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Abstract: In this article, we develop multiplicative fractional versions of Simpson’s and Newton’s
formula-type inequalities for differentiable generalized convex functions with the help of established
identities. The main motivation for using generalized convex functions lies in their ability to extend
results beyond traditional convex functions, encompassing a broader class of functions, and providing
optimal approximations for both lower and upper bounds. These inequalities are very useful in
finding the error bounds for the numerical integration formulas in multiplicative calculus. Applying
these results to the Quadrature formulas demonstrates their practical utility in numerical integration.
Furthermore, numerical analysis provides empirical evidence of the effectiveness of the derived
findings. It is also demonstrated that the newly proven inequalities extend certain existing results in
the literature.

Keywords: Hermite-Hadamard Inequalities (HHIs); Riemann-Liouville fractional;, Simpson’s
inequality; Newton’s inequality; multiplicative calculus; multiplicatively convex function;
s-convex function
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1. Introduction

Convexity is a basic notion in mathematics, notably in mathematical analysis, calculus,
and optimization. The origins of convexity can be traced back to ancient civilizations, where
early geometric concepts were first explored. Notably, mathematicians like Euclid (300 BC)
delved into the properties of convex shapes such as circles and triangles. However, the for-
malization of convex functions emerged much later. The study of convex functions began
to take shape during subsequent periods, with notable contributions from mathematicians
such as Leonhard Euler (1707-1783) and Johann Radon (1887-1956). Euler, in particular,
investigated the properties of convex curves. Mathematically, a convex function is defined
as follows:

Q(gwr + (1 = g)an) < ¢O(w1) + (1 -6)Q(w2), V¢ € [0,1]. 1)

The systematic exploration of convex functions gained momentum as the field of convex
analysis developed. Mathematicians such as Hermann Minkowski (1864-1909) and Con-
stantin Carathéodory (1873-1950) laid the foundational groundwork in convex geometry
and optimization theory. Today, convex optimization is a fundamental component of
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applied mathematics, with applications across diverse fields including engineering, eco-
nomics, computer science, and machine learning. For more details about the history of
convexity, one can visit [1,2]. Numerous researchers have been exploring the inequalities
related to convexity from various perspectives; see [3-5] and the references listed therein.
Hermite-Hadamard Inequalities (HHIs) represent one of the most significant mathematical
inequalities involving convex mappings. For convex functions, HHI is stated as follows:

1 w2 Q O
Q<w1 -;w2> < g /601 Q(c)de < M )

The inequalities (2) are reversed when a function is concave. The interested reader can
visit [6-11] for more detials about inequality (2).

In [12], Breckner was the first mathematician to introduce a generalized convex func-
tion in 1979. Pycia was the first mathematician to verify Breckner’s results in 2001 [13].
The s-convexity enables a more precise examination of the function’s behavior, accelerating
the search for optimum solutions. The s-convexity in the second sense is negotiated in [14].
The s-convexity is used in a variety of domains, including machine learning, optimization
theory, and finance. We also observe in the main section that the results obtained by s-
convexity are much better than those obtained by convexity. Secondly, s-convexity is the
generalization of a convex function, so we can obtain the results for convex functions by
using s = 1 in the results of s-convex functions. A function is said to be s-convex if the
following conditions hold:

Qgwr + (1 = g)wr) < ¢*Q(wr) + (1 -6)°Qwa), YV wy, w2 € [0,00), g € [0,1],  (3)

with s € (0,1]. When s = 1, the aforementioned inequality (3), defined on [0, o), reduces
s-convexity to ordinary convexity. Dragomir et al. [15] presented Hermite-Hadamard’s
type inequalities (HHIs) for s-convex functions in the second sense as follows:

s—1n [ W1+ w2 1 /“’2 Q(w1) + Q(wo)
Q < Q < AT RARR)
2 ( > ) Sprasnprnll (¢)dg < 1 4)

The Simpson-type inequality is defined as follows:

Theorem 1. Consider a function Q) defined on the interval [wq,ws] C R. If Q) is four times
continuously differentiable on (w1, wy), then

‘2(0@1) +4Q(“’1+‘”2> +Q(w2)> - 1/“’29(9—)@-‘ < MHQ(4)HOO’ 5)

2 Wy — W1 Jun 2880

where [[Q(*)][ |, = supcey

oy [P (©)] < oo

This inequality provides an error bound for Simpson’s rule by comparing the actual
integral of () over [wy, wy] to the Simpson’s rule approximation. Readers can find some
recent interesting findings regarding inequality (5) in [16,17].

Grossman and Katz introduced non-Newtonian calculus between 1967 and 1970 by
modifying the classical calculus of Leibniz and Newton. For more details on its concepts,
see [18]. Bashirov et al. [19] fully described the ideas of multiplicative calculus appended
to exponential functions, multiplicative derivative, and integral. Though less widespread
than traditional calculus, it can be especially useful in fields like economics and finance.
Multiplicative calculus is particularly useful for modeling systems that involve complex
growth or decay. Unlike traditional calculus, which often relies on simple, linear approx-
imations, multiplicative calculus uses nonlinear approximations, allowing it to capture
more intricate interactions within nonlinear systems. This makes it especially valuable in
fields like finance and economics, where both positive and negative numbers are frequently
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involved. The key advantages of multiplicative calculus are its ability to model complex
growth patterns, handle both positive and negative numbers, and accurately represent
exponential changes.

