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Abstract

:

This study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multiscale nature of the dynamic response behavior of two low-density foams to sustain impact loads, fractional differential equations of motion are used to qualitatively and quantitatively describe the dynamic response behavior, assuming restoring forces for each foam characterized, respectively, by a polynomial of heptic degree and by a trigonometric tangential function. A two-scale transform is employed to solve the mathematical model and predict the material’s behavior under impact loads, accounting for the fractal structure of the material’s molecular configuration. To assess the accuracy of the mathematical model, we performed impact tests considering eight dropping heights and two plate weights. We found good predictions from the mathematical models compared to experimental data when the fractal derivatives were between 1.86 and 1.9, depending on the cushioning material used. The accuracy of the theoretical predictions achieved using fractal calculus elucidates how to predict multiscale phenomena associated with foam heterogeneity across space, density, and average pore size, which influence the foam chain’s molecular motion during impact loading conditions.
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1. Introduction


Packaging systems protect the state of products during transportation and handling. The performance of packaging materials needs to be investigated for static and dynamic loads; the latter has a relevant role because most of the damage occurs during transportation. Predicting the drop-impact response of delicate components is one of the critical designer concerns during the product development process since the dynamic response of the cushion system and its packed products must fulfil standards such as ASTM D 1596 or ASTM D4168, which deal with packed product performance, considering aspects such as material, area, thickness, loading rate, life-cycle, cushioning stiffness, damping, and structure, among other factors [1,2,3,4,5].



The discovery of new packaging techniques [6] and the extensive use of polymeric and paper-based materials aroused interest in studying cushioning polymeric dynamic behavior. Through the years, diverse investigations have focused on packaging systems to characterize their cushioning curves. Burgess [7] consolidated the term. Guo and Zhang observed that the honeycomb paperboard offered good shock-absorbing characteristics when performing experimental tests on a drop shock machine, finding waves of shock acceleration similar to half-sine pulses that protect for a single impact (drop) the product [8]. Considering the interaction between the cushion system and its packed products, Wang and Low developed a mathematical model that captures nonlinear and viscous damping effects during the protection of packaged products that allows for the reduction of rigid impact [5].



Wang et al. studied the packaging system dynamics, considering a three-dimensional shock spectrum used to describe the shock characteristics of the main body of the product and the cushioning packaging. They found that the shock response of the main body decreases when increasing the damping ratio of cushioning materials [9]. Ge and Huang evaluated the cushioning curves when the packaging material had a flat or corner position for the packaged component, finding that the static compression stress as a function of the compression speed of the corner foam is 23% higher than the flat foam [10]. Zhang and Saito implemented a multibody dynamics simulation tool for anti-vibration package design, obtaining information to predict the package vibration response without conducting drop and vibration tests on samples. However, they concluded that realistic package modeling needs to be set to expand the predicted simulated results [11]. Using expanded polystyrene (EPS) samples, Castiglioni et al. investigated cushioning performance, considering nonlinear effects due to air compression and non-recoverable foam. They concluded that the cushioning performance could be predicted by looking at the foam’s yielding behavior and the volumetric gas compression within the foam cells and inter-bead porosity. They identified that increased inter-bead porosity and effects related to the material and the complexity associated with impact loads could pose some limitations to the basic assumptions used to establish a mathematical model; therefore, some deviations between theoretical simulations and data might be expected [12]. Park and co-workers compared the cushioning curves of multilayered corrugated structures and polymer foam, and they concluded that polymeric foams have better performance in packaging systems as the number of drops increases [13].



For the determination of cushioning curves, Ge focused on plotting what he called dynamic cushioning curves (C-e), cushion factor C-energy density e for cushioning design and concluded that the C-e curves aid in designing cushioning from a variety of cushion materials [14]. Later, Ge and co-workers used the same idea to find the damping capacity of printed photopolymers, noticing that damping, the cushioning factor, and the absorbed energy vary as a function of strain rates. They concluded that damping and cushion factors obtained from impact tests are higher than those obtained from quasi-static compression tests [15]. Xing et al. performed impact tests via the stress–energy method to evaluate the influence of polyethylene thickness and dropping height and to obtain the cushioning material constants. They found that at the same drop height, with the increase in thickness, the opening of the stress–dynamic energy curve increases, and the specimen’s cushioning properties showed an enhanced response to impact loading [16].



