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Abstract: Event-triggering mechanisms reported in the existing prescribed-time (PT) control do not
adequately capture the dynamic nature of network environments, and are not applied to distributed
consensus tracking problems with unknown time delays. Therefore, designing a dynamic event-
triggering mechanism is crucial to ensuring PT stability, even in the presence of unknown time
delays. This article focuses on developing a dynamic event-triggering mechanism to achieve adaptive
practical PT output-feedback consensus tracking for nonlinear uncertain multiagent systems with
unknown time delays. Firstly, a delay-independent PT state observer using a time-varying gain
function is designed to estimate the immeasurable states. Following this, a novel distributed delay-
independent PT consensus tracking scheme is constructed, incorporating a dynamic event-triggered
mechanism through the command-filtered backstepping approach. In this design, dynamic variables
based on a time-varying gain function are developed to support the event-triggering mechanism,
ensuring practical stability within the prescribed settling time. Consequently, the proposed output-
feedback control protocol can achieve practical PT stability, meaning that consensus tracking errors
are constrained to a neighborhood around zero within a pre-specified time, regardless of the initial
states of the agents or design parameters, while also avoiding the Zeno phenomenon. Finally, the
effectiveness of the proposed strategy is validated through an illustrative example, which includes a
comparative analysis.

Keywords: dynamic event-triggered mechanism; output-feedback design; practical prescribed-time
(PT) convergence; PT consensus tracking; unknown time-varying delays

1. Introduction

Prescribed-time (PT) control, initially proposed by Song et al. [1], has attracted sub-
stantial attention in recent years (see [1–5] and the references within). In [1], the PT control
strategy using explicit time-varying feedback was proposed to regulate the finite PT, even
with nonvanishing uncertain nonlinearities matched to the control input. The prescribed
performance control problems have been addressed to ensure that control errors remain
within predefined performance bounds [6–8]. The convergence time of the steady-state
performance bound—rather than the actual convergence time of the tracking error—can
be specified in advance. Compared to finite-time, fixed-time, and prescribed performance
control, the principal advantage of this approach is that the true convergence time can
be predetermined, independent of other design parameters and the initial agent states.
In addition, fractional-order control methods and systems have been studied for various
nonlinear systems [9–12]. Researchers have explored PT stabilization problems for systems
with unmatched and known nonlinearities [13,14]. In [15,16], innovative combinations of
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the adaptive backstepping technique and PT stabilization design were introduced for uncer-
tain strict-feedback nonlinear systems with unknown parameters. In addition, Ye et al. [17]
proposed a temporal scaling-based adaptive approach for PT control in strict-feedback
nonlinear systems with unknown time-varying parameters. In [18], a PT output-feedback
control problem was studied for stochastic nonlinear strict-feedback systems, where sensor
uncertainties were considered. Moreover, recent studies have yielded promising results in
addressing PT tracking problems. Further, PT control approaches have been developed
for strict-feedback nonlinear systems without model uncertainties [19] and nonvanishing
uncertainties [20]. The time-varying finite-time gain functions employed in these studies
exhibit unbounded growth as time approaches the preassigned settling time, potentially
leading to singularity problems while implementing the designed controllers after the PT.
Practical PT tracking approaches using saturated time-varying gain functions have been
explored for nonlinear uncertain systems to address this concern [21,22]. However, the
time-delay problems of nonlinear systems have not been addressed in the mentioned PT
control research. A PT stabilization problem for nonlinear time-delay systems was recently
considered in [23]. In [24], a double time-varying gain method was presented to design
an adaptive PT stabilizer for time-delay nonlinear systems. Despite these PT stabilization
efforts, the PT tracking problem of uncertain systems with unmatched time-delay non-
linearities remains an open challenge. Furthermore, to broaden the applicability of PT
control in various scenarios, the PT output-feedback consensus-tracking problem must be
investigated in time-delay nonlinear multiagent systems under a direct network. This is
the first motivation of this paper.

In recent decades, the concept of distributed consensus control, characterized by in-
formation exchange solely between neighboring agents, has emerged as a crucial strategy
for networked nonlinear multiagent systems [25,26] and nonlinear time-delay multiagent
systems [27–32]. The PT control concept using time-varying gain functions was integrated
with distributed control algorithms to preset the convergence time of distributed consensus
control systems precisely [33]. In [34], PT consensus and containment control methods
were explored for networked multiagent systems with first-order integrator dynamics.
Addressing PT formation tracking, Ding et al. [35] considered the problem for networked
second-order integrators with directed graphs. Furthermore, in [36], a practical PT output-
feedback consensus-tracking strategy was developed for multiagent systems with nonlin-
earities satisfying input-matching conditions. A practical PT containment control design
employing a distributed observer was investigated for strict-feedback nonlinear multiagent
systems [37]. In [38], the quantized interagent communication problem was addressed
in the practical PT formation tracking framework. However, to our knowledge, no work
has been devoted to the distributed adaptive PT consensus tracker design with unknown
time-varying state delays of strict-feedback nonlinear uncertain multiagent systems. This is
the second motivation of this paper.

Event-triggered control has been explored in networked control, driven by its effi-
cient use of network resources on band-limited communication channels (see [39,40] and
the references within). Notably, lower-triangular uncertain nonlinear systems, versatile
in describing numerous practical systems [41], have been a focal point for developing
event-triggered control protocols [42–45]. Notable contributions have been made in ad-
dressing distributed event-triggered consensus control for uncertain multiagent systems
encompassing unmatched nonlinearities [46,47]. Recently, efforts to enhance communi-
cation efficiency in implementing network-based PT control have led to the design of
event-triggered mechanisms ensuring PT stability in control systems. In [48], a bipar-
tite consensus problem was resolved by designing an event-triggered PT controller for
multiple first-order integrators. For uncertain nonlinear systems, event-triggered PT stabi-
lization [49] and neuroadaptive tracking methods [50] were developed in a strict-feedback
form for nonlinear uncertain systems.
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Despite these remarkable achievements in event-triggered PT control, the existing
results [48–50] rely on static triggering conditions. Given the dynamic nature of the practical
network environment with varying data transmission rates, dynamic event-triggering laws
are more pragmatic and efficient than static conditions [51]. To date, no dynamic event-
triggered PT control results have been reported with unknown time delays. This is the
third motivation of this paper.

Based on these observations, a dynamic event-triggered PT output-feedback consensus-
tracking problem of strict-feedback nonlinear uncertain time-delay multiagent systems
must be considered. The following three primary challenges exist in solving this problem:

(i) The existing PT control methods [33–38,48–50,52–54] did not consider unknown time
delays in multiagent systems, which influence the performance and stability of the
control system. Thus, a distributed adaptive PT consensus-tracking problem must
be studied with unknown time-varying delays. Accordingly, the first challenge is
developing delay-independent local PT observers and distributed consensus trackers
using only output information with unknown time-varying delays.

(ii) The existing PT event-triggered control approaches [48–50,52–54] do not adequately
capture the dynamic nature of practical network environments with unknown time
delays. The dynamic event-triggering mechanism must be designed to ensure PT
stability of nonlinear uncertain time-delay multiagent systems. Thus, the second
challenge is determining how to design the dynamics of the triggering variables and
triggering mechanism to ensure PT stability.

(iii) The third challenging is establishing the PT stability of the proposed total closed-loop
system while avoiding the Zeno phenomenon.