Initially, a multiplicative version of HHI was proved by Ali et al. [20], which is
as follows:

Theorem 2 ([20]). For a positive and multiplicative convex function on interval (w1, w], the fol-
lowing inequalities hold:

o5 < ([*0)*) ™ < o)

w1

After the seminal work by Ali et al. [20], researchers have extensively explored integral
inequalities through multiplicative calculus. Ali et al. [21] derived bounds for Simpson’s
and Ostrowski’s type inequalities for multiplicative integrals. Zhan et al. [22] extended
these results to generalized convex functions and provided computational analyses to
validate their findings. Chasreechai et al. [23] established Simpson’s and Newton’s type
inequalities in the context of multiplicative calculus. Ali [24] investigated the fractional
version of Simpson’s and Newton’s type inequalities. Bai and Qi [25] explored HHI for
multiplicative convex functions. Budak et al. [26] presented multiplicative fractional HHI.
Fu et al. [27] addressed integral inequalities involving multiplicative tempered fractional
integrals. Chen and X. Huang [28] established Simpson’s type inequalities for s-convex func-
tions via fractional integrals. Dragomir [29] discussed Hermite-Hadamard type inequalities
associated with multiplicative convex functions. Khan and Budak [30] investigated mid-
point and trapezoidal type inequalities for multiplicative integrals. For further details,
references, and comprehensive reviews, readers can see [31-34].

Motivated by ongoing research, this work developed a fractional version of Simpson’s
and Newton’s type inequalities using a multiplicatively generalized convexity of functions.
These inequalities allow us to estimate error bounds for Simpson’s and Newton'’s formulas
in multiplicative calculus without relying on higher derivatives, which may be non-existent
or difficult to determine. The s-convexity offers a broader range of bounds compared to
convex functions, enhancing the robustness and effectiveness of these integral inequali-
ties. We present numerical examples and computational analysis to validate these new
inequalities and demonstrate their applicability to quadrature in multiplicative calculus.
Multiplicative calculus is also a modern calculus with extensive applications in banking
and finance, underscoring its study’s importance.

The structure of the article is outlined as follows. An overview of multiplicative convex
functions is given in Section 2. Section 3 introduces our primary findings on multiplicative
fractional Simpson- and Newton-type integral inequalities for s-convex functions in the
second sense. Section 4 includes numerical examples and analysis to validate our results.
Section 5 discusses applications to quadrature formulas. Finally, the concluding remarks
and proposed future research directions are presented in Section 6.

2. Preliminary Concepts

In this section, we revisit some key concepts of multiplicative calculus and discuss
certain inequalities. It is important to note that multiplicative calculus specifically focuses
on positive functions. This means it deals exclusively with functions where all values are
greater than zero, excluding negative values. One of the most important concepts is the
multiplicative convex function, which may be defined as follows.

Definition 1 ([35]). A function Q) : I C R — [0, 00) is said to be multiplicative convex if the
following condition holds:

Q(cwr + (1—¢)wy) < [Qw))]¥[Q(w2)]' ¢, forall wy,wy € Iand ¢ € [0,1].
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Based on Definition 1, we can conclude that
O(cwr + (1 - g)wz) < [Q(wy)][Q(w2)]' ¢ < 6Q(wr) + (1 = ¢)Qwn).

Definition 2 ([36]). A function () : I C R — [0, 00) is said to be multiplicative s-convex in the
second sense if the following condition holds:

Q(cwr + (1 - ¢)ws) < [Uw1)]* [Uwx)] Y, for all wi,wy € Tand ¢ € [0,1].
Remark 1. When s = 1, Definition 2 simplifies to Definition 1.

In 2008 [37], Bashirov gave the new concept of multiplicative operators termed
*integral, denoted by [ 51 2(Q(g))*. The usual integral is represented as | 51 > ()(g)dg.

The function Q) is multiplicative integrable on [wy, wy], if Q) is positive and Riemann
integrable on w1, w;] and

/w2(0<%)>d;4 _ plop (Q(e))de.

w1

Definition 3 ([37]). The multiplicative derivative of a positive function Q) is as follows:

1
a Q) . (Q(c+h)\"
=0"() =1 — ] .

e (@ =070 = Jim (F5 )

If Q) has positive values and is differentiable at ¢, then O)* exists, where (Y* relates to the usual

derivative (Y, which is as follows:

Q*(c) = e[an(g)]/ — 00 .

Definition 4. The multiplicative second derivative of a positive function () is as follows:

! "

O () = el (@] — (N0
Here, (In Q)” (¢) exists because Q) (¢) exists. If we iterate this procedure n-times, we
affirm that if () is a positive function and its derivative of nth order exists at ¢, then Q*"(¢)

exists:
Q" (g) = e(an)"(g), n=123....

Lemma 1 ([37]). Suppose Q) : [wy,w2] — R is multiplicative differentiable and suppose ¥ :
[w1, wa] — R is differentiable so the function QY is multiplicative integrable, then

O (o @) d@:Q(wz)‘Y(“’Z). 1
NGO 0™ o (o™ )

w1

do”

Definition 5 ([38,39]). For Q) € Lq[wy, wy], the Riemann—Liouville integrals ]2 Qand ] Q) of
1 2
order « > 0 with wy > 0 are defined as follows:

@

Jor Q@) = F(llx)/ (@—¢)" '), @ > wi,

w1

and , 0,
I, 000) = i [, 6@ M0, @ < wn,

@
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respectively [38,39]. Here, I'(a) denotes the well-known Gamma function. By setting & = 1, then
Definition 5 reduces to the classical integral.

In [40], Abdeljawed and Grossman presented the following multiplicative Riemann—
Liouville fractional integrals.

Definition 6 ( [40]). The multiplicative Riemann—Liouville fractional integrals (,, , I3 Q) (left) and
«lL,, Q) (right) of order o € C, Re(a) > 0 with wy > 0 are defined as follows:

¥ (noQ) ) (@)

w FO(@) = e( wi’ > )
% (InoQ)

I Q@) = g o) @)

Definition 7 ([40]). The multiplicative Riemann—Liouville fractional derivatives ., , D{Q) (left)
and «Dg, Q) (right) of order a € C, Re(a) > 0 with wy > 0 are defined as follows:

oy, DAO@) = el i (o) @),

(*fo,z_ Q) ) = 6<Dj’z (lnoQ)> (w).