Using a mathematical model that considers static load data and foam density, Tomin et al. [17] derived an exponential relationship based on drop test data and static loads to investigate the dependence of the model constants on the input parameters. Furthermore, they analyzed the accuracy and applicability of the Burgess method [18] by comparing experimental and theoretical data to assess their model’s limitations and accuracy, finding that this approach depends on the foam’s resistance when applying impact loads. A method to calculate the equivalent drop height of a product-package system under the influence of the number of impacts, drop height, impact orientation, impact base, temperature, and humidity, and which takes into account the coefficient of restitution (COR), was introduced by Lin and co-workers in [19]. They found that cushioned package damage increases with the number of drops. Also, they noticed that higher drop height produces faster product-package failure since the CORs increase rapidly for the first five drops. Then, its value becomes almost steady, mainly due to the reduced capacity of the cushioned package for impact energy absorption. These findings are important for the design of packed systems since the higher coefficient of restitution values leads to lower levels of damping, as discussed in [20]. Recently, Shi et al. studied how the damping coefficient correlates with impact velocity, material density, and elastic modulus through the material’s acoustic frequency waveform sampling method. They found that damping coefficient values are unaffected by impact velocity in materials with a high elastic modulus, which results in gradual energy dissipation. However, materials with a low elastic modulus undergo substantial energy loss, leading to rapid energy dissipation and influencing their capacity to sustain impact loads [21].



Recent advancements in packaging technology for understanding dynamics behavior consider the effectiveness of computer simulations and mathematical models to predict the packaged material response considering effects such as the number of impacts, drop height, impact orientation, impact base, temperature, humidity, and thermal loads, among others. One of the first models used to study resonance conditions in packaging systems was introduced in [22,23]. The model’s theoretical prediction was compared with experimental data collected using a device that generates vibratory acceleration pulses equivalent to the shock speed experienced in the packaging systems. Using the concept of dropping-damaged boundary surface, two mathematical models were proposed in [24,25]: one model was based on a tangential hyperbolic, and the other was based on cubic tangential hyperbolic nonlinear restoring forces, respectively. Considering the relationship between static and dynamic stresses, Li Guang et al. derived the dynamic factor function to obtain predictions for diverse cushioning curves [26]. Then, Gibert and Batt used a hyperelastic material model to capture the behavior of polyurethane foams under impact loads [27].



Piatkowski and Osowski proposed a method to obtain a non-linear dynamic stress–strain curve from which parameters such as yield strength, impact energy density, and damping coefficient were found and used as input data for modeling analysis [28]. Similarly, Joodaky et al. developed a mathematical model that allows for the determination of the maximum displacement during impact loading through a polynomial that describes the maximum elastic energy in a foam material. Their numerical solutions obtained from the proposed mathematical model, without considering damping effects, showed good agreement compared to experimental data [29]. By coupling Li–He’s modified homotopy perturbation method with the energy method, Ji and co-workers obtained the dynamic response of tangent nonlinear packaging systems under impact loading conditions with relative errors that do not exceed 0.15%, comparing them to numerical integration solutions [30].



Previous models considered the material a continuum, simplifying its structure since it can have discontinuities and porosities. In this sense, Duan et al. investigated the relationship between the properties of packaging materials and their connection to their fractal nature due to molecular structure self-similarities, aggregates, and porosities [31]. At the same time, Yu and Li developed a unified mathematical model for theoretical predictions due to the fractal characteristics of a porous medium [32]. It is evident that the geometric modeling of complex shapes, such as heterogeneous structures with different topologies, is possible when considering fractal aspects that could help to capture complex shapes or predict mechanical damage and crack growth on the packed systems [33,34]. Based on previous research, the dynamic behavior of packed parts under impact loads must be described using fine and coarser lengths and time scales to describe large deformation and material failure since packed materials are often related to history-dependent impact loading mechanisms [35]. For example, in electronic packaging, where some of the main challenges and their design are linked to a continuous reduction in circuit sizes, increasing circuit complexities, and the demand for higher frequencies and power levels, multiscale modeling helps predict the physical effects related to temperature gradients, increased power levels, and thermal expansion, as discussed by Yu et al. in [36].