To address these challenges, we propose a memoryless PT output-feedback design
strategy incorporating a dynamic event-triggered mechanism for adaptive consensus
tracking of strict-feedback nonlinear uncertain time-delay multiagent systems in a fully
distributed manner. The contributions of this work are as follows:

(1) Based on a continuous time-varying gain function for t ∈ [0, ∞), local delay-independent
PT observer and consensus trackers using only output information are designed for
uncertain time-delay multiagent systems with unknown time delays. Compared to
existing PT cooperative control results [33–38], this study derives a command-filtered
backstepping design approach for the PT output-feedback consensus tracker to com-
pensate for unknown time delays. The adaptive neural-network-based PT compensat-
ing variables are designed using the time-varying gain function in a distributed man-
ner. In the proposed design and analysis, we employ a novel Lyapunov–Krasovskii
function based on the design parameter of the time-varying gain function to ensure
practical PT stability of the delay-independent PT consensus-tracking system.

(2) In contrast to the event-triggered PT control results [48–50,52–54], this study presents
a dynamic event-triggered mechanism for PT consensus tracking with unknown
time delays. The differential equations for the dynamic variables in this mechanism
are designed via the time-varying gain function. Based on these dynamic variables,
the proposed dynamic event-triggered PT consensus-tracking scheme can guarantee
practical PT stability and avoid the Zeno phenomenon.

The remainder of this article is organized as follows. Section 2 introduces preliminaries
and the problem formulation. Next, Section 3 presents the distributed dynamic event-
triggered PT output-feedback consensus-tracking design.Section 4 provides a simulation
example, and conclusions are drawn in Section 5.

2. Preliminaries and Problem Formulation
2.1. Preliminary on Graph Theory

The interaction graph of nonlinear time-delay multiagent systems is described by
a directed graph G ≜ (V , E), where V ≜ {0, 1, . . . , N} and E ⊆ V × V stand for the
node set and the edge set, respectively. Node 0 corresponds to the leader, while nodes
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1, . . . , N represent followers. An edge (j, f ) ∈ E signifies that agent j gives its information
to agent f , but not vice versa. The set of follower nodes is defined as V̄ ≜ {1, . . . , N}.
N f = {j|(j, f ) ∈ E} designates the set of all neighbors of agent f . For the interaction
subgraph of followers, the Laplacian matrix is L = D −A, where D = diag(d1, . . . , dN)
with d f = ∑N

j=1 a f j, and A stands for the adjacency matrix defined as A = [a f j]. Here,
a f j > 0 if j ∈ N f and a f j = 0 otherwise, where f , j ∈ V̄ and f ̸= j. The pining matrix is
B = diag(b1, . . . , bN), where b f > 0 if 0 ∈ N f and b f = 0 otherwise, and f ∈ V̄ . Assuming
a spanning tree in the directed graph G with the leader as the root, the matrix W = L+ B
is nonsingular [55,56].

2.2. Preliminary on Function Approximation Using Neural Networks

We employ the universal approximation property of radial basis function neural
networks (RBFNNs) [57] to approximate unknown nonlinear functions induced from the
output-feedback control design steps. The unidentified nonlinear functions
Γ f ,k(ς f ,k): Rq f ,k 7→ R in the compact set Πς f ,k ⊂ Rq f ,k can be represented by employing the
function approximation method, as follows:

Γ f ,k(ς f ,k) = λ⊤
f ,k∆ f ,k(ς f ,k) + δ f ,k(ς f ,k) (1)

where f ∈ V̄ , ς f ,k ∈ Πς f ,k is the input of RBFNN, λ f ,k ∈ Rm f ,k represents the optimal
weighting vector, defined as λ f ,k = arg minλ̂ f ,k

[supς f ,k∈Πς f ,k
|Γ f ,k(ς f ,k) − λ̂⊤

f ,k∆ f ,k(ς f ,k)|],

m f ,k is the node number, ∆ f ,k(ς f ,k) ∈ Rm f ,k is the Gaussian function, λ̂ f ,k is an estimate of
λ f ,k satisfying ∥λ f ,k∥ ≤ λ̄ f ,k, and δ f ,k denotes the reconstruction error satisfying |δ f ,k| ≤ δ̄ f ,k.
Here, λ̄ f ,k and δ̄ f ,k are constants.

Lemma 1 ([58]). ∥∆ f ,k(ς f ,k)∥ ≤ m̄ f ,k is satisfied, where m̄ f ,k is a known constant.

2.3. Control Problem

We consider a class of networked uncertain multiagent systems composed of N non-
linear time-delay systems as follows:

ẋ f = A f x f + g f (x f ) + B f u f + µ f (x f ,τ(t))

y f = C f x f
x f (q) = ω f (q), q ∈ [−ι f , 0]

(2)

where f ∈ V̄, x f = [x f ,1, . . . , x f ,n f
]⊤ denotes the state vector of agent f , A f =

 0
... In f−1

0 · · · 0

,

B f = [0, . . . , 0, 1]⊤ ∈ Rn f , C f = [1, 0, . . . , 0] ∈ R1×n f , u f ∈ R is the control input of agent
f , y f ∈ R is the output of agent f , g f (x f ) = [g f ,1(x f ,1), g f ,2(x̄ f ,2), . . . , g f ,n f

(x̄ f ,n f
)]⊤; g f ,k

(x̄ f ,k) : Rk 7→ R with x̄ f ,k = [x f ,1, . . . , x f ,k]
⊤ ∈ Rk, k = 1, . . . , n f are unknown C1 nonlin-

ear functions of agent f , µ f (x f ,τ(t)) = [µ f ,1(x f ,1,τ(t)), . . . , µ f ,n f
(x̄ f ,n f ,τ(t))]

⊤; µ f ,k(x̄ f ,k,τ(t)) :

Rk 7→ R, k = 1, . . . , n f denote unknown C1 nonlinear time-delay functions,
x̄ f ,k,τ(t) = [x f ,1(t − τf ,1(t)), . . . , x f ,k(t − τf ,k(t))]⊤ is the delayed state vector of agent f ,
τf ,k(t), k = 1, . . . , n f denote the unknown delays of agent f , such that 0 < τf ,k(t) ≤ ι f ,k < ∞
and τ̇f ,k(t) ≤ ῑ f ,k < 1 with unknown constants ι f ,k > 0 and ῑ f ,k > 0, ι f = maxk=1,...,n f

{ι f ,k},
and ω f is a continuous function vector indicating initial conditions of agent f .

Assumption 1. The output signals y f are only measurable for the consensus tracking design.

Assumption 2 ([25]). The follower f with edge (0, f ) ∈ E can only receive the leader output r
information, where r, ṙ, and r̈ are continuous and bounded.
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Assumption 3 ([59]). Unknown nonlinearities ζ f ,k,l(·) ≥ 0 exist, such that

µ2
f ,k(x̄ f ,k,τ(t)) ≤

k

∑
l=1

ζ f ,k,l(x f ,l(t − τf ,l(t))).

Definition 1. Consider the follower agents ẋ f = g f (x f , x f ,τ , u f ), where f = 1, . . . , N, x f (q) =
ω(q), ∀q ∈ [−ι f , 0], x f ∈ R is the state variable of agent f , x f ,τ ∈ R is the delayed state variable
of agent f , u f ∈ R denotes a control input of agent f , and g f (x f , x f ,τ , u f ) : R×R×R → R
is a continuous nonlinear function of agent f . For system ẋ f = g f (x f , x f ,τ , u f ), practical PT
consensus tracking is achieved if there exist a controller u f and a user-assignable time T > 0 such
that limt→T |x f (t)− r(t)| ≤ ϵ and |x f (t)− r(t)| ≤ ϵ, ∀t ≥ T, where r(t) is the leader signal.

Control problem: The control problem of this study is to design dynamic event-triggered
PT output-feedback control laws u f for systems (2), such that all closed-loop signals are
bounded and |y f (t)− r(t)| ≤ ϵ, ∀t ≥ T, where ϵ > 0 is an adjustable small constant and
T > 0 is the PT selected regardless of the initial system conditions and design parameters.

