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Abstract: Granular soil is a porous medium composed of particles with different sizes
and self-similar structures, exhibiting fractal characteristics. It is well established that
variations in these fractal properties, such as particle size distribution (PSD), significantly
influence the mechanical behavior of the soil. In this paper, a three-dimensional (3D)
Discrete Element Method (DEM) is applied to study the mechanical and critical-state
behavior of the idealized granular assemblages, in which various PSD shape parameters
are considered, including the coefficient of uniformity (Cu), the coefficient of curvature
(Cc), and the coefficient of size span (Cs). In addition, the same PSDs but with different
mean particle sizes (D50) are also employed in the numerical simulations to examine the
particle size effect on the mechanical behavior of the granular media. Numerical triaxial
tests are carried out by imposing axial compression under constant mean effective pressure
conditions. A unique critical-state stress ratio in p′-q space is observed, indicating that the
critical friction angle is independent of the shape of the PSD. However, in the e-p′ plane,
the critical state line (CSL) shifts downward and rotates counterclockwise, as the grading
becomes more widely distributed, i.e., the increasing coefficient of span (Cs). Additionally,
a decrease in the coefficient of curvature (Cc) would also move the CSL downward but with
negligible rotation. However, it is found that the variations in the mean particle size (D50)
and coefficient of uniformity (Cu) do not affect the position of the CSL in the e-p′ plane.
The numerical findings may shed some light on the development of constitutive models
of sand that undergo variations in the grading due to crushing and erosion, and address
fractal problems related to micro-mechanics in soils.

Keywords: particle size distribution; granular material; discrete element method; critical
state theory

1. Introduction
The particle size distribution (PSD) refers to different particle size fractions within

granular material. It is well established that these fractions are fundamental in determining
the texture of the material and are a key characteristic of granular soils. The distribution
of these fractions significantly influences fundamental properties such as compaction,
permeability, shear strength, and consolidation. Therefore, a comprehensive understanding
of particle size distribution is essential for accurately predicting the behavior of granular
soils in engineering applications. Recently, research on the effects of PSD has gained traction,
particularly in the areas of particle breakage [1–3] and gap-graded assemblies [4,5].
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Fractal theory has been widely used in describing and studying the particle size
distribution (PSD) of granular material [6–10]. However, in geotechnical engineering, the
wide particle size range of granular materials, such as sand and gravel, makes fractal
representation challenging. Therefore, a more in-depth study of the influence of the PSD
shape is necessary. Among the various PSD descriptors, the coefficient of uniformity (Cu)
has been the most widely used to characterize the PSD shape [11–15]. However, since this
parameter is relatively simple, it may not fully capture the complexities of PSD characteristics.
As a result, other parameters, such as the coefficient of curvature (Cc) [16–18] and the
coefficient of size span Cs [19], have started to receive more attention. Note, however, that
these parameters are defined as a function of individual diameters (e.g., D10, D30, D50, and
D60); hence, they may not always describe fully a given PSD. A more detailed investigation
of these additional PSD shape descriptors is nevertheless warranted.

Critical state theory (CST), first formulated by Roscoe et al. [20], serves as the founda-
tion for soil constitutive models. It describes an asymptotic state in which the ratio of the
shear stress q to mean effective stress p′ and the volume reach a steady condition during
further shearing. Numerous studies on particle breakage, e.g., [21–23], have shown that
the critical state locus shifts as the PSD changes. Although the shear strength at the critical
state appears to be unaffected by the coefficient of uniformity Cu [24,25], Li et al. [26] found
that, for a broader range of Cu, deviations in the shear strength can occur. Furthermore, as
the PSD widens, the critical state locus in the e-p′ plane initially shifts downward and may
later move back upward [27–29]. This raises the following question: how does the PSD
influence the critical state shear strength and the location of the critical state line (CSL) in
the e-p′ plane?