Usually, mathematical models for studying the dynamic response of packaging systems are based on integer-order differential equations, which cannot capture hereditary behavior or material heterogeneous molecular structure, surface roughness, or geometry. Therefore, fractional calculus, which generalizes the concept of differentiation and integration to non-integer orders, offers a powerful framework for capturing the complex multiscale phenomena of materials commonly used in cushioning and packaging systems. Recently, Elías-Zúñiga et al. investigated the fractal dynamic behavior of polymeric material; they obtained the frequency–amplitude relationship of fractal-order viscoelastic materials, discovering that the value of the fractal’s parameters is influenced by the molecular structure of the polymer chains [37]. Further studies that investigate how the fractal phenomena of polymer materials are connected to molecular dynamics is discussed in [38] for a non-Gaussian material model. Similarly, in [39], the approximate steady-state solution of the fractal differential equation that describes the dynamic response of a viscohyperelastic Warner–Gent material model is discussed.



This research aims to study the dynamic response of two low-density foams to sustain impact loads. It is assumed that the packing restoring force is represented by a polynomial expression of heptic degree and by a trigonometric tangential one. Then, a multiscale fractal mathematical model is used to compute acceleration and cushioning curves. To assess the accuracy of the mathematical model, we performed impact tests considering eight dropping heights and two plate weights. The acceleration was recorded for the elapsed time during which the dropping weight initially hit the foam specimen and during the contact time between both. To accurately predict the maximum acceleration value recorded from the experimental tests performed on two polyethylene foams of different densities and porous sizes, we describe their dynamic response behavior under impact loads, fractal equations of motion with a cubic–quintic–heptic polynomial, and a trigonometric tangential force to represent the system restoring forces. We found good predictions from the mathematical models when the fractal derivatives are between 1.86 and 1.9, depending on the cushioning material used.




2. Materials and Methods


Two closed-cell, low-density polyethylene foams were used in this investigation, and both were statically characterized to obtain their stress–strain curves. Then, the recorded experimental data were fitted using cubic–quintic–heptic polynomial and trigonometric tangential functions to describe the system’s restoring forces. These expressions were plugged into the dynamical fractal model to compute the packaging response and obtain theoretical acceleration and cushioning curves. Also, an experimental setup was designed and built to perform the drop weight tests to measure the dynamical response of these packaging foams, and the analytical and experimental values were compared.



Figure 1 shows the two selected materials used in this work. They are closed-cell, low-density polyethylene foams: the first one has an apparent density of   27.32   k g /   m   3     (LDPE-01) and an average porous size of 1.4 mm; and the second has a density of   25.50   k g /   m   3     (LDPE-02), with an average porous size of 2 mm. Both materials were manufactured in the United States by the Case Club company.



Compression tests were conducted using an INSTRON 3365 universal testing machine, where force and deformation data were collected. Figure 2 shows the arrangement used in the universal testing machine, showing the positioning of the load cell, compression plates, and specimen location. The specimen’s geometry fulfills the standard test for the compressive properties of rigid cellular plastics ASTM D1621-00 [40], which establishes the cross-sectional area between 25.8 cm2 and 232 cm2. The minimum height must be 25.4 mm and not greater than the width of the specimen. In this case, the specimens are hexahedral in shape, with a square cross-sectional area of side 67.31 mm and a height of 48.56 mm. The contact area between the sample and each compression plate is 45.31 cm2 (67.31 mm × 67.31 mm). Additionally, the standard dictates that the rate of load application should be 2.5 ± 0.25 mm/min for every 25.4 mm of sample height; hence, the test was conducted at a compression rate of 5 mm/min.



The drop weight test complies with the ASTM D1596-14 standard test method for dynamic shock cushioning packaging characteristics [1]. The setup for the drop weight test is shown in Figure 3, and it comprises two different dropping platens (17 kg and 34 kg), a rigid frame, a hoist with a quick-release hook, and a data acquisition system. The specimen’s geometry for this dynamic test is also hexahedral and has a cross-section of 15 cm width by 20 cm length, and the height is 11 cm for material LDPE-01 and 14 cm for material LDPE-02. Also, it is worth mentioning that all the tests were performed at room temperature.