Remark 1. It is worth mentioning that there are no published results, even for the dynamic event-
triggered PT state-feedback tracking problem of single strict-feedback nonlinear time-delay systems.
In contrast to the existing PT control results [33–38,48–50,52–54], we establish a dynamic event-
triggered PT output-feedback consensus tracking strategy in the command-filtered backstepping
design framework. The design incorporates distributed adaptive compensating variables and dynamic
variables for event-triggering, both based on a continuous time-varying gain function. The practical
PT stability of the delay-independent consensus tracking system is analyzed using a novel Lyapunov–
Krasovskii function.

Remark 2. Practical applications such as chemical reactors, rolling mill systems, and metallurgical
processing systems can be typically described as strict-feedback systems [60,61]. Therefore, we
consider models such as System (2) to account for unknown nonlinearities g f and time-delayed
nonlinearities µ f that are unmatched by the control input u f . Thus, the purpose of this paper is
to provide a fundamental solution to the dynamic event-triggered PT output-feedback consensus
tracking problem for the class of system (2).

3. Distributed Dynamic Event-Triggered PT Consensus Tracking by Output Feedback

This section first introduces a time-varying gain function and its properties to achieve
dynamic event-triggered PT output-feedback consensus tracking. Second, a local delay-
independent PT observer for each follower is designed to estimate the immeasurable states
x f ,k, k = 2, . . . , n f . Third, a distributed delay-independent PT consensus-tracking scheme
with a dynamic event-triggered mechanism is constructed in a recursive design manner.
Finally, the PT stability of the output-feedback control system is analyzed based on the
Lyapunov stability theorem.

3.1. Time-Varying Gain Function

For the practical PT observer and controller design, the time-varying gain function is
defined as

χ(t) =

{
cT

(1−cρ)(T−t)+cρT , ∀t ∈ [0, T)
1/ρ, ∀t ∈ [T, ∞)

(3)

where T > 0 is the prescribed time, c ≥ 1 is a constant, and ρ denotes a performance tuning
constant, which satisfies 0 < ρ < 1/c.
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Remark 3. To design the dynamic event-triggered PT output-feedback consensus tracking sys-
tem, we employ the continuous time-varying gain function χ(t) with the following properties:
(i) χ(t) is the monotonically increasing continuous function during the time interval t ∈ [0, T),
limt→T χ(t) = 1/ρ, and χ(t) = 1/ρ, t ≥ T; (ii) χ(t) is continuously differentiable; and
(iii) χ(0) = c and χ(t) is bounded as c ≤ χ(t) ≤ 1/ρ, where the constant c offers flexibility in
selecting the initial gain values of the PT observer and consensus tracker and ρ is a design parameter
to adjust the PT convergence bound of the proposed PT consensus tracking system.

3.2. Delay-Independent PT Observer

The delay-independent PT observer is designed as follows:

˙̂x f ,k = x̂ f ,k+1 + ϕk
f θ f ,k(y f − ŷ f )

˙̂x f ,n f
= u f + ϕ

n f
f θ f ,n f

(y f − ŷ f )

ŷ f = x̂ f ,1

(4)

where f ∈ V̄ , k = 1, . . . , n f − 1, x̂ f ,l , l = 1, . . . , n f are estimates of x f ,l , ϕ f = χ + ψ f with
a constant ψ f > 0, the design constants θ f ,l , l = 1, . . . , n f are chosen to make the matrix
A f − Θ f C f be Hurwitz, and Θ f = [θ f ,1, . . . , θ f ,n f

]⊤ ∈ Rn f .

Defining the observer error s f ,k = (x f ,k − x̂ f ,k)/ϕk
f , k = 1, . . . , n f , it follows from (2)

and (4) that

ṡ f =

{
ϕ f Ā f s f −

1−cρ
cT

χ2

ϕ f
D f s f + G f + M f , ∀t ∈ [0, T)

ϕ f Ā f s f + G f + M f , ∀t ∈ [T, ∞)
(5)

where s f = [s f ,1, . . . , s f ,n f
]⊤, Ā f = A f − Θ f C f , D f = diag(1, 2, . . . , n f ) ∈ Rn f ×n f , M f =

[µ f ,1/ϕ f , µ f ,2/ϕ2
f , . . . , µ f ,n f

/ϕ
n f
f ]⊤, and G f = [g f ,1(x f ,1)/ϕ f , g f ,2(x̄ f ,2)/ϕ2

f , . . . , g f ,n f
(x̄ f ,n f

)

/ϕ
n f
f ]⊤.

Choose the Lyapunov function Vf ,o = s⊤f Pf s f with a symmetric matrix Pf > 0.
From (5), we have

V̇f ,o =


ϕ f s⊤f (Pf Ā f + Ā⊤

f Pf )s f −
1−cρ

cT
χ2

ϕ f
s⊤f (D f Pf + Pf D f )s f

+2s⊤f Pf G f + 2s⊤f Pf M f , ∀t ∈ [0, T)
ϕ f s⊤f (Pf Ā f + Ā⊤

f Pf )s f + 2s⊤f Pf G f + 2s⊤f Pf M f , ∀t ∈ [T, ∞).

(6)

Since Ā f is the Hurwitz matrix, there exists a symmetric matrix Pf > 0 such that
Pf Ā f + Ā⊤

f Pf ≤ −In f and D f Pf + Pf D f ≥ 0, where In f ∈ Rn f ×n f is the identify matrix.
Thus, (6) becomes

V̇f ,o ≤ −ϕ f s⊤f s f + 2s⊤f Pf G f + 2s⊤f Pf M f , ∀t ≥ 0. (7)

By Young’s inequality, we obtain

2s⊤f Pf G f ≤ ∥Pf ∥2∥s f ∥2 + ∥g f (x f )∥2 (8)

2s⊤f Pf M f ≤ ∥Pf ∥2∥s f ∥2 + ∥µ f (x f ,τ(t))∥2. (9)

Choosing ψ f = 2∥Pf ∥2, we obtain ϕ f = χ + 2∥Pf ∥2. Then, using (8) and (9), we have

V̇f ,o ≤− χs⊤f s f + ∥g f (x f )∥2 + ∥µ f (x f ,τ(t))∥2. (10)

Remark 4. Compared with the distributed practical PT cooperative control results [37,38] for strict-
feedback nonlinear multiagent systems without time delays, a delay-independent PT observer (4)
using the time-varying gain function χ is designed in this paper.
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3.3. Distributed Delay-Independent Dynamic Event-Triggered PT Output-Feedback Tracker

In this section, employing the adaptive command-filter backstepping design method-
ology, we construct a distributed dynamic event-triggered PT output-feedback tracker.

Compared with the existing PT control methods [33–38,48–50,52–54], the primary
difficulties in this design stem from (i) addressing the unknown time-delay nonlinearities
and (ii) formulating the dynamic event-triggered mechanism to ensure the practical PT
stability of the delay-independent event-triggered PT consensus tracking system. To
overcome difficulty (i), we propose a novel Lyapunov–Krasovskii function based on the
design parameter of the time-varying gain function. Using this function, we design an
adaptive event-triggered PT tracker using only output information in a fully distributed
manner. Moreover, to deal with difficulty (ii), we derive triggering conditions with dynamic
variables based on the time-varying gain function χ.

First, we define the error variables as follows:

e f ,1 =
N

∑
j=1

a f j(y f − yj) + b f (y f − r) (11)

e f ,k = x̂ f ,k − v̄ f ,k−1, k = 2, . . . , n f (12)

where f ∈ V̄ and v̄ f ,k−1 is the first-order filtered signal, determined by

˙̄v f ,k−1 = χσf ,k−1(v f ,k−1 − v̄ f ,k−1) (13)

with the virtual control laws v f ,k−1 and the constant σf ,k−1 > 0.
Then, for the command-filter backstepping design, the compensating errors are con-

structed as

z f ,k = e f ,k − α f ,k, k = 1, . . . , n f (14)

where α f ,k are the compensating signals which are provided to compensate for unknown
terms and filtering errors in the design steps, and α f ,n f

= 0. Based on these error variables,
the detailed steps are as follows.

