioid drugs affect it. As a result of some novel devices measuring skin impedance or
conductance, the idea of modeling the Depth of Analgesia is starting to gain momentum.
Various impedance models have been proposed, but most of them have been developed
in the absence of opioid drug. A recent paper has proposed the use of a pain index to
evaluate nociception in patients relative to the administered opioid drug rates. In this
paper, a new pain index is defined and validated on clinical available data from patients
undergoing surgery. Then, this pain index is considered a reference measure for the Depth
of Analgesia and its dynamics are correlated to those of the administered Remifentanil in
the absence of nociception. The reference model can be considered a calibration model
to level the intensity of nociception. Fractional-order models are used to mathematically
describe the correlation between the pain index and Remifentanil infusion rates. Standard
optimization routines are selected to estimate the parameters of these fractional-order
models. Clinical data from 19 patients are used to determine individualized fractional-
order models. One of these models is randomly selected as the nominal model and used in
the design of a fractional-order controller. The simplified controller manages to achieve
good closed-loop performance corresponding to clinical requirements. Improved closed-
loop performance despite patient variability could be obtained with a controller tackling
more performance specifications. Further research to enhance the closed-loop robustness
of the designed controller is required, as well as a decision on the micropumps and the
practical implementation of the control system.
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