The acquisition data system begins with the impact acceleration readings, captured by the accelerometer (PCB Piezotronics Shock Accelerometer #350A14, 0.950 mV/g, Depew, New York, NY, USA) positioned on either of the two available droppings platens, which are directed to a signal conditioner (PCB Piezotronics 482C05, Depew, New York, NY, USA) where it is subsequently transferred to a dynamic signal acquisition module (National Instruments NI-9230, Austin, TX, USA) and a device analog input (National Instruments cDAQ-9171, Austin, T, USA) that converts the input analog signal into a digital one. Then, the readings are sent to a computational device for processing. Once the signal is in the computer, the conditioning of data is performed using the software NI LabVIEW 2021. This software is configured to receive the signal with a reading range of ±5 volts at a sampling rate of 21.8 kHz.



Figure 4 is a graphical summary of the experimental setup and variables used in this study; it highlights the material studied: polymeric foam with a fractal microstructure, emphasizing its inherent heterogeneity. It also indicates the key variables analyzed in the study, such as dropping height and platen acceleration, which influence the foam’s impact response, and the standard employed, ASTM D1596-14, which governs the methodology for impact testing of cushioning materials. The central part of the figure shows an acceleration–time curve, illustrating the data output from the impact tests.




3. Fractal Nonlinear Model


First, a fractal calculus is used to predict mechanical performance during an impact in a porous medium [41,42], which allows us to capture the multiscale phenomena experienced by the system under consideration during impact loading conditions; the equation reads as follows:


  m    d   d   S   α           d y   d   S   α        + f ( y ) = 0 ,  



(1)




subjected to the following initial conditions:


  y   0   = 0 ,     y  ˙  ( 0 ) =  2 g h  ,  



(2)




where   m   is the impact platen mass in kg,   S   is the time in seconds,   g   is the gravitational acceleration in m/s2,   h   is the dropping height in m,   f ( y )   is the nonlinear restoring force, and   α   is the fractal order that better represents the dynamical behavior of the cushioning material.



Using the following fractal derivate definition:


     d y   d   S   α          S   0   α     = Γ ( 1 + α )     lim      ( S −   S   0   )   ∆ S ≠ 0       ⁡     y   S   − y (   S   0   )       S −   S   0       α      ,    



(3)




and the two-scale dimension transform


  t =   S   α   ,  



(4)




Equation (1) can be written as


  m      d   2   y   d   t   2      + f ( y ) = 0 , y   0   = 0 ,    d y ( 0 )   d   t   1 / α      =  2 g h  .  



(5)




Two restoring forces   f ( y )   are considered since specimens of two material foams were tested. The first one is a restoring force described by a cubic–quintic–heptic polynomial function of the form:


  f   y   = a   y   7   + b   y   5   + c   y   3   + e y  



(6)




for LDPE-01 foam. The second material foam, LDPE-02, is described by a trigonometric tangential function given as


  f   y   = γ   tan  ⁡    δ y      



(7)




The parameters   a ,   b ,   c ,   d , γ    , and   δ   are material constants obtained from static testing. Since polymer foams are considered hyperelastic materials, phenomenological and molecular constitutive material models could describe the restoring force that describes their hyperelastic behavior [43,44]. One of the most well-known constitutive material models is the one proposed by Mooney and Rivlin in [45]. In this model, the material strain energy density can be represented by a polynomial expression whose order and parameter values are determined experimentally. To allow for material volume changes, Bischoff et al. introduced a compressible strain energy function, expanding the eight-chain strain energy model to include entropic sources through a bulk modulus term that follows the form of hyperbolic cosine functions [46]. Although Equations (6) and (7) are phenomenological, these are based on the strain energy density functions that model polymeric foams and were proposed to evaluate the material’s performance during static compressive tests (see [9,29,30,47,48] and references cited therein).