One can consult [40] for more details about the multiplicative fractional calculus.
The fractional version of the Hermite-Hadamard type inequalities (HHIs) was presented
by Sarikaya et al. in 2013, stated as follows:

Theorem 3 ([41]). Let Q) : [wy, w2] C R — R be a positive function with Q € Ly[w1, wy] and
0 < wq < wy, then the following double inequalities hold:

w1+ w I(a+1)
Q( 12 2)SZ((Uz—wl)

Q(w1) + Q(ws)
2

120 + 12, 00| <

Theorem 4 ([26]). Let Q) : [wy,wp] C R — R be a positive function with QO € Lq[wy, wo)
and 0 < wq < wy, then following double inequalities holds for multiplicative Riemann-Liouville
fractional (RLF) integrals:

Q(wl—zﬂuz) < 2(1;()’;‘1'31) {wﬁlﬁﬂ(wz).*lff,rﬁwl} <4/ Q(w1)Q(wy).

3. Main Results

In this section, we establish the multiplicative versions of Simpson’s and Newton’s
type inequalities using fractional integrals for multiplicative generalized convex functions.
To derive our main inequalities, we rely on the succeeding lemmas:

Lemma 2. Let Q) : [wy, wy] C R — R be a multiplicative differentiable function on (wq, ws),
with wy < wy. If OF is a function integrable in the multiplicative sense, then the following
identity holds:
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o) (a(=52))]

T(a+1)
2(wy~wy)

1

[*I$+Q(w).wz I,‘fQ(w)]

wy—wq |

1 ([0 e+ (- g “"ga))dg> ®

_ </0%<{Q*(gw2+(l—g)w1)} (g“—6)>d€> : % (/02

Wy —w wp —wq

’ (EGQ*(“‘“ (=) (ga_g)yg)z " (/11([0*(% ¥ (l—Q)wz)](g_ga)>d€> :

2

Lemma 3. Let Q) : [wy, wy] C R — R be a multiplicative differentiable function on (wq, ws),
with w1 < wy. If OF is a function integrable in the multiplicative sense, then the following
identity holds:

Jocen[o(22)] [o(222)] o]

{*12‘,;0(@)-% Ii‘Q(co)} )
([ (meomam] )°) (1 ool ))
) </ ([0 om0 - cpon) (Myg) o </ ([0 (6en + (1= o) Gg“))dg) -
) </§1<{Q*(ng+(15>wl>} (gag)>d€>“’z“’l x <./§1({0*<gwl T <1g>wz>}<§e“))dg> o %

3.1. Multiplicative Fractional Simpson’s Type Inequalities

In this part, we proved Simpson’s type inequalities for multiplicative generalized
convex functions via Reimann-Liouville fractional integrals by using Lemma 2.

Theorem 5. Assuming that the conditions outlined in Lemma 2 hold, if Q* is a multiplicative
s-covex function in the second sense on [wy,ws), for some fixed s € (0,1], then the following
Simpson’s type inequality holds:

Qw1 Q(wn) [ 1542)]° :
{ : F(a+1]) (8)

Q(@).,,; I:;‘Q((D)} Hez=en)

ItX
[* wf
<0 (wp=w1) (B () +8p (2,5) +E3 (1,8)+Ey (5) )

(w1) O (wy)] ’ ,

where
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,Wl)(ﬂ‘w?ﬁﬁrﬁrl <a2a+c+2+6 T (6(s+1)— 2“(0(—}-5-&-1))) ln(l)
= , 0<a < =8¢,
Ei(a,s) = (s+1)(ats+1) in(1)
1\&, ) S/ 310 ) ln(%) 2
e
32 (oc+s+l - sTl) o> NOK
o 1 1/« 1/a s+1 1Va s B
L >_<a(1 ) (6 ) (6 1) 6(s+1)By (e +1, s+zl))
Bo(a,s) = +(6*1/a) (6( 1/0c> ) (s+1)Bgra(@+1,54+1) =251 -1, O<“§1n(§)'
22 In()
B%(DC+1,S+1)_12(S+1)/ o> n(g)'
5(1727571) 1 In (g)
- N 6(”1)#“ g e 0<as=qny
B9 = (07 o s (97 F ) (O F 2w s
6(s+1) (ats+1) ;o> (1)’
F(a+1)1"(s+1) 50—s-2 (5)
*W+Bl(“+1s+1)+3(s+1) O<¢x§ln(§),
2 (24 (3" -2 (=) ") +27)
=4\&,8) = T (a+1)T(s+1)
(o) 12(s+1) T Terary T Bl (a —;(15)5 +1)
—2B,\1m(a+1,5+1), x> el
OB ) (1)

Proof. From Lemma 2 and using the multiplicative s-convexity of (* after taking the
modulus property in (6), we have

oo [a(=52)] ]’

‘1 (Q (gwr + (1 —g)un )‘dg)]

o)

)
In (Q (gwr + (1 —¢)wn )‘dg)
) )