Step 1: We first design the local virtual control law v f ,1. Defining the vector
z1 = [z1,1, . . . , zN,1]

⊤ and using x f ,2 = s f ,2ϕ2
f + z f ,2 + α f ,2 + v̄ f ,1, the time derivative of z1

along (2), (12), and (14) is given by

ż1 = W(ẏ − 1N ṙ)− α̇1

= W(Φs̆2 + z2 + α2 + v̄1 + ğ1(x̆1) + µ̆1(x̆1,τ(t))− 1N ṙ)− α̇1 (15)

where W is defined in Section 2.1, y = [y1, . . . , yN ]
⊤, Φ = diag(ϕ2

1, . . . , ϕ2
N),

s̆2 = [s1,2, . . . , sN,2]
⊤, z2 = [z1,2, . . . , zN,2]

⊤, α2 = [α1,2, . . . , αN,2]
⊤, v̄1 = [v̄1,1, . . . , v̄N,1]

⊤,
x̆1 = [x1,1, . . . , xN,1]

⊤, ğ1(x̆1) = [g1,1 (x1,1), . . . , gN,1(xN,1)]
⊤, µ̆1(x̆1,τ(t)) = [µ1,1(x1,1(t −

τ1,1)), . . . , µN,1(xN,1(t − τN,1))]
⊤, 1N = [1, . . . , 1]⊤ ∈ RN , and α1 = [α1,1, . . . , αN,1]

⊤.
Choose the Lyapunov function

V1 =
1
2

z⊤1 z1 +
N

∑
f=1

(
Vf ,o +

1
2β f ,1

λ̃⊤
f ,1λ̃ f ,1

)
(16)

where λ̃ f ,1 = λ f ,1 − λ̂ f ,1 and β f ,1 > 0 is a design constant.
Substituting (10) and (15) into the time derivative of V1, we have

V̇1 ≤
N
∑

f=1

(
− χs⊤f s f + ∥g f (x f )∥2 + ∥µ f (x f ,τ(t))∥2 − 1

β f ,1
λ̃⊤

f ,1
˙̂λ f ,1

)
+z⊤1 (W(Φs̆2 + z2 + α2 + v̄1 − v1 + v1 + ğ1(x̆1) + µ̆1(x̆1,τ(t))− 1N ṙ)− α̇1)

(17)
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where v1 = [v1,1, . . . , vN,1]
⊤.

From Assumption 3, we have

∥µ f (x f ,τ(t))∥2 ≤
n f

∑
k=1

k
∑

l=1
ζ f ,k,l(x f ,l(t − τf ,l))

=
n f

∑
k=1

n f

∑
l=k

ζ f ,l,k(x f ,k(t − τf ,k))

(18)

z⊤1 W µ̆1(x̆1,τ(t)) ≤
1
4

z⊤1 z1 + ∥W∥2
N

∑
f=1

ζ f ,1,1(x f ,1(t − τf ,1)). (19)

Using (18) and (19) and choosing the distributed delay-independent PT virtual control
law v f ,1 as

v f ,1 = −χη f ,1e f ,1, (20)

we obtain

V̇1 ≤
N
∑

f=1

(
− χs⊤f s f + ∥g f (x f )∥2 − 1

β f ,1
λ̃⊤

f ,1
˙̂λ f ,1

)
+

N
∑

f=1
Λ f (x̄ f ,n f ,τ(t)) + z⊤1

(
W(Φs̆2 + z2 − χη1e1

+α2 + v̄1 − v1 + ğ1(x̆1)− 1N ṙ) + 1
4 z1 − α̇1

) (21)

where η1 = diag(η1,1, . . . , ηN,1), η f ,1 > 0 is a constant, e1 = [e1,1, . . . , eN,1]
⊤, and

Λ f = ∑
n f
k=1 ∑

n f
l=k ζ f ,l,k(x f ,k (t − τf ,k)) + ∥W∥2ζ f ,1,1(x f ,1(t − τf ,1)).

Using the inequality z⊤1 WΦs̆2 ≤ z⊤1 z1∥W∥2∥Φ∥2 + ∑N
f=1 χs⊤f s f /4 in (21) yields

V̇1 ≤
N
∑

f=1

(
− 3

4 χs⊤f s f + ∥g f (x f )∥2 − 1
β f ,1

λ̃⊤
f ,1

˙̂λ f ,1

)
+z⊤1 (W(z2 − χη1e1 − 1N ṙ) + Γ1 − κηz1 − α̇1) +

N
∑

f=1
Λ f (x̄ f ,n f ,τ(t))

(22)

where Γ1 = [Γ1,1(ς1,1), . . . , ΓN,1(ςN,1)]
⊤ = W(α2 + v̄1 − v1 + ğ1(x̆1)) + z1∥W∥2∥Φ∥2 +

z1/4 + κηz1 with ς f ,1 = [α f ,2, αj,2, v̄ f ,1, v̄j,1, y f , yj, b f r, z f ,1, χ]⊤, j ∈ N f and κη is a constant
to be determined later.

Using Γ f ,1(ς f ,1) = λ⊤
f ,1∆ f ,1(ς f ,1) + δ f ,1(ς f ,1) from the RBFNN approximation (1),

we obtain

V̇1 ≤
N
∑

f=1

(
− 3

4 χs⊤f s f + ∥g f (x f )∥2 − 1
β f ,1

λ̃⊤
f ,1

˙̂λ f ,1

)
+z⊤1 (W(z2 − χη1e1) + ∆1 + ϖ1 − κηz1 − α̇1) +

N
∑

f=1
Λ f (x̄ f ,n f ,τ(t))

(23)

where ∆1 = [λ⊤
1,1∆1,1(ς1,1), . . . , λ⊤

N,1∆N,1(ςN,1)]
⊤, ϖ1 = −W1N ṙ + δ1, and δ1 = [δ1,1, . . . , δN,1]

⊤.
The neural-network-based PT compensating variable α f ,1 is provided in a distributed

manner as follows:

α̇ f ,1 = χ
N

∑
j=1

a f j(ηj,1αj,1 − η f ,1α f ,1)− χb f η f ,1α f ,1 + λ̂⊤
f ,1∆ f ,1(ς f ,1) (24)

where α f ,1(0) = 0 and λ̂ f ,1, f ∈ V̄ is tuned by the following adaptive law

˙̂λ f ,1 = β f ,1(∆ f ,1(ς f ,1)z f ,1 − ϑ f ,1λ̂ f ,1) (25)
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with a constant ϑ f ,1 > 0.
Substituting (24) and (25) into (23) gives

V̇1 ≤
N
∑

f=1

(
− 3

4 χs⊤f s f + ∥g f (x f )∥2 + ϑ f ,1λ̃⊤
f ,1λ̂ f ,1

)
+z⊤1 (W(z2 − χη1z1)− κηz1 + ϖ1) +

N
∑

f=1
Λ f (x̄ f ,n f ,τ(t)).

(26)

Remark 5. For the fully distributed PT tracker design, the delay-independent virtual controller (20)
and the dynamics (24) of the adaptive compensating variable α f ,1 are designed using the time-
varying gain function χ and adaptive tuning vector λ̂ f ,1 in a distributed manner. In (24), the
adaptive function approximation approach using neural networks is employed to compensate for the
distributed terms, including filtering errors.