Figure 5 shows the response behavior obtained from the numerical integration of Equations (1) and (6); as one can see from Figure 5, when the dropping height is increased, the maximum acceleration increases too, and the contact elapses time between the specimen and the platen decreases. During impact tests, the packaging material and the platen behave as components of a vibratory system. The impact velocity acts as the initial velocity of this nonlinear vibratory system. The platen’s dropping height directly influences the foam’s cell structure and strain deformation capacity. For the platen mass considered in this study, the foam molecular structure is expected to experience minimum strain values during impact tests, resulting in a shorter elapsed contact time between the platen and the foam specimen. Since our analysis focuses on the first half of the vibratory cycle, where transient effects are still significant, the increase in initial velocity with greater dropping height leads to a further reduction in the contact elapsed time between the platen and the polymeric foam, as discussed in [17].




4. Results


Figure 6 shows the compressive reaction force for polymeric foams LDPE-01 and LDPE-02 under static conditions. It is important to bear in mind that the static and dynamic tests employ different specimen sizes; the data plotted in Figure 6 consider the specimen size for the drop weight test. The dots represent experimental data, and the lines describe the fitted curve using the polynomial function given by Equation (6) for the LDPE-01 material and the trigonometric tangential function defined in Equation (7) for the LDPE-02 material. The fitted constant values obtained for each material foam are as follows:   a = 3.333 ×   10   4    ;   b = − 2.686 ×   10   6    ;   c = 1.0 ×   10   9    ;   e = 1.009  ;   γ = 2217.6  ; and   δ = 11.4  .



A series of impact tests have been carried out to validate the developed mathematical model, considering eight dropping heights and two plate weights. The acceleration measurement comprises the instant the dropping plate and the specimen initially touch until they lose contact. Figure 7, Figure 8, Figure 9 and Figure 10 compare the experimental data and the mathematical model. Specifically, Figure 7 and Figure 8 illustrate the behavior of the material LDPE-01 for each of the two different dropping weights, and Figure 9 and Figure 10 illustrate the behavior when the test was performed for the material LDPE-02. To clarify the relationship between the static and dynamic results, it is important to understand the role of the restoring force in the dynamic model. The restoring force represents the system’s ability to store impact energy as potential or deformational energy during an impact event. The static compressive test provides a quantifiable measure of the material’s capacity to store deformational energy. This correlation allows us to use the static test results as a foundation for modeling the restoring force in dynamic scenarios, bridging the static and dynamic behaviors of the material.



Figure 7 illustrates the dynamical behavior of the LDPE-01 foam under increasing dropping height, from 15 cm in Figure 7a to 120 cm in Figure 7h, with a 17 kg impact mass. We can see that as the dropping height increases, the value of the maximum acceleration also rises; however, the elapsed time of the contact between the platen and the specimen tends to decrease. It is crucial to note the difference in the shape of the acceleration curve for low and high dropping heights. Figure 8 shows the results for the 34 kg dropping mass. Similar results were observed when using the 17 kg platen but with higher acceleration values and shorter contact time between the platen and the specimen.



During the simulation process to predict the experimental results using Equation (1), we found that the best simulation results in terms of following the experimental data collected from LDPE-01 specimens, whose restoring force is given by Equation (6), are attained when the fractal derivative has the value of α = 0.93, as shown in Figure 7 and Figure 8. Similarly, for LDPE-02 foam material, we found that α = 0.95 is the value of the fractal derivative provided when using Equation (1) with the restoring force (7). These theoretical results follow the experimental data well, as shown in Figure 9 and Figure 10. Based on these results, we can conclude that the proposed model effectively describes the dynamic behavior of the material. It accurately represents the maximum acceleration value, the duration of contact between the dropping mass and the specimen, and the shape of the material’s acceleration curve at both low and high dropping heights. It is important to note that the accuracy of the mathematical model relies heavily on a thorough initial static characterization of the foam.



Figure 11 shows the maximum acceleration of the material when the platen dropping height is varied. The behavior of LDPE-01 (Figure 11a) and LDPE-02 (Figure 11b) is different, but both materials show that the system accelerates more when a lighter platen is used at the lowest dropping height. However, for the highest height, the opposite is true. This behavior changes at heights of 45 cm for LDPE-01 and 60 cm for LDPE-02.