g"‘—%‘ln( (cwr + (1 —g)wn ))dg>

‘ln (Q* (w1 + (1 —

In ( (g +(1—¢

+wz;w1 (/O% ga_% ’11‘1(0 (w1 +(1—g (,Uz)‘dg>
+w2;a}1</; ,x_g’m(g (gwa + ( 1—gw1)‘dg>
Sy s
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1
wy — w 2 1 * *
< exp % (/o - 6' (gs InQ (wp) +(1-¢)°InQ) (cul))dg>
1
Wy — wi L B * _
+2 (/0 ¢ 6‘((_; IO (wr) + (1 — ¢ InQ( dg>
Y “—§(Sln0*(w) +(1-¢) In0 (@) )
3 1 S 6 9 2 ¢
_ 1 .
42 (/ g”‘—S‘(gsan (w1) + (1 =€) InQ( dg)}
2 1 6
=exp {a& ;wl (El (a,8) In QY (w2) + Ep(a,8) InQ (w1)>
2 (B (@) IO (1) + E(a,5) In Q) (w3))
©2 ;wl (Eg,(tx,s) InQ (wz) + E4(a,5) In QY (wl))
“2 ; @1 (33(a,s) InQ (w1) + E4(a,s) an*(w2))]. (10)
By simple computation, we have
2 1
o s
/0 ¢ —glods
AallGeetl) o) (pasi2 4655 (6(s 1) 2“(a+s+l))> In(?)
O<a< 0
= (s+1)(ats+1) ’ ~ In(3)’ (11)
1p-s-2 32l% 1 a>1“(%)
atstl ~ s+1 )7 ln(%)’
2 1
/O ¢t - 6’(1 —¢)’dg
1 1/’ 4 (g/ s (e 1) _
e a(l 6 “) (617 —2)6~ " (612 1) 6(s+1)B1(tx—|—1 s+§3)
o —1/a) —1/a _ < 6
_ +(6 ) ( ( ) 1) (s+1)Bguu(a+1,s+1)—275"1-1, 0<oc(1_) e (12)
_n—s In(¢
B%(zx+1 s+1)— 1(5 L a>ln(%),
1 5
114 S
/% ¢t —glode
5(1—275°1) 1 In(3)
G VR s T 0<asiay
= 76(s+1)<(g)7“§‘+1 PR 1>+5a((g)*%71>+5<(g) e 1>(tx+s+1)+s+l n(3) (13)
o> —0
6(s+1)(a+s+1) ’ in(1)’
Hew 2 1 °d
/% ¢" — 2|1 —¢)dg
T(a+1)T(s+1) 5052 n(3)
_W+B%(rx+1s+l)+ 3T 0<1x§1n(§),
5(22*%((3)1/“721/*) (1-(9)") +2*>‘)
= [(a+1)I(s+1) (14)
2(41) + “Foraray T B+ 1s+1)
—2B, . -1a(a+1,5+1), on > m( )

(3)

In(3)’
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Hence,

e [o(232)]] %

(wz—wl)(El(zx,s)+32(Da,s)+53(a,s)+54(a,s))
Ty | S [ (w1) Q2 (w2)] :

Z(w —w )
{*%Q(@).wz Ii‘Q((D)] 2

1

(15)
Using equality (11) to (14) in inequality (10), we obtained (15), thus completing the proof. [
Remark 2. By setting o = s = 1in (8), then inequality (8) reduces to Theorem 4.1 in [23].
Remark 3. By setting s = 1 in Theorem 5, then inequality (8) reduces to Theorem 4.1 in [24].

Remark 4. By setting a = 1 in inequality (8), then we obtain Theorem 6 in [22].

Corollary 1. By taking Q(w;) = Q(%) = Q(wy) in (8), then we have the following
midpoint-type inequality:

+
(@) ( W1y 5 &2 ) (wp—w1) (B (a,5)+Ep (a,5)+E5 (a,8)+E4 (ws))

[*IZ;Q(‘D)'w; L’fQ(w)]

| S [ (w1) Q" (w2)] 2 . (16)

2(wp-wy)

Remark 5. By setting & = s = 1 in Theorem 5, then we have the following inequality:

wiFw, Syt
( . Zd))l < [0 () (wp)] =, a7)
[22(0(@)) @) =

Remark 6. Inequality (17) provided better bounds for midpoint-type inequalities in multiplicative
calculus compared to those established in ([30], Theorem 3.3).

Theorem 6. Assuming that the conditions outlined in Lemma 2 hold, if (In(QY*))1 is multiplicative
s-covex in the second sense on [w1,ws), for some fixed s € (0,1], and q > 1, then the following
Simpson’s type inequality holds:

1
418
Q(w1)Q(wy) |Q 252 ] wp—w
[ [ ( )} < (O (wn) Q" (wp)] 267 ORI EAR] g

7

T(at1)

2(wy —w
{*%Q(c@).wzzgn((@)} 2]

1

where

Mi(wp) = (/O
rp = (f

1,1 _
and?—l—a—l.
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Proof. Using the Holder’s inequality in (9), we have

[Q(%)Q(wz)[ﬂ(wlng)r} ‘

I'(a+1)

[*mmw). m(w)] o)

2%)”{(/ In(€" (w2 + <1g>w1>)]ng)q

)

(/ ’ln< gw1+(1—€)Wz))‘ng>é}

Wy — w1
2

+(/f

_|_

2

(Al

5
7%

W) {()

1n(o*(gw1 (- g)wz)) \ng) ! H

(0 w2 + (1= o)) | ')

(19)

where % + % = 1. Since (In(Q*))7 is multiplicatively s-convex in the second sense on
[w1, W3], then we obtain

and

/‘ln (g2 + ( 1—§)w1))’ng

g/o (¢ (IO (w2))T + (1 —¢)° (InQ* (wy)) 7] dg

1+s
[ im0 (cn + (1 chen)) '

1

< /02 [6°(In Q" (w1))T+ (1 - ¢)° (In QY (w2)) ] dg

275 1 (In O (w2))T + (1 -275"1) (InQ* (wy))*

275 1 (InO* (w))T + (1 =275 (InQ* (wy))1

[

2

< [ [ 0n 0 (@) + (1 - ¢)* (im0 (1)) dg

2

1+s

In(Q (gwa + (1 - g)en) )| '

1+s

[

2

< [l tn e @) + (1 - ) (n O ()] g

2

(0 (gwn + (1 - g)wn) )| 'deg

_ (=277 (In 0% (@) + 27 (In O (wp))”

1+s

(1-27"H(InQ*(w)) T+ 275 H{In Q* (wy))1

(20)

(21)

(22)

(23)
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Using (20)—(23) in (19), we obtain

o [o(=g)]| -

< [Q*(wl)ﬂ*(WZ)] 2(s+1) [Al("‘fp)JFAZ("‘IP)].

I'(a+1)

" 2(wp—w1)
[*nga(w)% 2 Q(w)]

This completes the proof. [

Remark 7. By taking s = 1 in inequality (18), then we obtain Theorem 4.3, which is proved by Ali
in [24].

Remark 8. By taking a« = 1 in inequality (18), then we obtain Theorem 7, which is proved by
Zhan et al. in [22].

Remark 9. By setting & = s = 1 in inequality (18), then we obtain the following inequality:

1

o [a(252)]"]’
(@) )=

2 1+2P+1) %
(wa—w1) I pa)
<( Q*(wl)Q*(w2)> @

This inequality is established by Chasreechai et al. in [23].