While most studies have focused on the effect of Cu on the mechanical behavior
of granular materials, other PSD shape descriptors have received limited attention. The
objective of this study is to analyze the impact of four PSD descriptors—mean particle size
D50, coefficient of uniformity Cu, coefficient of curvature Cc, and coefficient of size span
Cs—on the shear and critical state behaviors of granular materials. These descriptors are
defined in Equations (1)–(3):

Cu =
D60

D10
(1)

Cc =
D30

2

D10D60
(2)

Cs =
D100 − D0

D100 + D0
(3)

where D100 is the maximum particle diameter, D0 is the minimum particle diameter, D10 is
the 10% cumulative passing particle diameter, and D60 is the 60% cumulative passing
particle diameter.

To investigate these effects, the Discrete Element Method (DEM) [30], a powerful and
efficient tool for studying granular materials, is employed. The DEM allows for isolating
the effects of the PSD while minimizing the influence of other variables, such as the particle
shape. Seven distinct PSDs are carefully constructed to isolate the influence of each shape
descriptor. The results show that, although the evolution of deviatoric stress varies with
different PSDs, the ultimate shear strength remains invariant across all PSD descriptors.
Moreover, an increase in the size span Cs and a decrease in the coefficient of curvature
Cc tend to shift the CSL downward in the e-logp′ plane. However, the position of the CSL
in the e-logp′ plane is not significantly influenced by PSDs with particle size scaling alone
or PSDs with varying Cu.
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2. Critical State Framework and Simulation Details
2.1. Critical State Framework

The critical state theory (CST) proposed by Roscoe et al. [20] is a milestone in soil
mechanics and has fundamentally shaped the field [31]. The critical state (CS) refers to the
ultimate state for particulate materials, in which the material continues to deform in shear
at a constant volume and under constant stresses. Mathematically, the critical state can be
expressed as follows:

.
p = 0,

.
q = 0,

.
εv = 0 but

.
εq ̸= 0 (4)

where p is the mean effective normal stress, q is the deviatoric stress, εv is the volumetric
strain, and εq is the deviatoric strain. The over-dot notation indicates the rate of change in
each quantity.

Two sufficient and necessary conditions for the critical state were defined as follows:

η = ηc(q/p)c = M, e = ec = êc(p) (5)

where η is the stress ratio, M is the critical state stress ratio, and ec is the critical state void
ratio, which is only related to p, resulting in a unique critical state line (CSL) in the e- space.
The first part of Equation (5) defines a straight line in the p-q space, which is termed the
critical state line in the p-q space. The slope M of this line is an intrinsic material constant,
which is also a function of the stress Lode angle.

Although both conditions in Equation (5) must be simultaneously satisfied for critical
state failure, they can be independently reached. Li and Dafalias [32] revisited this theory
from the thermodynamics perspective and proposed an anisotropic critical state theory
(ACST) to address the limitations of the CST.

In the context of a discrete system with Nf particles, the fabric of the system can be
defined by the deviatoric tensor F, as follows [33,34]:

F =
1

N f

N f

∑
α=1

nα ⊗ nα − 1
3

I (6)

where I is the identity tensor, and nα represents a characteristic orientation of the discrete
system, which could include void vectors [35], particle orientations [36], or contact unit
normals [37]. As further explained by Li and Dafalias [38], the fabric tensor must be
thermodynamically consistent with the dissipation mechanism and thus should be a per-
unit volume measure. To account for the relative orientation between the fabric anisotropy
and loading directions, a fabric anisotropy variable (FVA), denoted as A, is introduced:

A = F : n = FnF : n = FN (7)

where n is the deviatoric unit loading direction. The fabric tensor F has two non-trivial
invariants: the norm F and the Lode angle θF, associated with the unit direction of F,
denoted as nF. The Lode angle θF is 0◦ for triaxial compression and 60◦ for triaxial extension.
The scalar N represents the product of nF and n, signifying the relative orientation between
the loading and fabric directions. The additional condition of the fabric anisotropy at the
critical state can be expressed as A = Ac = 1. This condition implies that, during plastic
deformation, the fabric evolves such that its norm gradually approaches a critical value
and its direction aligns with the loading direction. The necessary and sufficient conditions
for the critical state can therefore be written as

η = ηc(q/p)c = M, e = ec = êc(p), A = Ac = 1 (8)
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In this paper, the effect of four PSD shape descriptors is investigated under the
anisotropic critical state framework. The contact-normal-based fabric tensor, which has
been widely shown to efficiently reveal insights into sand behavior [39–41], is adopted to
describe the internal fabric in this study.