Finally, the cushioning curves were obtained using the mathematical model introduced by Equations (1), (6) and (7). These theoretical curves were compared to the experimental measurements. Figure 12 illustrates these cushioning curves for LDPE-01 and LDPE-02 materials. Since only two dropping weights were used to perform the experiments, we have experimental values for two static stresses:     σ   s   = 5.58   MPa   and     σ   s   = 11.18   MPa  . These curves are helpful in appropriately designing cushioning packaging systems. Here, the dots represent experimental data, and the dashed lines are theoretical predictions computed from Equations (1) and (6) for LDPE-01 and from Equations (1) and (7) for LDPE-02. One will notice that the theoretical predictions and experimental data agree well.



In summary, our proposed mathematical model unveils the dynamic behavior experienced by cushion materials considering their molecular fractal structure by adopting a fractal equation of motion that captures the multiscale phenomena that occur when the material is subjected to impact loads.




5. Discussion


Low-density polyethylene packaging foams are good packaging materials for small and delicate items that are loaded against impact since they absorb impact. During experimental tests, we observed that the maximum acceleration values vary almost linearly, with the dropping height for the LDPE-01 foam material being independent of the platen weight, while for the LDPE-02 foam, the maximum acceleration curves versus the dropping height become nonlinear with increasing platen weights, as shown in Figure 11. We also noticed that the impact acceleration curves for the LDPE-01 foam, plotted in Figure 11, attain minimum and maximum values for   h ≥ 45   cm and   h ≥ 60   cm, respectively, which could be associated with the foam density and average pore size that influence the foam chain molecular motion. Interestingly, the fractal dimensions of 1.86 and 1.9 used to obtain the acceleration curves from Equation (5) can help us determine the material dynamic shear storage modulus, as discussed in [49]. In our case, the average modulus for both LDPE materials is close to 96.9 (MPa) [50]. Then, using Equation (24) in [49], and assuming a Poisson ratio value of 0.5, we can predict the dynamic foam shear modulus values for d = 1. 86 and d = 1.9, which correspond to 48.51 MPa and 47.48 MPa, respectively. These values are in the range of those reported in [50] for LDPE foams.



The accuracy of theoretical predictions achieved using fractal calculus helps us to predict multiscale phenomena, starting from the material-heterogeneous media [51] and proceding to the molecular chain motion described by the fractal parameter values, morphological transformations [52] due to impact loads that produce nonlinear static, and dynamic foam responses, as illustrated in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12. Our study of these LDPFs considers the foams’ first impact loading. Therefore, our results are valid for packed systems where energy is absorbed during the first impact. In other words, this article’s findings are relevant for packaging applications in which the first impact determines the safety of the packed component.




6. Conclusions


To capture the multiscale nature of the dynamic response behavior of two LDPEs in sustaining impact loads, we first performed experimental mechanical tests to obtain the parameter values that define each polymer foam’s restoring forces. To assess the accuracy of the proposed multiscale fractal mathematical model for qualitatively and quantitatively predicting the acceleration and cushioning curves, we also performed impact tests, considering eight dropping heights and two plate weights. During the impact tests, we observed that the platen’s dropping height directly influences the foam’s cell structure deformation capacity. We also noticed that the impact acceleration curves for both low-density foams attained minimum and maximum values that could be associated with the foam’s heterogeneous structure, material density, and average pore size, which influence the foam chain molecular motion. The theoretical predictions obtained from the mathematical model provide valuable information, indicating that the dynamic response behavior of polymer foams under impact loads can be modeled in consideration of multiscale phenomena, i.e., the material-heterogeneous structure, the motion of the polymer chains, and foam porosities. In other words, accounting for the multiscale and fractal aspects of the material’s molecular configurations helps predict the response of polymer foams under impact loads. In summary, the results of this study are as follows:




	•

	
This study establishes a link between the multiscale process and the material properties (e.g., heterogeneous media, chain molecular motion, foam porosity), emphasizing the applicability of fractal models to design materials and predict their dynamic response for packaging applications.




	•

	
The proposed multiscale approach effectively describes the material dynamical performance of a packed component since it predicts the maximum acceleration value, the elapsed time of contact between the dropping mass and the specimen, and the shape of the acceleration curve of the polymer foams at low and high dropping heights.




	•

	
A two-scale transform was introduced to solve the mathematical model and predict the material’s dynamic behavior under impact loads.