Corollary 2. By taking Q(w;) = Q(%) = O(w») in inequality (24), then we have the
following midpoint-type inequality:

Q‘jfmifgl < Q“wﬂﬁwm)wr“%$f$3y
;12 O(@))4@) @2

3.2. Multiplicative Fractional Newton’s Type Inequalities

In this part, we proved Newton's type inequalities for multiplicative generalized
convex functions via Reimann-Liouville fractional integral by using Lemma 3.

Theorem 7. Assuming that the conditions outlined in Lemma 3 hold, if (0" is multiplicative s-convex
in the second sense on w1, ws), for some fixed s € (0, 1], then we have the following inequality:

[ﬂ@ﬂk&“?@ﬂﬁﬂ@@%ﬂfﬂ@gf

T(at+1)
2(wp—w1)

{*Ig+0(co).w2 Ifﬂ(w)}

1
(wp—wr) (R (5)+ Ry (a,5) +R5 (1,5) + Ry (a,5) + R (2,5)+Rg (w,5))

< [0 (@) (w2)] ? , (25)

where
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Ri(w,8) =

Ro(a,s) =

Rs(a,s) =

Ry(a,s) =

Rs(a,s) =

Re(a,s) =

3(a+s+1
- At o 1<2a3“+s+1+8 i (8(s+1)— 3"‘(zx+s+1)))

0 <a< )

(s+D)(a+s+1) In(})’
1
1n-s—1( 837% 1 In(g
§3 (ac+s+1 - sTl)r “Z gy

(o) ) ()
+8(s+ 1)By (a+ 1,5 +1) — (871/%) " (8(87/%)" +1
x(s+1)Bgum(a+1s+1)+ (3) "'+ 1), il

-(3)

8(s+1)

o 3« 20(+S+2_2 s+l

00l N—

o
VAN
*

AN

5 |
—~
R= -
— B
Ve N
ol
N—
2

Bi(a+1,s+1)—

[T
R
—
=]
]
Iy
~—
~
ST
—

o
A
Q
IA
EX

a+s+1 s+1

—
=]
—~
QA=

~—|
~

(3) a—s—1 st1 s+1

5 + 2- + 3— —a—s—1 27 253—5—1 . 3—5—1
a+s+1 s+1 a+s+1 a+s+1 s+1 2(s+1)’

1g—s—1( 211 237w (ntsHloq)
2 s+ a+s+1 ;o>

—
=]

P Py

5
—

N|—
N—

(SN ST
~——
AN
=
IN

,_.
5
—~
WIN|
~—|
~

—
=]
N 2

—
=]
]
WIN

~—|
~

37571 (25+1 _1)

W/ 0<DC<

:T:T

—B%(oH—l s+1)+B%(a+1,S+1)—

,ﬂ s+1
32 2/e—q
;(- E+1 L 6By (@15 4+1)+ 3By (a+15+1)

1

3

Gy, s In(3)
+3B§(“+1'5+1)+ S R ) In(

2s+1_1)

l) 2
3 3

1(37%( 1(
B (0C+1,S+1)+g T—6B%(0€+1,S+1) , 0>

1
3

(@) ) 0oy < )

-8+ (3)

85+8 a+s+1 4 — ln(%)'
a+2+1 s+1

O R R R (OO

8(s+1)(a+s+1)

«
—_
N
—
=2
+
w
+
iy
—
+
w
+
—
—_
=]
I~
WIN| 001N
—

[(a+1)T(s+1) 73751 In(§)
~Teie) Bt Le D g, 0<as gy

3(s+1
22 2(8V/e—7/ ) plas1)r(s+1)
s+1 T(s+a+2)

7 35— 1 ln(
_ZB(%)l/a(OC+1/S+1> + (SJrl) Ay

Proof. Taking the modulus in (7) and using the multiplicative s-convexity of (2*, we have

o[22 (252) o]

T'(a+1)

&@Amegammrm“”

1

1

Sexplw2;w1</3

0

w?y w %
— Wi

e ]

‘ln( (gwr + (1 —¢)wn )’dg)

o

6

— % lln(ﬂ*(gwl +(1— g)wz)) ‘dg)
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wy — w1 </§ o 1 (Q (ng+(1—g)w1)>’dg>
2 1 2
+w2;a}1 (/j a_% ‘1n(Q*(gw1+(1_Q)w2)>’dg>
+w2;w1 </§1 ,X_g (Q (QW2+(1_g)w1))’dg)
+w2;w1 /21 ‘m( (cwa + (1 —¢)w ))’dg)] (26)

Hence,

Wy — Wi
<
exp 5 (/0
wy — w1 /‘é a_}
2 0 & 8
w2—w1</§g“_1
2 ! 2
wz—w1</§ « 1
2 ! 2
wz—w1< 1
.
3

8

(
(
(¢

¢*InQ) (

¢InQ) (

c an

(@) + (10 N (wn)
F( -6 IO ()
(@) + (1€ N (wn)
¢~ (¢ @)+ (19" 0 ()
(w2))

7‘(gsln0*(w1) +(1-¢)°’nQ (w

é’ (gs InQ (wp) + (1 —¢)° an*(wl))dg>

)
)
)
gl

- (?Rl(a,s) InQY (wy) + Ra(a,5) In QY (wl))

R1(a,8)INQ (wy) + Ra(a,8) InQ (wy)
Ra(a,s)InQ (wo) + Rala,s) InQ (wr)
Ra(a,5) InQ (wy) + Ry(a, ) InQ (wy)

Rs(a,8) INQ (wa) + Re(a,5) InQ (wy)

N N N N

(§R5(oc,s) InQ (w1) + Re(a,s) InQ (wz))} .