Step 2: For the design of the k-th local adaptive virtual tracking controller v f ,k, we
choose the Lyapunov function

V2 =
N

∑
f=1

[ n f −1

∑
k=2

(
1
2

z2
f ,k +

1
2β f ,k

λ̃⊤
f ,kλ̃ f ,k

)]
(27)

where β f ,k > 0 is the design constant and λ̃ f ,k = λ f ,k − λ̂ f ,k.
Using (4), (12), and (14), V̇2 is given by

V̇2 ≤
N
∑

f=1

[ n f −1

∑
k=2

(
z f ,k(z f ,k+1 + α f ,k+1 + v̄ f ,k − v f ,k + v f ,k

+ϕk
f θ f ,k(y f − ŷ f )− ˙̄v f ,k−1 − α̇ f ,k)− 1

β f ,k
λ̃⊤

f ,k
˙̂λ f ,k

)]
.

(28)

Using the virtual control law

v f ,k =− χη f ,ke f ,k − ϕk
f θ f ,k(y f − ŷ f ) + χσf ,k−1(v f ,k−1 − v̄ f ,k−1), (29)

we have

V̇2 ≤
N
∑

f=1

[ n f −1

∑
k=2

(
z f ,k(z f ,k+1 − χη f ,ke f ,k + α f ,k+1 + v̄ f ,k − v f ,k − α̇ f ,k)− 1

β f ,k
λ̃⊤

f ,k
˙̂λ f ,k

)]
≤

N
∑

f=1

[ n f −1

∑
k=2

(
z f ,k(z f ,k+1 − χη f ,ke f ,k + Γ f ,k(x f ,k)− α̇ f ,k)− 1

β f ,k
λ̃⊤

f ,k
˙̂λ f ,k

)
− ∥W∥2z2

f ,2

] (30)

where Γ f ,2(ς f ,2) = α f ,3 + v̄ f ,2 − v f ,2 + ∥W∥2z f ,2 and Γ f ,l(ς f ,l) = α f ,l+1 + v̄ f ,l − v f ,l , l =

3, . . . , n f − 1 with ς f ,k = [α f ,k+1, v̄ f ,k − v f ,k, z f ,k, x f ,k]
⊤, k = 2, . . . , n f − 1.

Using the function approximation (1), it holds that Γ f ,k(ς f ,k) = λ⊤
f ,k∆ f ,k(ς f ,k) + δ f ,k(ς f ,k).

Then, the adaptive compensating variable α f ,k is constructed by

α̇ f ,k = −χη f ,kα f ,k + λ̂⊤
f ,k∆ f ,k(ς f ,k) (31)

where α f ,k(0) = 0 and λ̂ f ,k is updated using

˙̂λ f ,k = β f ,k(∆ f ,k(ς f ,k)z f ,k − ϑ f ,kλ̂ f ,k) (32)

with a constant ϑ f ,k > 0.
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Substituting (31) and (32) into (30) results in

V̇2 ≤
N

∑
f=1

[ n f −1

∑
k=2

(
z f ,k(z f ,k+1 − χη f ,kz f ,k + δ f ,k) + ϑ f ,kλ̃⊤

f ,kλ̂ f ,k

)
− ∥W∥2z2

f ,2

]
. (33)

Step 3: For the design of the event-triggered PT tracking law u f , we choose the
Lyapunov function

V3 =
N

∑
f=1

[
1
2

z2
f ,n f

+

n f

∑
k=1

L f ,k +
1

2β f ,n f

˜̄λ2
f ,n f

]
(34)

where ˜̄λ f ,n f
= λ̄ f ,n f

− ˆ̄λ f ,n f
, β f ,n f

> 0 is a design constant, λ̄ f ,n f
> 0 is an unknown

constant determined to be later, ˆ̄λ f ,n f
is an estimate of λ̄ f ,n f

, and L f ,k is the Lyapunov–
Krasovskii function, defined as

L f ,k =
eι f ,k/ρ

1 − ῑ f ,k

∫ t

t−τf ,k(t)
e−(t−ν)/ρΛ̄ f ,k(x f ,k)dν (35)

with Λ̄ f ,1(x f ,1) = ∥W∥2ζ f ,1,1(x f ,1) + ∑
n f
l=1 ζ f ,l,1(x f ,1), Λ̄ f ,m(x f ,m) = ∑

n f
l=k ζ f ,l,k(x f ,k), m =

2, . . . , n f − 1, and Λ̄ f ,n f
(x f ,n f

) = ζ f ,n f ,n f
(x f ,n f

).
Using (4), the time derivative of V3 is obtained as

V̇3 ≤
N
∑

f=1

[
z f ,n f

(u f + ϕ
n f
f θ f ,n f

(y f − ŷ f )− ˙̄v f ,n f −1)

− 1
ρ

n f

∑
k=1

L f ,k + ρΓ f ,n f
(ς f ,n f

)− ∥g f (x f )∥2

−
n f

∑
k=1

Λ̄ f ,k(x f ,k(t − τf ,k))− 1
β f ,n f

˜̄λ f ,n f

˙̄̂
λ f ,n f

] (36)

where Γ f ,n f
(ς f ,n f

) = ∑
n f
k=1 eι f ,k/ρΛ̄ f ,k(x f ,k(t))/(ρ(1 − ῑ f ,k)) + ∥g f (x f )∥2/ρ with

ς f ,n f
= x̄ f ,n f

.

Using the neural network approximation Γ f ,n f
(ς f ,n f

) = λ⊤
f ,n f

∆ f ,n f
(ς f ,n f

)+ δ f ,n f
(ς f ,n f

),
we have

ρΓ f ,n f
(ς f ,n f

) ≤ ρλ̄ f ,n f
∥∆ f ,n f

(ς f ,n f
)∥+ ρδ̄ f ,n f

(37)

where λ̄ f ,n f
is a constant satisfying ∥λ f ,n f

∥ ≤ λ̄ f ,n f
.

The dynamic event-triggered PT actual control law and triggered condition are pro-
posed as

u f (t) =û f (t f ,h), ∀t ∈ [t f ,h, t f ,h+1) (38)

t f ,h+1 = inf{t > t f ,h|
1
χ

ũ2
f − χ

n f

∑
k=1

z2
f ,k >

χ

φ f
ϱ f } (39)

where ũ f = u f − û f is the input triggering error, φ f is a positive constant, t f ,h, h ∈ Z+ is
the update time of the control input, t f ,1 = 0, the dynamic variable ϱ f is provided by the
following differential equation

ϱ̇ f =− χκ f ϱ f + χ

n f

∑
k=1

z2
f ,k −

1
χ

ũ2
f (40)
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with ϱ f (0) > 0, a positive constant κ f , and the adaptive control signal û f is designed as

û f =− χη f ,n f
z f ,n f

− ϕ
n f
f θ f ,n f

(y f − ŷ f ) + χσf ,n f −1(v f ,n f −1 − v̄ f ,n f −1)

−
z f ,n f

z2
f ,n f

+ ϵ̄ f

ˆ̄λ f ,n f
∥∆ f ,n f

(ς f ,n f
)∥ (41)

˙̄̂
λ f ,n f

=β f ,n f

(
∥∆ f ,n f

(ς f ,n f
)∥

z2
f ,n f

z2
f ,n f

+ ϵ̄ f
− ϑ f ,n f

ˆ̄λ f ,n f

)
(42)

with constants η f ,n f
> 0, ϑ f ,n f

> 0, and ϵ̄ f > 0. From (38) and (39), the control input u f (t)
has a constant value û f (t f ,h) during the time interval [t f ,h, t f ,h+1). Then, the control input
u f (t) is updated to û f (t f ,h+1) when (39) is satisfied.

Substituting u f = û f + ũ f , (37), (41), and (42) into (36), we obtain

V̇3 ≤
N
∑

f=1

[
z f ,n f

(ũ f − χη f ,n f
z f ,n f

)− 1
ρ

n f

∑
k=1

L f ,k +

(
ρ −

z2
f ,n f

z2
f ,n f

+ϵ̄ f

)
λ̄ f ,n f

∥∆ f ,n f
(ς f ,n f

)∥

+ρδ̄ f ,n f
−

n f

∑
k=1

Λ̄ f ,k(x f ,k(t − τf ,k))− ∥g f (x f )∥2 + ϑ f ,n f
˜̄λ f ,n f

ˆ̄λ f ,n f

]
.