	•

	
Good predictions from the mathematical models were attained if the fractal derivatives were between the values of 1.86 and 1.9, depending on the cushioning restoring force used; i.e., these values are directly influenced by the porosity and the multiscale nature of the foam molecular structure.




	•

	
Numerical simulations are valid for packed components where energy is absorbed during the first impact. This article’s findings are relevant for packaging applications in which the first impact determines the safety of the packed component









It is evident that accounting for the multiscale and fractal aspects of the material’s molecular configurations helps in predicting the response of polymer foams under impact loads. Therefore, the applicability of our fractal approach to designing high-performance cushioning packaging systems could prove to be a valuable tool for extending the lifetime of the packed component.
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Figure 1. Polyethylene foams used in this work: (a) micrography of the porosity of LDPE-01 and (b) LDPE-02; (c) histogram of the porosity size of LDPE-01 and (d) LDPE-02. 
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Figure 2. Compression test rig showing the load cell, compression plates, and the compressed specimen. The red arrow indicates the direction of the compressive force. 
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Figure 3. Experimental system for drop weight test: (a) structure with elements; (b) data acquisition and conditioning system. 
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Figure 4. Schematic of the program of experimental studies step by step: (01) variables identification; (02) checking norm and standards specifications; (03) identifying piezoelectric probes’ sensitivity to (04) collect data for impact force detection; (05) multiscale and fractal model to describe the material behavior; (06) connecting the multiscale and fractal nature of polymer foams with the material constitutive equation. 
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Figure 5. Numerical solution of the dynamic fractal model, Equations (1) and (6), with fractional order   α = 0.93   and platen mass of   m = 17   k g  . The curves depict the acceleration evolution over time during the impact of several droppings’ heights. 
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Figure 6. Static force–displacement curve of polyethylene foams. The experimental measurements are represented as circles for LDPE-01 and diamonds for LDPE-02. The fitted curves are for each material according to Equations (6) and (7). 
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Figure 7. Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-01 and the model prediction using the polynomial fractal model with a fractional order of 0.93. The tests were performed using a dropping mass of 17 kg. The behavior is shown for different impact height values: (a) 15 cm; (b) 30 cm; (c) 45 cm; (d) 60 cm; (e) 75 cm; (f) 90 cm; (g) 105 cm; (h) 120 cm. The red dots represent experimental values, while the black continuous line is derived from the mathematical model. 
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Figure 8. Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-01 and the model prediction using the polynomial fractal model with a fractional order of 0.93. The tests were performed using a dropping mass of 34 kg. The behavior is shown for different impact height values: (a) 15 cm; (b) 30 cm; (c) 45 cm; (d) 60 cm; (e) 75 cm; (f) 90 cm; (g) 105 cm; (h) 120 cm. 
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Figure 9. Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-02 and the model prediction using the tangential fractal model with a fractional order of 0.95, the tests were performed using a dropping mass of 17 kg. The behavior is shown for different impact height values: (a) 15 cm; (b) 30 cm; (c) 45 cm; (d) 60 cm; (e) 75 cm; (f) 90 cm; (g) 105 cm; (h) 120 cm. 
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Figure 10. Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-02 and the model prediction using the tangential fractal model with a fractional order of 0.95. The tests were performed using a dropping mass of 34 kg. The behavior is shown for different impact height values: (a) 15 cm; (b) 30 cm; (c) 45 cm; (d) 60 cm; (e) 75 cm; (f) 90 cm; (g) 105 cm; (h) 120 cm. 
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Figure 11. Comparison of the peak acceleration vs. dropping height of the foams used in the experimental tests: (a) the dots indicate the experimental data of LDPE-01, and the lines indicate the computed values from Equations (1) and (6) with an alpha value of 0.93; (b) the dots indicate the experimental data of LDPE-02, and the lines indicate the model prediction from Equations (1) and (7) with an alpha value of 0.95. 
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Figure 12. Cushioning curves showing the peak acceleration vs. the static stress values. The dots are obtained from experimental tests, and the dashed lines are computed from (a) Equations (1) and (6) for LDPE-01 and (b) Equations (1) and (7) for LDPE-02. 
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