[ [(2252) o 2522) P

{*IZTQ(Q).WZT 15Q)(@)

< [ (w1 (w2)]

This completes the proof. [

T(at1)

} 2(wy—wy)

(wp—wq) (R (a,5)+Ry (w,5)+R3 (w,5)+Ry (,5)+R5 (a,8)+Rg (a,5) )
2

Remark 10. By setting s = 1 in Theorem 7, then inequality (25) is reduced to Theorem 5.1 in [24].
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Corollary 3. By setting & = 1 in Theorem 7, then we obtain the following inequality:

1

8

o [o(252)) [o(=452) o)
(12 (O@)y*) =

(wp—w)S

<[ (w) Y (wp)] 27,

27357437572(_854»](17 25+1+3S+3+7)+35+2 (4s+2+7s+2+1)_235+2 (2S+1 _35+2_1)S)

where 3 = (1) (5+2)

Remark 11. By setting « = s = 1 in Theorem 7, then inequality (25) is reduced to Theorem 5.1

in [23].
Theorem 8. Assuming that the conditions outlined in Lemma 3 hold, if (In(Q2*))7 is multiplica-
tively s-convex in the second sense on [w1, wy], for some fixed s € (0,1], % + % =1l,andq>1,
then we have:
1
3 3 8
o) [a(5) o)
(f(a+1) )
2(wy—wq
[*IZTQ(‘D)'%I’%Q(@)]
—1—s(1_ns+1_2l+s —1—s(9_ns+1
gl (3 bz )mw prHms(ap)+ 254 (3 G )>m<a,p>]
< [ (w01) 0 (@,)] : 27)

where

nlap) = </0%
T2(0p) = (/j
r3(p) = (/21

Proof. Using the Holder inequality in (26), we have

o[22 (252) o]

T'(a+1)

{*I“ﬁ(‘@)% I:;‘Q(w)} 2leges)
Wy

SeXP[wzgwl (/0% > {(/ (0" (gws + ( 1—g)w1))’qu‘>q
(/ 'ln( gw1+(1—g)w2))‘ng>q}
+w2;w1</12 > {(/ ‘ln (gws + 1—g)w1))’ng>q

3

o

g_f




Fractal Fract. 2024, 8, 541

15 of 24

+ (/f ln(ﬂ*(gm +(1— g)wz)) ‘qu‘) g }

+ 2 (/; " pdg) ;{ (/; (0 (gws + (1 - g)awn) ) (%)‘17
+ (/zllln(()*(gwl +(1- g)w2)> ‘ng> % H ) (28)

7

8

Since (In(()*))7 is multiplicatively s-convex in the second sense, then we have

J
< /03 [ (IO (w2))" + (1 = ¢)*(In Q" (w1)) ] dg

30 @)+ (12 (3) ) (n @)’

In(Q" (w2 + (1= g)wr) )| 'de

= 1+4s , ~
/0g 1n<0*(gw1 +(1- 9)“’2)) ‘ng

< [ [ (@) + (1~ (n 0 (w2))dg

_ 3 i)+ (1- (3) ) (n 0 a))? (30)

1+s

(0 (gwn + (1 - g)wn) )| 'dg

2
3
1
3
2

< /][ n 0 (@) + (1= ) (In Q" (w1)"]dg

_ 32T - ) (In O (w2))T + 371 (25 — 1) (In O (wy))?

1+s S

/13 ln(ﬂ*(gwl +(1- @)wz)) ‘ng

< [ [ n 0 (@) + (1 ¢)°(In Q" (w2)")dg

377125 — 1) (InQ* (wq))T 4+ 37571 (2571 — 1) (In Q% (w3) )1

= , (32)
1+s

(2 (6w + 1~ g)eon)) '

= /zl [6°(In O (w2))" + (1 = )*(In Q" (w1)) ] dg

(1)) a0 @) 3 (0 ) -

1+s
and

I

3

< [ et (@) + (1 - ) (n 0" (2)]dg

3

ln(Q*(ga)l +(1- g)w2)> ‘ng
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(1= ()" n0* (@) +37 (I Q" (w3))"
= . (34)
1+s
Using (29)—(34) in (28), we obtain
2wy +wy & w1 +2wy 3 %
o [o(2g=)] [o(2522)] 0w
(]"(w+]))
" 2(wpy—wy
[*%;Q(‘D)-WZI*Q(‘O)]
—1—s(1_ns+1_2l+s —1—s(5_ns+1
L e (3 bt )mm,p)m(a,mw“’2?”) (3 G )>m<a,p>]
< [ (w1) O (w2)] :

This completes the proof. [
Remark 12. By setting s = 1 in Theorem 8, then inequality (27) is reduced to Theorem 5.3 in [24].

Remark 13. By setting « = s = 1 in Theorem 8, then inequality (27) is reduced to Theorem 5.2
in [23].

Corollary 4. By setting & = 1 in Theorem 7, then we obtain the following inequality:
1
3 3 8
oo (=) o)
1
d@\ wy—w1
(Je@)™) =

—1—s(1_ns+1_al+s —1—s(n_ns+1
(1) (3 Cic >>[T1(p>+w3(p>}+(‘“2;‘““(3 i )>m<p>1

4

< [ (w1) QY (w2)]

where

4. Numerical Examples and Their Computational Analysis

In this section, we conducted a comprehensive numerical analysis to validate the
effectiveness of newly derived results. Through various numerical tests, we assess the ac-
curacy and efficiency of the proposed approach in approximating integrals of differentiable
multiplicatively convex functions. We aim to corroborate the theoretical findings with
concrete numerical evidence and evaluate the performance of Simpson’s and Newton's
type inequalities across various scenarios.
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Example 1. Let Q : [wy, ws] = [1,2] — R be a function defined by Q(c) = 256 ~3. In addition,
s=1,a=1and @ € (w,wy), and the left-hand side of (8) is

[onn@fa(zg)] ]’

[(a41)

] 2(wy—wy)

= 0.5998, (35)

[*IZ;;Q(‘D)‘w{ 15O (@)

and the right-hand side of (8) is

(wp=w1) (1 (8)+8p (2,5) +E3 (w,8)+Ey (,5) )

[QF (w1) QY (w3)] 2 = 1.3231. (36)

From (35) and (36), it is clear that
0.5998 < 1.3231,

which demonstrates the result described in Theorem 5.

The graph of the inequalities of Example 1 is depicted in Figure 1 for « € (0,1] and
s € [0,1], which demonstrates the validity of Theorem 5.