2.2. Simulation Details

The open-source program YADE, developed by Kozicki and Donzé [42], is used to
perform 3D Discrete Element Method (DEM) simulations in this study. The periodic
boundary condition is applied to a cubic packing composed of unbreakable spheres. The
cubic specimens, consisting of over 5000 particles, are considered as a representative volume
element. All the particles within the cell move according to the specified strain increment
∆εij, as shown in Equation (9) [43]:

∆xi = ∆εijxj∆t (9)

where ∆xi is the displacement of particle i, and ∆t is the time step.
During the consolidation (isotropic compression) and shearing phases, an unbalanced

force ratio below 0.001 was defined to ensure initial equilibrium after consolidation and
quasi-static conditions during shear. Gravity is set to zero throughout all phases of the
simulation. In the quasi-static state with zero gravity, increasing the particle density
accelerates the simulation without affecting the accuracy of the results. To achieve this,
all particles are assigned a solid density of ρ = 2650 × 103 kg/m3, which is 1000 times the
usual density. Additionally, a default numerical damping coefficient ξ = 0.7 is introduced
to dissipate the kinetic energy of the particles, thereby accelerating the simulation and
reducing the computational costs. A parallel sensitivity study indicated that using lower
values of damping did not affect the simulation results.

A linear contact law is employed, and the particle’s normal stiffness is set to equal to
the tangential stiffness, k = 108 N/m. Initially, spheres with the desired number of particles
are generated without contact. The cubic sample is then compressed isotropically to the
target pressure of 100 kPa, 200 kPa, 500 kPa, 1000 kPa, and 1500 kPa. Before shearing, the
coefficient of friction between particles is set to 0.5. Subsequently, the samples are sheared
to larger axial strains, at which point, the critical state can be reached.

The servo mechanism for strain rate loading, developed on the basis of the method of
Thornton and Zhang [44], follows the general form of

.
ε = G(σt − σc) (10)

where G is the gain parameter, determined through trial and error, σt is the target stress,
and σc is the current stress. The mean effective stress is kept constant during the triaxial
shearing process.

In this study, four PSD descriptors (D50, Cu, Cc, and Cs,) are investigated. The seven
curves are intentionally designed to isolate the effect of each descriptor, as shown in
Figure 1. On the basis of the definitions of these descriptors, it is clear that they are related
to particle sizes D0, D10, D30, D50, D60, and D100. Therefore, in the PSD design, changes
in these specific particle sizes were considered. Additionally, D90 is also included in the
analysis. To begin with, four PSDs (PSD1 to PSD4) are designed, all having the same D50

but differing in their maximum and minimum particle sizes. Next, PSD5 is selected through
trial and error, using the above nine particle sizes corresponding to different cumulative
percentages, ensuring that PSD5 differs from PSD2 only by Cs and from PSD3 only by
Cu. For the effect of D50, a mono-sized PSD is chosen as a control. To further investigate
this effect, another mono-sized PSD with a larger D50 is generated and named PSD6. A
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similar method is used to generate PSD7 based on PSD4 in order to study the role of Cc.
This design approach allows for the separate evaluation of the influences of Cs, Cu, Cc,
and D50 on the behavior of the granular material. The details of the PSD descriptors are
summarized in Table 1.
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Figure 1. Particle size distribution of samples.

Table 1. Descriptors of particle size distribution.

