On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis
Abstract
:1. Introduction
2. Preliminary Concepts
3. Main Results
3.1. Multiplicative Fractional Simpson’s Type Inequalities
3.2. Multiplicative Fractional Newton’s Type Inequalities
4. Numerical Examples and Their Computational Analysis
5. Applications to Quadrature Formula
5.1. Applications to Simpson’s Formula
5.2. Applications to Newton’s Formula
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dwilewicz, R.J. A short history of Convexity. Differ. Geom. Dyn. Syst. 2009, 11, 112–129. [Google Scholar]
- Mitrinovic, D.S.; Pecaric, J.; Fink, A.N. Inequalities Involving Functions and Their Integrals and Derivatives; Springer Science Business Media: Berlin/Heidelberg, Germany, 1991; Volume 53. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard type inequalities for interval valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
- Latif, M.A. Inequalities of Hermite–Hadamard type for functions whose derivatives in absolute value are convex with applications. Arab. J. Math. Sci. 2015, 21, 84–97. [Google Scholar] [CrossRef]
- Özcan, S. Some Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions. Int. J. Math. Model. Comput. 2019, 9, 253–266. [Google Scholar] [CrossRef]
- Robertson, E.F.; Hadamard, J. MacTutor History of Mathematics Archive; University of St Andrews: St Andrews, UK.
- Mandelbrojt, S.; Schwartz, L. Jacques Hadamard (1865–1963). Bull. Am. Math. Soc. 1965, 71, 107–129. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Aktan, N. On the generalization of some integral inequalities and their applications. Math. Comput. Model. 2011, 54, 2175–2182. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. On Hermite–Hadamard type integral inequalities for n-times differentiable m- and (α,m)-logarithmically convex functions. Filomat 2016, 30, 3101–3114. [Google Scholar] [CrossRef]
- Breckner, W.W. Stetigkeitsaussagen füreine Klasse verallgemeinerter konvexer funktionen in topologischen lin-earen Räumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Pycia, M. A direct proof of the s-Hölder Contin. Breckners-Convex Functions. Aequ. Math. 2001, 61, 128–130. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Rangel-Oliveros, Y.; Nwaeze, E.R. Simpson’s type inequalities for exponentially convex functions with applications. Open J. Math. Sci. 2021, 5, 84–94. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Appl. Math. Comput. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Grossman, M.; Katz, R. Non-Newtonian Calculus; Lee Press: Pigeon Cove, MA, USA, 1972. [Google Scholar]
- Bashirov, A.E. On line and double multiplicative integrals. TWMS J. Appl. Eng. Math. 2013, 3, 103–107. [Google Scholar]
- Ali, M.A.; Abbas, M.; Zhang, Z.; Sial, I.B.; Arif, R. On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Sarikaya, M.Z.; Zhang, Z. Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones 2021, 40, 743–763. [Google Scholar] [CrossRef]
- Zhan, X.; Mateen, A.; Toseef, M.; Ali, M.A. Some Simpson- and Ostrowski-Type Integral Inequalities for Generalized Convex Functions in Multiplicative Calculus with Their Computational Analysis. Mathematics 2024, 12, 1721. [Google Scholar] [CrossRef]
- Chasreechai, S.; Ali, M.A.; Naowarat, S.; Nonlaopon, T.S.K. On Some Simpson’s and Newton’s Type Inequalities in Multiplicative Calculus with Applications. AIMS Math. 2023, 8, 3885–3896. [Google Scholar] [CrossRef]
- Ali, M.A. On Simpson’s and Newton’s type inequalities in multiplicative fractional calculus. Filomat 2023, 37, 10133–10144. [Google Scholar] [CrossRef]
- Bai, Y.M.; Qi, F. Some integral inequalities of the Hermite-Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. 2016, 9, 5900–5908. [Google Scholar] [CrossRef]
- Budak, H.; Ozcelik, K. On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes 2020, 21, 91–99. [Google Scholar] [CrossRef]
- Fu, H.; Peng, Y.; Du, T. Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions. AIMS Math. 2021, 6, 7456–7478. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Dragomir, S.S. Further inequalities for log-convex functions related to Hermite-Hadamard result. Proyecciones 2019, 38, 267–293. [Google Scholar] [CrossRef]
- Khan, S.; Budak, H. On midpoint and trapezoidal type inequalities for multiplicative integral. Mathematica 2017, 59, 124–133. [Google Scholar]
- Peng, Y.; Özcan, S.; Du, T. Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals. Chaos Solitons Fractals 2017, 183, 114960. [Google Scholar] [CrossRef]
- Zhang, X.M.; Jiang, W.D. Some properties of log-convex function and applications for the exponential function. Comput. Math. Appl. 2012, 63, 1111–1116. [Google Scholar] [CrossRef]
- Daletskii, Y.L.; Teterina, N.I. Multiplicative stochastic integrals. Uspekhi Mat. Nauk 1972, 27, 167–168. [Google Scholar]
- Bashirov, A.E.; Riza, M. On complex multiplicative differentiation. TWMS J. Appl. Eng. Math. 2011, 1, 75–85. [Google Scholar]
- Pecaric, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions. Acta Math. Sci. Engl. Ser. 2015, 35A, 515–526. [Google Scholar]
- Bashirov, A.E.; Kurpınar, E.M.; Özyapıcı, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Abdeljawad, T.; Grossman, M. On geometric fractional calculus. J. Semigroup Theory Appl. 2016, 2016, 2. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
s | Left Inequality | Right Inequality |
---|---|---|
0.1 | 0.5711 | 1.3142 |
0.2 | 0.5988 | 1.3232 |
0.3 | 0.6299 | 1.3346 |
0.4 | 0.6616 | 1.3485 |
0.5 | 0.6948 | 1.3651 |
0.6 | 0.7297 | 1.3844 |
0.7 | 0.7664 | 1.4068 |
0.8 | 0.8049 | 1.4326 |
0.9 | 0.8453 | 1.4620 |
1 | 0.8878 | 1.4958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateen, A.; Özcan, S.; Zhang, Z.; Bin-Mohsin, B. On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis. Fractal Fract. 2024, 8, 541. https://doi.org/10.3390/fractalfract8090541
Mateen A, Özcan S, Zhang Z, Bin-Mohsin B. On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis. Fractal and Fractional. 2024; 8(9):541. https://doi.org/10.3390/fractalfract8090541
Chicago/Turabian StyleMateen, Abdul, Serap Özcan, Zhiyue Zhang, and Bandar Bin-Mohsin. 2024. "On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis" Fractal and Fractional 8, no. 9: 541. https://doi.org/10.3390/fractalfract8090541
APA StyleMateen, A., Özcan, S., Zhang, Z., & Bin-Mohsin, B. (2024). On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis. Fractal and Fractional, 8(9), 541. https://doi.org/10.3390/fractalfract8090541