M Leit Inequality
l Right Inequality

Figure 1. Graphical visualization of Theorem 5.

Example 2. Let Q) : [wy, wz] = [1,2] — R be a function defined by Q(g) = 256 =3 I addition
s=3a=1p=2and® € (wy,w,), then the left-hand side of (18) is

annefa(zg)] ]’

i = 0.7854, (37)
2(wy—w
[*I&Q(w).wz_ I,‘}Q(a))] e
and the right-hand side of (18) is
[ (1) ()] Zorn M@ T2 _ g 3975 (38)

From (37) and (38), it is clear that
0.7854 < 1.3172,

which demonstrates the result described in Theorem 6.
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(‘*’2;‘*’1) <
[ (w1) Q2 (w2)]

= 2.5421.

Example 3. Let Q : [wy,wy] = [2,4] — RT be a function defined by Q() = ¢%5". In addition
s=1,a=1and @ € (wy, wy), then the left-hand side of (25) is

o [ (2252) P 2522) P

[(a41)
2(wy—wy)

= 0.5898, (39)

[*IZ;Q(Q)%— Ig‘Q(a))]

and the right-hand side of (25) is

(wp—wy) (R (ws)+Rp (w,5)+R3 (w,s)+ Ry (a,5)+R5(a,5)+Rg (a,5))

[ (1) (w2)] 2 = 1.4412. (40)

From (39) and (40), it is clear that
0.5898 < 1.4412,

which demonstrates the result described in Theorem 7.

The graph of the inequalities of Example 3 is depicted in Figure 2 for s = 1/5 and
« = 1/2, which demonstrates the validity of Theorem 7.

12.0

[l Left Inequality
l Right Inequality

Figure 2. Graphical visualization of Theorem 7.

Example 4. Let Q : [wy, ws] = [1,2] — R be a function defined by Q(g) = ¢*. In addition,
s=3a=1p=2and® € (wy,w,), then the left-hand side of (27) is

o[ (2252) (22 o]

—— — 1.3805, (41)
[*Ig]?o(m)w; I,m(a;)] Hez=er)
and the right-hand side of (27) is
i U A ) ra(ep) e+ 25 (371#&[25“) ) [ra(ap)]
(42)

From (41) and (42), it is clear that
1.3805 < 2.5421,
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which demonstrates the result described in Theorem 8.

5. Applications to Quadrature Formula

In this section, we explore the application of the derived Simpson’s and Newton's
type inequalities to Quadrature formulas in multiplicative calculus. Applying Simpson’s
and Newton's inequalities to the Quadrature formula enhances the accuracy and efficiency
of numerical integration techniques. By incorporating these inequalities, we can refine the
approximation process in the Quadrature formula, particularly for functions with specific
properties such as multiplicative convexity. These applications extend the theoretical
understanding of Simpson’s and Newton's inequalities and demonstrate their practical
relevance in numerical analysis and computational mathematics.

5.1. Applications to Simpson’s Formula

Let Y be a partition of the points wy = 1y < 13 < up < ... < u,_1 = wy of the interval
w1, ws|, and consider Simpson’s quadrature formula:
p q

/"“Z(Q(w))dw _ [ ROYVAQY), AQY) 20 s
T AMQ,Y) <0 7

J w1

where
(“i+é*”i)
Ui + Uit

4
MOY) = 11 [(muz-))n(z) <0<ui+l>>] ,
is the multiplicative version of Simpson’s formula and the remainder term R(Q2, Y) satisfies
the estimation:

(i1 =41) (21 (8,5)+E5 (1) +E5 (w5) +E4 ()

[R(Q,Y)| < T O () Q (ti41)] 2 ,

where 51 (a,s),Za(a,s), Z3(a,s), and Z4(n, s) are defined in Theorem 5. Now, we derive
some error estimates for Simpson’s formula.

Proposition 1. Using the conditions set in Theorem 5, then in (43), for every division Y of [w1, wy),
we have

(”i+1 —ui)z (El (@,8)+Ep (a,5)+E3 (a,5)+Ey (a’,s))

IR(Q,Y)| < TT55 [ () Q" (1)) : : (44)

where Zq(a,s),Ex(a,s),E3(w, s), and E4(w, s) are defined in Theorem 5.

Proof. Applying Theorem 5 on the subinterval [u;, u; 1] of the division Y, we obtain

(u41—1;)
iy 4 6
(©)O(* ) Q)
T(at1)
2(ujyq—u;
[*Ii‘l‘?ﬂ(c@).uMIfQ(w)] 1)
(i1 —17) (21 (05)+8 (1,5) +E5 (a5) +24 (w5))
< [OF () Q" (uit1)] ? : (45)
where h; = W, i =012,...,n—1. Taking product in (45) and using triangular

inequality, we have
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AQ,Y)

T'(a+1)

{*I;Q(a)).w I;:‘Q(co)} i)

i+1

. (“i+£’“i>
@) 00|

= |I1i= T(a+1)

2(uiy1-1;)
[*If{g()(co).uiﬂlgﬂ(w)] “

i

(#iy1—u;)
L \4 e
o) @)
.
< Hi:O T(a+1)
2(uj 1 —1;)
[*%Q(‘D)-%HQ(@]
A . (11 —17)* (B (05) +E5 (05) + 5 (w5) + 24 (05))
< TG (O () QF (1) 2 : (46)

For instance, if « = 1 in (46), then we have

) 2—1-s,3-2—s (1,22+s «3l+s _32+s 5245 | o8 X31+ss) )

(i1 —u;) <
< IO ) ()] e o

If s = 1in (47), then we have

2
51 —14)

MQY) [ () Q" (ui1)] 72

7 I<LII
Sz @(u)™| ~

This completes the proof. [

N,x
I
S

Proposition 2. Using the conditions set in Theorem 6, then in (43), for every division Y of [w1, wy],
we have

(ni1—17)

IR(O,Y)| < TEH O ()0 ()] 2 (o) thaler),

where A1(a, p) and Ay (w, p) are defined in Theorem 6.
Proof. With the help of Theorem 6, the proof is similar to Proposition 1. [