PSD Type D50 (mm) Cu Cc Cs

PSD1 0.26 1.000 1.000 0

PSD2 0.26 1.914 1.013 0.545

PSD3 0.26 2.564 1.002 0.765

PSD4 0.26 9.595 1.007 0.965

PSD5 0.26 1.914 1.013 0.765

PSD6 0.52 1.000 1.000 0

PSD7 0.26 9.595 0.761 0.965

3. Results
3.1. Typical Macroscopic Responses

The shear strength evolution of a group of samples with seven different PSDs (with
p0

′ = 500 kPa) under a constant mean effective stress path is presented in Figure 2. It is
evident that the pace of deviatoric stress evolution varies across the different PSDs during
the early stages of shearing (εa ≤ 10%). However, with further shearing, all specimens
eventually reach the same shear strength.

To better understand the impact of the various PSD descriptors on the deviatoric stress
evolution, these curves are grouped into four categories in Figure 3. From these plots, it
is clear that the coefficient of uniformity (Cu) has almost no effect on the deviatoric stress
evolution, as the curves for Cu (represented by the yellow and blue lines in Figure 3b)
almost overlap from the initial shearing state to the critical state.
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On the other hand, the mean particle size (D50) appears to have a slight effect on the
evolution rate of the deviatoric stress, as shown in Figure 3a. However, the overall impact
of these two descriptors (Cu and D50) is relatively limited.

In contrast, the deviatoric stress evolution rate is significantly influenced by the other
two descriptors: the coefficient of curvature (Cc) and the coefficient of size span (Cs).
Specifically, samples with a larger Cc and smaller Cs exhibit higher stiffness and higher
peak deviatoric stresses. This indicates that both Cc and Cs play a more pronounced role in
controlling the shear strength behavior compared to Cu and D50.

The volumetric strain responses are shown in Figure 4. The samples with PSD4 and
PSD2 exhibit slightly dilative behavior before reaching the critical state, consistent with
previous observations of strain-softening responses. In contrast, the other five samples
display volumetric contraction.
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To better understand the impact of different PSD descriptors on volume evolution,
the results are grouped into four categories in Figure 5. For each group, despite having
the same initial void ratios, the volumetric response influenced by the four PSD shape
descriptors varies. Figure 5a demonstrates that all samples exhibit the same tendency of
volumetric contraction until the critical state is reached, with negligible differences in
volumetric strain. This suggests that the mean particle size (D50) has little effect on both
the volume evolution and the critical state void ratio.

Figure 5b shows that the coefficient of uniformity (Cu) has no influence on the critical
state void ratio or the volumetric evolution throughout the shearing process. In contrast,
the coefficient of curvature (Cc) and the coefficient of size span (Cs) significantly affect the
volumetric response, as shown in Figure 5c,d. Specimens with PSD4 and PSD2 exhibit
dilative behavior during shearing, while specimens with PSD7 and PSD5 experience
volumetric contraction.
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3.2. Typical Microscopic Responses

The coordination number (Zm) serves as a scalar measure of the contact features in
granular materials. Defined as the ratio of twice the number of contacts to the number of
particles, it quantifies the average number of contacts per particle and provides critical
insights into the microstructural evolution of the material. The mathematical expression
for Zm is as follows:

Zm = 2
Nc − N1

p

Np −
(

N1
p + N0

p

) (11)

Here, Np and Nc represent the total numbers of particles and contacts, respectively.
N1

p and N0
p are the numbers of particles with only one contact and no contacts, respectively.

This definition excludes particles with fewer than two contacts, as they do not contribute to
stress transmission.

Figure 6 shows the evolution of Zm with axial strain. Consistent with findings from
previous DEM studies, Zm decreases with increasing axial strain. The influence of PSD
descriptors on the Zm evolution is illustrated in Figure 7. Similarly to the macroscopic
responses, D50 and Cu exhibit a negligible influence on the coordination number at the
critical state, as demonstrated in Figure 7a,b.