(43)

Remark 6. Different from the existing event-triggered PT control results utilizing static mech-
anisms [48–50], we design the dynamic event-triggered mechanism consisting of (39) and (40).
In this design, the time-varying gain function χ plays a crucial role in ensuring the PT stability
of the event-triggered consensus tracking system and maintaining the positivity of the dynamic
variable ϱ f . Notably, when χ is not considered (i.e., χ = 1), the proposed dynamic event-triggered
mechanism aligns with similar ones reported in [39,40]. Therefore, the design approach presented
for event-triggered PT tracking can be regarded as a more general form.

3.4. Practical PT Stability Analysis

In this subsection, we analyze the practical PT stability of the proposed dynamic
event-triggered PT control system.

Lemma 2. For ϱ f (0) > 0, ϱ f (t) > 0 is ensured for all t ≥ 0.

Proof. Using (39), ũ2
f /χ−χ ∑

n f
k=1 z2

f ,k ≤ χϱ f /φ f is satisfied for the time intervals [t f ,h, t f ,h+1),
∀h ∈ Z+. Thus, from (40), we obtain ϱ̇ f ≥ −χ(κ f + (1/φ f ))ϱ f . The solution is given by

ϱ f (t) ≥ e
−(κ f +

1
φ f

)
∫ t

0 χ(w)dw
ϱ f (0) > 0. (44)

This completes the proof of this lemma.

Remark 7. To establish the non-existence of Zeno behavior, it is crucial to show the positivity of the
dynamic variable ϱ f based on differential Equation (40) incorporating χ. In Lemma 2, we establish
the positivity of ϱ f by utilizing the event-triggered condition (39) and the dynamics (40), regardless
of the use of χ. This outcome will be employed in proving the non-existence of Zeno behavior, as
outlined in Theorem 1.

The main theorem of this study is as follows.

Theorem 1. Consider the time-delay multiagent system (2). The dynamic event-triggered PT
tracking scheme (4) and (38)-(42) ensures that the practical PT stability of the consensus tracking
errors y f − r is ensured while all closed-loop signals are uniformly bounded. Furthermore, Zeno
behavior is avoided.
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Proof. Defining the overall Lyapunov function V = ∑3
i=1 Vi + ∑N

f=1 ϱ f and using the

equality ∑N
f=1 ∑

n f
k=1 Λ̄ f ,k (x f ,k(t − τf ,k)) = ∑N

f=1 Λ f (x̄ f ,n f ,τ(t)), we have

V̇ ≤
N
∑

f=1

[
− 3

4 χs⊤f s f − 1
ρ

n f

∑
k=1

L f ,k −
n f

∑
k=2

χη f ,kz2
f ,k +

n f −1

∑
k=2

z f ,kz f ,k+1 + z f ,n f
ũ f − χκ f ϱ f

+
n f −1

∑
k=2

z f ,kδ f ,k +
n f −1

∑
k=1

ϑ f ,kλ̃⊤
f ,kλ̂ f ,k + ϑ f ,n f

˜̄λ f ,n f
ˆ̄λ f ,n f

− ∥W∥2z2
f ,2

+
(ρ−1)z2

f ,n f
+ρϵ̄ f

z2
f ,n f

+ϵ̄ f
λ̄ f ,n f

∥∆ f ,n f
(ς f ,n f

)∥+ ρδ̄ f ,n f
+ χ

n f

∑
k=1

z2
f ,k −

1
χ ũ2

f

]
− 1

2 χz⊤1 Wηz1 − κηz⊤1 z1 + z⊤1 (Wz2 + ϖ1)

(45)

where Wη = Wη1 + η1W⊤.
Using Young’s inequality, 1 ≤ χ ≤ 1/ρ, and ϵ̄ f /(z2

f ,n f
+ ϵ̄ f ) ≤ 1, the following

inequalities are obtained as

z f ,kz f ,k+1 ≤ χ

2
z2

f ,k +
χ

2
z2

f ,k+1 (46)

z f ,n f
ũ f ≤

χ

4
z2

f ,n f
+

1
χ

ũ2
f (47)

z f ,kδ f ,k ≤
χ

4
z2

f ,k + δ̄2
f ,k (48)

λ̃⊤
f ,kλ̂ f ,k ≤ −1

2
λ̃⊤

f ,kλ̃ f ,k +
1
2

λ⊤
f ,kλ f ,k (49)

˜̄λ f ,n f
ˆ̄λ f ,n f

≤ −1
2

˜̄λ2
f ,n f

+
1
2

λ̄2
f ,n f

(50)

(ρ−1)z2
f ,n f

+ρϵ̄ f

z2
f ,n f

+ϵ̄ f
λ̄ f ,n f

∥∆ f ,n f
(ς f ,n f

)∥

≤ ρϵ̄ f

z2
f ,n f

+ϵ̄ f
λ̄ f ,n f

∥∆ f ,n f
(ς f ,n f

)∥

≤ ρλ̄ f ,n f
m̄ f ,n f

(51)

z⊤1 Wz2 ≤
N

∑
f=1

(
1
4

z2
f ,1 + ∥W∥z2

f ,2

)
(52)

z⊤1 ϖ1 ≤
N

∑
f=1

1
4

z2
f ,1 + ϖ̄2

1 (53)

where ϖ̄1 = ∥W∥Nr̄ + ∑N
f=1 δ̄ f ,1 with a constant r̄ satisfying |ṙ| ≤ r̄.

Substituting (46)-(51) into (45), using 1 ≤ χ ≤ 1/ρ, and selecting κη = 1/2, η f ,2 =
7/4 + η∗

f ,2, η f ,m = 9/4 + η∗
f ,m, m = 3, . . . , n f − 1, and η f ,n f

= 7/4 + η∗
f ,n f

yields

V̇ ≤
N
∑

f=1

[
− 3

4 χs⊤f s f −
n f

∑
k=1

χL f ,k −
λWη

2 χz2
f ,1 −

n f

∑
k=2

χη∗
f ,kz2

f ,k − χκ f ϱ f −
n f −1

∑
k=1

ρ
2 χϑ f ,kλ̃⊤

f ,kλ̃ f ,k

− ρ
2 χϑ f ,n f

˜̄λ2
f ,n f

]
+ ξ1

≤ −χξ2V + ξ1

(54)

where η∗
f ,k > 0 is a constant, λWη

denotes the minimum eigenvalue of Wη , ξ1 = ϖ̄2
1 +

∑N
f=1[∑

n f −1
k=2 (δ̄2

f ,k + ϑ f ,kλ⊤
f ,kλ f ,k/2) + ρδ̄ f ,n f

+ ϑ f ,n f
λ̄2

f ,n f
/2+ ρλ̄ f ,n f

m̄ f ,n f
], and ξ2 = min∀ f ,k

{3/(4p̄ f ), λWη
, 2η∗

f ,k, β f ,kϑ f ,kρ, κ f }; p̄ f is the maximum eigenvalue of Pf .



Fractal Fract. 2024, 8, 545 13 of 22

Practical PT stability: From (54), the solution is given by

V(t) ≤ e−M(t)V(0) + ξ1e−M(t)
∫ t

0
eM(w)dw (55)

where M(t) = ξ2
∫ t

0 χ(w)dw. For all t ∈ [0, T), it is satisfied that

∫ t

0
χ(w)dw = cT

ln((cρ − 1)t + T)
cρ − 1

− cT
ln(T)
cρ − 1

. (56)

Using (56), it holds that

lim
t→T

∫ t

0
χ(w)dw = cT

ln cρ

cρ − 1
≜ M∗. (57)

From (57), we have

limt→T ξ1e−M(t) ∫ t
0 eM(w)dw = ξ1

∫ T
0 eM(w)dw

limt→T eM(t)

= ξ1

∫ T
0 eM(w)dw

eξ2 M∗ .
(58)

Using (56), we obtain

∫ T
0 eM(w)dw =

∫ T
0

(
(cρ−1)w+T

T

) ξ2cT
cρ−1

dw

= T
ξ2cT+(cρ−1)

{
(cρ)

ξ2cT
cρ−1+1 − 1

}
.