Remark 14. The traditional error estimates for Simpson’s formula rely on the fourth-derivative
HQ(‘I) H from Taylor expansions. When the fourth derivative Q™) is either non-existent or
[e]

significantly large across [wy,w,)|, these conventional estimates become impractical. In such
scenarios, Equation (44) introduce alternative approximations for Simpson’s formula, marking a
fresh perspective within multiplicative calculus.
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5.2. Applications to Newton’s Formula

Let Y be a partition of the points wy = 1y < u3 < up < ... < uy_1 = wy of the interval
[w1, wy], and consider Newton's quadrature formula:

wy R(OYA()Y), A(Q,Y) >0
/ (Q(co))‘m:{ 1(1(0\()) () /\(((),Y) )<O , (48)

wy MOY)”

where

(“i+é*”i)
2ui + Uiy Ui +2u 4

3 3
MOY) = 11 [<o<ui>>n(3) o) <o<u1~+l>>] ,
is the multiplicative version of Newton’s formula and the remainder term R(Q),Y) satisfies

the estimation:

(”i+1 —ui)z (}Rl (a,s)+?R2(a,s)+ng (,8)+9y (a,5)+R5 (a,5)+Rg (a,s))

R(Q,Y)| < IS5 [Q" () Q" (ui41))] ,

where 11 (a,s), Ro(a,s), Ra(a,s), Ra(a,s), Rs(a,s), and Re(a, s) are defined in Theorem 7.
Now, we derive some error estimates for Newton’s formula.

Proposition 3. Using the conditions set in Theorem 7, then in (48), for every division Y of w1, w3),
we have

("i+1 —uj )2 (XRl (,8)+% (a,8)+R3 (a,5)+Ry (a,8)+R5 (a,s)+§R6(A,s))
2

R(Q,d)| < TG (O (1) Q" (ui1)] ,
where N1 (a,s), R (a,s), R3(a,s), Ra(a,s), R5(a,s) and Re(«, s) are defined in Theorem 7.
Proof. Applying Theorem 7 on the subinterval [u;, u;,1] of the division Y, we obtain

(uiy1—1;)
8

{(Q(ui))n(z”l‘g”f“)gﬂ(%)3(0(%“))]

T'(a+1) )
2(ujp =
{*IZ,*Q((D)'MM Ii‘Q(w)]
(ui_*_lful-)z(%l (0,8)+R (a,5)+R3 (a,5)+ Ry (w,5)+ R (w,5)+Rg (,5))
< [ (ui) Q" (uig1)] ? % (49)
Wit —Ui

where h; =
inequality, we have

,i=0,1,2,...,n — 1. Taking product in (49) and using triangular

AQ,Y)

T(a+1)

2(111 —ui)
*Izrﬂ(w).uwllgﬂ(w)} i
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3 (#ig1—4;)
| @@no (25 a5 ) 0.0)
= H?_O I(a+1)
2(14, 1
[*If[‘r()( - 110(w@ ] i
3 (“H—};”i)
oy a(=3m ) 00|
< H?:O I(a+1)
2(u; u;)
[*Igfﬂ( )y 2O(@) i
B (”i+17”[) (R (a,8)+ R (a,5)+R3 (a,5) + Ry (a,5)+R5 (a,5)+ R (a,5))
< TG (O () QO (ui41)] 2 : (50)
For instance, if « = 1 in (50), then we have
AQ,Y) . (i1 -)*S
| ST O (u) Q7 (uiga)] 2 (51)
du | = =0 i i+1 ’
RGO

IR(Q,Y)]

ORED) (
< TG (O (1) Y (1))

where $ is defined in Corollary 3. If s = 1 in (51), then we have

AMQY . 25141 -1;)°
f“’z((()(u)))d” < IO (u)QF ()] 7
w1

This completes the proof. [J

Proposition 4. Using the conditions set in Theorem 8, then in (48), for every division Y of [w1, w3],
we have

3—1—5(1725+1+31+s 3—1-s (2,25+1)

b ) > 1)+ (a,p))+ (£2591) ( - ) [72(a,p)]

7

where y1(«, p), v3(«, p), and v (a, p) are defined in Theorem 8.
Proof. With the help of Theorem 8, the proof is similar to Proposition 3. [J

6. Conclusions

In conclusion, the research presented in this paper on multiplicative fractional Simp-
son’s and Newton's type inequalities marks a significant advancement in numerical analy-
sis and mathematical computation. This study has expanded the theoretical framework
surrounding these inequalities and opened up new avenues for approximating definite
integrals and solving mathematical problems. We established multiplicative fractional
integral inequalities of Simpson’s and Newton’s type for generalized convex functions in
the second sense. The use of multiplicative generalized convex function extends the results
for convex functions and covers a large class of functions. The multiplicative generalized
convex function also gave the best approximation. For example, from Table 1, it is clearly
observed that when s — 17, we obtain the poor approximation, which is the case for
convex functions, and when s — 0", we obtain very good lower and upper bounds of the
inequalities. We conclude that the bounds obtained through generalized convex functions
are better as compared to convex functions. Applying these results to the Quadrature
formula demonstrates their practical utility in numerical integration. Furthermore, nu-
merical analysis provides empirical evidence of the effectiveness of the derived findings.
By understanding the results of this paper, future researchers can derive similar inequalities
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for coordinate convex functions and other domains of mathematics. These generalizations
will also be beneficial for researchers working in the fields of mathematical modeling,
optimization, and numerical analysis.

Table 1. Comparative analysis between the left and right inequalities for discretization of s in
Theorem 5 when « = 1/2 in Example 1.

s Left Inequality Right Inequality
0.1 0.5711 1.3142
0.2 0.5988 1.3232
0.3 0.6299 1.3346
0.4 0.6616 1.3485
0.5 0.6948 1.3651
0.6 0.7297 1.3844
0.7 0.7664 1.4068
0.8 0.8049 1.4326
0.9 0.8453 1.4620
1 0.8878 1.4958
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