In contrast, Figure 7c,d reveal that the coordination number is significantly influenced
by Cc and Cs. The samples with higher Cc values tend to have larger coordination numbers,
indicating a more interconnected contact network. Conversely, the samples with lower
Cs values show a similar trend, reinforcing the role of size span in influencing particle
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contacts. This finding suggests that a wider size span may increase the proportion of floating
particles—those with insufficient contacts to contribute to stress transmission—thereby
reducing the overall coordination number.
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In addition to the coordination number, the internal structure, or fabric, of granular soils
is also investigated. The fabric of granular materials refers to the collective microstructural
features within the Representative Elemental Volume (REV), including the spatial arrangement
of grains, the distribution of voids, and the interactions between particles [45].

In this study, a contact normal vector-based deviatoric second-order fabric tensor
F is used to characterize the microstructure of the granular assemblies. This approach is
derived from Kanatani’s equation [46] where f (n) is the density function that defines the
distribution of contact normals. The fabric tensor G is the symmetric second-order tensor,
and F represents its deviatoric part. The mathematical formulation is as follows:

Gij =
∫
n

f (n)ninjdn (12)

f (n) =
1

4π

(
1 + Fijninj

)
(13)

Fij =
15
2

(
Gij −

1
3

δij

)
(14)

F =
√

Fij: Fij (15)

Following Yang and Wu [47], this deviatoric fabric tensor is normalized by dividing
by the volume, such that F′ = F

v = F
1+e , where e is the void ratio. As previously mentioned,

F has two invariants: the norm F and unit direction nF. The direction nF is related to the
Lode angle of the fabric, θF, through the expression cos 3θF =

√
6trn3

F.
The evolution of the fabric tensor during shearing was examined for all the PSDs.

Figure 8 shows that the fabric norm increases with the axial strain for all samples, regardless
of the PSD. Although the rate of fabric evolution varies, all the samples eventually reach
a similar fabric value at the critical state. Regarding the fabric direction, a significant
reduction in the fabric Lode angles is observed at the very beginning of shearing (less than
2–3% axial strain), which occurs much more rapidly than the evolution of the fabric norm
(which takes approximately 30–50% of the axial strain). Figure 9 demonstrates that the
fabric Lode angles eventually drop to zero, accompanied by slight fluctuations, indicating
that the fabric direction quickly aligns with the loading direction.
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3.3. Critical State Responses

As mentioned before, three planes are usually studied under anisotropic critical state
theory, which are the p′-q plane, e-p′ plane, and fabric space. In this study, all the critical
stress states obtained for the different PSDs are shown in the p′-q plane in Figure 10. It
can be concluded that all samples exhibit a unique critical stress ratio Mc ≈ 0.77, which is
consistent with previous Discrete Element Method (DEM) results [48–50]. The data from
all samples can be fitted by a single straight line, suggesting that none of the PSD shape
descriptors are correlated with the critical state strength.
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Figure 10. Critical states in p′-q plane of all samples.

Figure 11a illustrates the relationship between the critical state void ratio and mean
effective stress in a logarithmic coordinate system. It can be observed that the location of
the critical state line (CSL) in the e-logp′ plane varies with the PSD shape. Specifically, both
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higher Cs and lower Cc lead to a lower CSL position. In general, it can be stated that a
wider PSD results in a lower CSL location. Interestingly, although the PSDs of samples
3 and 5 differ due to variations in Cu, their CSLs coincide. Similarly, the CSLs of parallel
PSDs (PSD1 and PSD6) appear to overlap.
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To investigate this further, the critical state lines for non-cohesive soils are straightened
in the e− − (p′/pa)ξ plane by use of the approach by Li and Wang’s approach [51], as
expressed in Equation (16):

ec = eΓ − λc(p′/pa)
ξ (16)

where pa is the atmospheric pressure (101.325 kPa), eΓ is the intersection of the CSL on the
e-axis, λc is the slope of the CSL, and ξ is a constant parameter used for fine-tuning. As
noted by [52], ξ is not a sensitive parameter and is set to 1.0 for simplicity.