(59)

Using (57)–(59) yields

lim
t→T

V(t) ≤e−ξ2 M∗
V(0) +

ξ1T
ξ2cT + (cρ − 1)

{
cρ − (cρ)

− ξ2cT
cρ−1

}
≜ V̄ (60)

where V̄ is a constant. Therefore, s f , z f ,k, λ̃ f ,k, and ˜̄λ f ,n f
are bounded within a pre-specified

time T. From the boundedness of λ f ,k, λ̂ f ,k is bounded within a pre-specified time T. Then,
using Lemma 1, there exists a constant Λ∆ f ,k such that |λ̂⊤

f ,k∆ f ,k(ς f ,k)| ≤ Λ∆ f ,k . Using (24)

and (31), and defining the Lyapunov function Vα = α⊤1 α1/2 + ∑N
f=1 ∑

n f
k=2 α2

f ,k/2, we have

V̇α ≤
N
∑

f=1

[ n f

∑
k=2

(
− χη f ,kα2

f ,k +
χ
2 α2

f ,k +
1
2 Λ2

∆ f ,k

)
−

λWη

2 χα2
f ,1 +

λWη χ

4 α2
f ,1 +

Λ2
∆ f ,1

λWη

]
≤ −χξα2 Vα + ξα1

(61)

where ξα2 = min∀ f ,m=3,...,n f −1{5/2 + 2η∗
f ,2, 7/2 + 2η∗

f ,m, 5/2 + 2η∗
f ,n f

, λWη
/2} and ξα1 =

∑N
f=1(∑

n f
k=2 Λ2

∆ f ,k
/2 + Λ2

∆ f ,1
/λWη

). By a procedure similar to that in (55)–(60), we obtain

lim
t→T

Vα(t) ≤e−ξα2 M∗
Vα(0) +

ξα1 T
ξα2 cT + (cρ − 1)

{
cρ − (cρ)

− ξα2 cT
cρ−1

}
≜ V̄α (62)

with a constant V̄α. As the design constant ρ decreases, M∗ in (57) increases. Thus, using
cρ − 1 < 0, V̄ and V̄α can be reduced by decreasing ρ. Based on z⊤1 z1/2 ≤ V, α⊤1 α1/2 ≤ Vα,
and (14), the consensus tracking error vector e1 is practically PT stable, as follows:
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lim
t→T

∥e1(t)∥ ≤
√

2V̄ +
√

2V̄α ≜ ϵ̄ (63)

∥e1(t)∥ ≤ ϵ̄, ∀t ≥ T. (64)

Using e1 = W(y − 1Nr), ∥y(t)− 1Nr(t)∥ ≤ ϵ̄/Wm ≜ ϵ, ∀t ≥ T is guaranteed with a
minimum singular value Wm of W . Additionally, the bound ϵ/Wm can be kept arbitrarily
small by decreasing ρ.

Exclusion of Zeno behavior: Let us prove that the Zeno behavior does not exist under
the dynamic event-triggered condition (39). We define t̄ f ,h = t f ,h+1 − t f ,h. By assuming
t̄ f ,h → 0 and using u f (t) = û f (t f ,h), ∀t ∈ [t f ,h, t f ,h+1) and the continuity of û f , we have

lim
t̄ f ,h→0

|ũ f (t f ,h + t̄ f ,h)| = lim
t̄ f ,h→0

|û f (t f ,h)− û f (t f ,h + t̄ f ,h)| = 0. (65)

Contrarily, from (39), (44), 1 ≤ χ(t) ≤ 1/ρ, and χ ∑
n f
k=1 z2

f ,k ≥ 0, we have

|ũ f (t f ,h+1)| >
√

χ

φ f
e
−(κ f +

1
φ f

)
∫ t

0 χ(w)dw
ϱ f (0) > 0. (66)

This implies that (65) and (66) are contradictory. Thus, t̄ f ,h → 0 is not satisfied, and
there exists a constant t̂ f ,h > 0, such that t̄ f ,h ≥ t̂ f ,h. Namely, the Zeno behavior does
not exist.

Remark 8. The Lyapunov–Krasovskii function (35) is selected using the design parameter ρ of
the time-varying gain function χ to deal with the time delay term ∑N

f=1 Λ f (x̄ f ,n f ,τ(t)) in (26) in
the PT stability sense. Then, the adaptive function approximation term based on the normalized

error −
z f ,n f

z2
f ,n f

+ϵ̄ f

ˆ̄λ f ,n f
∥∆ f ,n f

(ς f ,n f
)∥ is designed in (41). Using the inequality (51), the bound

ρλ̄ f ,n f
m̄ f ,n f

of the nonlinear compensating term can be reduced by decreasing on the design param-
eter ρ.

Remark 9. The following design guidelines are provided based on the practical PT stability result.
(i) The practical PT convergence bound ϵ̄ in (63) and (64) can be reduced by decreasing V̄ and

V̄α. From (60) and (62), reducing ρ leads to a decrease in V̄ and V̄α. Therefore, the practical PT
convergence bound ϵ̄ can be adjusted using ρ.

(ii) As indicated in (60) and (62), increasing ξ2 and ξα2 also decreases V̄ and V̄α. Thus, select-
ing appropriate design parameters to increase ξ2 and ξα2 can reduce the practical PT convergence
bound ϵ̄.

4. Simulation Results

To demonstrate the effectiveness of the proposed method in achieving consensus
tracking within a prescribed time, even in the presence of unknown time-varying delays and
uncertainties in nonlinear multiagent systems, the following multiple two-stage chemical
reactors with delayed recycle streams are considered:

ẋ f ,1 =
1−R f ,a

Vf ,a
x f ,2 + g f ,1(x f ,1) + µ f ,1(x f ,1,τ(t))

ẋ f ,2 =
Ff ,b
Vf ,b

u f + g f ,2(x̄ f ,2) + µ f ,2(x̄ f ,2,τ(t))
(67)

where f = 1, . . . , 4, g f ,1 = −(1/G f ,a)x f ,1 − K f ,ax f ,1, g f ,2 = −(1/G f ,b)x f ,2 − K f ,bx f ,2,
µ f ,1 = 1.5 sin(x f ,1(t − τf ,1)), and µ f ,2 = (R f ,a/Vf ,b)x f ,1(t − τf ,1) + (R f ,b/Vf ,b)x f ,2(t −
τf ,2) + 0.5e−0.5x f ,1(t−τf ,1) cos(x2

f ,2(t − τf ,2)). Here, Vf ,a and Vf ,b are the reactor volumes,
Ff ,b denotes the feed rate, R f ,a and R f ,b denote the recycle flow rates, G f ,a and G f ,b are
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the reactor residence times, and K f ,a and K f ,b denote the reaction constants. The sys-
tem parameters of the proposed approach are chosen as Vf ,a = Vf ,b = 0.5, Ff ,b = 0.1,
K1,a = K1,b = K3,a = K3,b = 0.3, K2,a = K2,b = K4,a = K4,b = 0.5, R f ,a = R f ,b = 0.5,
and G f ,a = G f ,b = 2. The time-varying delays are set to τf ,1(t) = 0.2(4 + sin(t)) and
τf ,2(t) = 0.2(4 + cos(t)), and the leader signal r is defined as r = cos(1.5t). The network
graph topology for agents is illustrated in Figure 1, where b3 = 2, a13 = a23 = a43 = a41 = 2,
and a f j = 0 and b f = 0 otherwise. The sampling time is set to 0.002 s.