Figure 11b shows the results of the seven PSDs grouped into five categories. In general,
a wider PSD (with larger Cu or Cs) corresponds to a lower CSL position. The slopes of the
CSLs also vary within a narrow range. Thus, the positional changes of the CSL due to PSD
variations can be described by two main components: a downward translational shift and
a counterclockwise rotational shift. These two shifting modes are consistent with previous
experimental findings. It appears that Cc moves the CSL downward with negligible
rotation, while Cs causes both a downward movement and a counterclockwis rotation.

Figure 12 further illustrates the effect of PSD descriptors on the critical state void
ratio, ec. It is evident that D50 and Cu have no significant effect on the critical state void
ratio. However, Figure 12c,d show that the CSL for samples with higher Cc and lower
Cs is positioned higher in the e-p′ plane. Interestingly, the intersection of the CSL seems
to be related to the coordination number. As shown in Figure 13, as the eΓ increases, the
coordination number at the critical state also increases.



Fractal Fract. 2025, 9, 26 13 of 17

Fractal Fract. 2025, 9, x FOR PEER REVIEW 13 of 18 

(a)  (b)  

Figure 11. Critical states void ratio: (a) e-logp’ plane; (b) e-p’ plane. 

(a)  (b)  

(c)  (d)  

Figure 12. Effect of descriptors on critical state void ratio: (a) D50 effect; (b) Cu effect; (c) Cc effect; (d) 
Cs effect. 
Figure 12. Effect of descriptors on critical state void ratio: (a) D50 effect; (b) Cu effect; (c) Cc effect;
(d) Cs effect.

Fractal Fract. 2025, 9, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 13. Critical state coordination number relationship with 𝑒௰ . 

Figure 14 presents the critical values of F’c from simulations conducted with seven 
different PSDs. The coefficient of variation (CoV) is used to quantify the degree of devia-
tion of the fabric norm from its mean value. Overall, the critical fabric norm is found to be 
a unique value, F’c = 0.293. This suggests that the critical state fabric norm is independent 
of both the critical void ratio ec and the mean effective stress p’, which is consistent with 
the anisotropic critical state theory. 

 

Figure 14. Critical state fabric norm. 

4. Discussion and Conclusions 
Although the effect of the PSD shape on the critical state behavior of granular mate-

rials has been widely studied, particularly concerning the coefficient of uniformity (Cu), 
the relationship between the PSD shape and the location of the critical state line (CSL) 
remains unclear. This paper expands on previous studies by considering four PSD shape 
descriptors—the mean particle size (D50), coefficient of uniformity (Cu), coefficient of uni-
formity (Cc), and coefficient of uniformity (Cs). A series of systematic 3D-DEM simulations 
was conducted to analyze the effects of these different PSD shape descriptors on the me-
chanical behavior of granular materials. Seven distinct PSDs were carefully designed so 

Figure 13. Critical state coordination number relationship with eΓ.

Figure 14 presents the critical values of F′
c from simulations conducted with seven

different PSDs. The coefficient of variation (CoV) is used to quantify the degree of deviation
of the fabric norm from its mean value. Overall, the critical fabric norm is found to be a
unique value, F′

c = 0.293. This suggests that the critical state fabric norm is independent of
both the critical void ratio ec and the mean effective stress p′, which is consistent with the
anisotropic critical state theory.
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4. Discussion and Conclusions
Although the effect of the PSD shape on the critical state behavior of granular mate-

rials has been widely studied, particularly concerning the coefficient of uniformity (Cu),
the relationship between the PSD shape and the location of the critical state line (CSL)
remains unclear. This paper expands on previous studies by considering four PSD shape
descriptors—the mean particle size (D50), coefficient of uniformity (Cu), coefficient of uni-
formity (Cc), and coefficient of uniformity (Cs). A series of systematic 3D-DEM simulations
was conducted to analyze the effects of these different PSD shape descriptors on the me-
chanical behavior of granular materials. Seven distinct PSDs were carefully designed so
that the influence of each descriptor could be investigated separately. Particular emphasis
was placed on critical state behavior, interpreted within the framework of anisotropic
critical state theory (ACST). A series of constant-mean effective stress drained triaxial tests
were performed, and the critical state behavior was examined on both the macroscopic
and microscopic scales in terms of the critical stress ratio, critical state void ratio, and
critical state fabric norm. According to the simulation results, the following conclusions
can be drawn:

1. Isolation of the effect of PSD shape descriptors:

The DEM numerical strategy employed in this study allows for the isolation of the
effects of PSD shape descriptors on the mechanical behavior of a granular assembly. It was
found that not all descriptors significantly impact the mechanical responses. Specifically,
D50 and Cu had little to no effect on most of the mechanical properties, including the devia-
toric stress, volumetric strain, and coordination number. Note that the simulations shown
here are performed by use of periodic boundaries (free from boundary effects); hence, the
effect of D50 is not expected; however, it is clear from the results presented that the increased
particle masses resulting from scaling up the PSD have a slight effect. However, both Cc,
and Cs had a significant impact on the macroscopic mechanical properties, microscopic
responses, and critical state properties. This also emphasizes the need to accurately describe
the PSD. In some cases, it may be necessary to use alternative PSD descriptors (such as
when gap-graded soils or soils with a significant amount of fines are considered).

2. Critical state strength and void ratio:

The critical state strength appears to be insensitive to the PSD shape descriptors
considered in this study. In contrast, the critical state void ratio was significantly affected
by the PSD shape. Generally, a wider PSD (with higher Cu and Cs values) results in a lower
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CSL position in the e-p′ plane. While both Cu and Cs represent the range of particle sizes,
Cs significantly affects the CSL position, while Cu has a minimal effect.

3. CSL Shifting Modes:

Two distinct shifting modes of the CSL in the e-p′ plane were observed: downward
translational shifts and counterclockwise rotational shifts. An increase in Cs caused both a
downward movement and counterclockwise rotation of the CSL. In contrast, a decrease in
Cc resulted in a downward shift with negligible rotation.

4. Coordination Number and CSL Intersection:

The intersection of CSL appears to be related to the coordination number. As the
eГ increases, the coordination number at the critical state also increases. Moreover, the
coordination number stabilizes at relatively small strain levels (<10%), while the fabric
continues to evolve towards the critical state.

5. Microstructure Evolution:

The evolution of the microstructure is quantified using the deviatoric fabric tensor,
which captures both the direction and norm of the fabric. The fabric direction evolves
towards the loading direction at the early stages of shearing. The fabric norm evolves more
slowly and appears to reach a unique value for all seven PSDs. The critical state fabric norm
is independent of both the critical void ratio and the mean effective stress. Furthermore,
while the critical fabric norm is generally consistent across materials, samples with different
PSDs tend to converge on the same value for the critical state fabric norm.

This study demonstrates that the PSD shape parameters have distinct effects in the
two critical state spaces. On the one hand, the stress ratio at the critical state is shown to
be independent of the PSD. While previous research has suggested similar findings, it has
primarily considered Cu alone. This study extends the validity of these results by showing
that the critical state shear strength is independent not only of Cu, but also of D50, Cu, and
Cc. Thus, we can confidently state that there is no relationship between the PSD and critical
state shear strength.

On the other hand, the simulation results highlight that the critical state void ratio
is significantly affected by the PSD shape. Notably, Cu has no impact on the dilatancy
or critical state void ratio, which contrasts with some previous studies. This discrepancy
may arise from those studies considering only Cu and not controlling for other PSD shape
descriptors, such as Cc and Cs, which were found to be the main factors influencing both
the macroscopic and microscopic responses in this study. It appears that the pattern of these
responses cannot be captured by any single descriptor. Therefore, a more comprehensive
description of the PSD needs to be developed.

These numerical findings may offer valuable insights for developing constitutive
models of sand that undergo grading variations, such as those caused by crushing and
erosion, and for addressing fractal problems related to micro-mechanics in soils.
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