Figure 1. Directed graph.

We compare the consensus-tracking performance of the proposed event-triggered PT
command-filtered backstepping approach with the existing consensus-tracking approach
(CA) [27] and dynamic surface consensus-tracking approach (DSCA) [32] for nonlinear
multiagent systems with unknown time delays. The design parameters for the PT gain
function of the proposed approach are ρ = 0.05, c = 2, and T = 1 s. The PT observers and
controllers of the proposed approach are parameterized with θ f ,k = 4, η f ,1 = 1, η f ,2 = 2,
β f ,k = 4, ϑ f ,k = 0.02, σf ,1 = 5, φ f = 0.25, κ f = 0.0004, ϵ̄ f = 0.1, and ϱ f (0) = 2, where

f = 1, . . . , 4 and k = 1, 2. Using θ f ,k = 4, Pf is set to Pf =

[
0.1563 0.125
0.125 1.125

]
. This study

sets the system conditions and convergence times similarly to previous studies. The design
parameters of the controller reported in [27] are selected as follows: ϕi,1 = ϕi,2 = 1, ki,1 = 15,
ki,2 = 5, ri = 1, σi = 0.02, λi,1,1 = λi,2,1 = 13, and λi,1,2 = λi,2,2 = 100 with i = 1, . . . , 4.
The design parameters of the controller in [32] are selected as follows: ki,1 = 50, ki,2 = 10,
λi,1 = 0.5, λi,2 = 0.03, ϑi,m = 0.001, and σi,m = 0.002 with i = 1, . . . , 4 and m = 1, 2.

The distributed delay-independent PT consensus-tracking results are compared in
Figure 2, where the initial conditions of followers are set to x1(0) = [2, 0]⊤, x2(0) = [−1, 0]⊤,
x3(0) = [4, 0]⊤, and x4(0) = [0, 0]⊤. In addition, Figure 2a demonstrates that the proposed
approach allows presetting the PT synchronization time T = 1 of the output signals y f
to the leader signal r by designing the PT T in χ. In contrast, the synchronization times
of the existing approaches [27,32] are determined by adjusting the design parameters
through trial and error. The control performance of the proposed consensus-tracking
scheme after the synchronization time surpasses that of the existing control schemes [27,32],
as depicted in Figure 2b. The proposed approach can ensure the PT convergence of the
consensus-tracking errors compared to existing approaches [27,32]. The control inputs are
presented in Figure 2c,d. Table 1 compares the number of signal transmissions to implement
the controllers. The proposed dynamic event-triggered control inputs demand fewer
transmissions than the time-triggered control inputs of the existing approaches [27,32].
The proposed dynamic event-triggered control transmissions are about 5.9%, 5.8%, 6.1%,
and 6.6% of the time-triggered control [27,32]. The cumulative number of events and
time intervals between two consecutive events of the proposed approach are presented in
Figure 3. Figure 4 displays the proposed dynamic variables ϱ f for event-triggering and
adaptive estimates, illustrating that ϱ f > 0 is ensured, as proved in Lemma 2, and that the
adaptive estimates are bounded. The proposed PT consensus-tracking performance under
various PT and initial state conditions is demonstrated in Figures 5 and 6, without altering
other design parameters. Figure 5 reveals that the distributed PT consensus tracking can
be achieved under the given PT conditions T = 0.5 and 1.5 s. Despite the different initial
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conditions for state variables, Figure 6 demonstrates that the output signals of followers
are synchronized to the leader signal at the PT T = 1 s.
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Figure 2. Comparison of PT consensus tracking results, errors, and control inputs (a) y f and r (b) y f −r
(c) u1 and u2 (d) u3 and u4.

Table 1. Comparison of the number of signal transmissions.

Proposed [27,32]

Follower 1 297 5000

Follower 2 289 5000

Follower 3 305 5000

Follower 4 331 5000

The external disturbances d1 = 2 sin(t) and d2 = 2 cos(t) are added to the first and
second equations of the time-delay system (67), respectively, to demonstrate the robustness
of the proposed method. Figure 7 presents the consensus-tracking results. Although the
external disturbances influence the time-delay system (67), the consensus-tracking errors
converge to nearly zero within the PT T = 1. Thus, the proposed approach is robust
against external disturbances and time delays. This result highlights that the proposed
delay-independent PT consensus-tracking approach ensures the practical PT convergence
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and robustness of the consensus-tracking errors, even when the output signals are only
feedback and the time delays are unknown.
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Figure 3. The cumulative number of events and inter-event times for the proposed approach: (a) the
cumulative number of events; (b) inter-event times for followers 1 and 2; (c) inter-event times for
followers 3 and 4.
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Figure 4. Cont.
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Figure 4. Dynamic variables and adaptive estimates for the proposed approach: (a) dynamic variables
for event triggering; (b) ∥λ̂ f ,1∥; (c) ˆ̄λ f ,2.
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Figure 5. Distributed PT consensus tracking results of the proposed approach under different
prescribed times: (a) T = 0.5 s; (b) T = 1.5 s.
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Figure 6. Distributed PT consensus tracking results of the proposed approach under different
initial conditions: (a) x1(0) = [1, 0]⊤, x2(0) = [0, 0]⊤, x3(0) = [−1, 0]⊤, and x4(0) = [−2, 0]⊤;
(b) x1(0) = [1, 0]⊤, x2(0) = [2, 0]⊤, x3(0) = [3, 0]⊤, and x4(0) = [4, 0]⊤.
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Figure 7. Robust tracking result of the proposed approach under external disturbances: (a) tracking
results y f and r, and errors y f −r; (b) u1 and u2; (c) u3 and u4.

5. Conclusions

This article has addressed the dynamic event-triggered control problem for delay-
independent PT output-feedback consensus tracking in uncertain nonlinear strict-feedback
multiagent systems with unknown time-varying delays. The challenge is ensuring robust
and efficient consensus tracking with uncertainties, time delays, and external disturbances
while minimizing the frequency of data transmissions. This study has developed an
observer-based adaptive PT command-filtered backstepping controller integrated with a
dynamic event-triggered mechanism to address this problem. This approach has applied a
time-varying gain function to construct distributed adaptive compensating variables and
dynamic event-triggering variables. The critical innovation of the proposed method has
been its ability to ensure PT convergence and robustness with reduced data transmission,
even when dealing with unknown time delays. The proposed method has addressed the
limitations of static event-triggering mechanisms, which do not adequately account for
the dynamic nature of practical network environments. The proposed approach adapts to
varying network conditions by incorporating dynamic event-triggering, improving the effi-
ciency and reliability of the control system. This study has derived a Lyapunov–Krasovskii
function that incorporates the design parameter of the time-varying gain function to ana-
lyze the PT stability of the proposed method. This analysis confirms that the PT stability is
maintained, ensuring that consensus-tracking errors remain in a predetermined neighbor-
hood around zero within a PT. The method avoids the Zeno phenomenon, which can occur
with event-triggered control, enhancing its practical applicability.
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The proposed method offers several critical benefits:

• Robustness to uncertainties and delays: the controller is robust against uncertainties,
time delays, and external disturbances, maintaining PT stability under challeng-
ing conditions.

• Efficiency in data transmission: the method improves the control system efficiency
without sacrificing performance by reducing the data transmission frequency.

• Adaptability to dynamic network conditions: the dynamic event-triggering mecha-
nism enables the control strategy to adapt to varying network conditions, which is
crucial for practical implementations in real-world systems.

• Prevention of the Zeno phenomenon: the proposed approach avoids the Zeno phe-
nomenon, ensuring that the event-triggering mechanism operates effectively without
causing problems in the system.
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