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Abstract: Series arc faults (SAFs) pose a significant threat to the safety of photovoltaic (PV)
systems. However, the complex operating conditions of PV systems make accurate SAF de-
tection challenging. To tackle this issue, this article proposes a SAF detection method based
on time–frequency composite recurrence plots (TFCRPs). Initially, variational mode decom-
position (VMD) is employed to decompose the current into distinct modes. Subsequently,
the proposed TFCRP transforms these modes into two-dimensional matrices, enabling the
measurement of composite similarity between different phase states. Lastly, extra tree (ET)
is utilized to fuse the fractional recurrence entropy (FRE) and the singular values extracted
from the matrices, thereby achieving SAF detection. Experimental results indicate that the
proposed method achieves a detection accuracy of 98.75% and can accurately detect SAFs
under various operating conditions. Comparisons with different methods further highlight
the advancement of the proposed method. Furthermore, the detection time of the proposed
method (209 ms) meets the requirements of standard UL1699B.

Keywords: arc fault; variational mode decomposition; time–frequency composite recur-
rence plots; fractional recurrence entropy; singular value decomposition; extra tree

1. Introduction
Given the escalating concerns surrounding the greenhouse effect and resource de-

pletion, there is an urgent need to identify viable alternatives to fossil fuels in order to
satisfy the growing electricity demands of human society. Consequently, all nations are
prioritizing the development of renewable energy sources and striving to transition towards
a low-carbon energy structure. Photovoltaic (PV) energy, with its abundant reserves and
significant development potential, has garnered increasing attention for its exploitation
and utilization [1]. The global installed capacity of PVs is projected to reach 375 GW by
2024, marking a year-on-year increase of 31.8% in total installed capacity.

PV systems are composed of numerous cables and terminals. Over time, external
stressors such as high temperatures, humidity, and wear can lead to insulation damage in
cables or loose connection terminals, posing a risk of arc faults. The temperature at the
site of an arc fault can escalate to 3000 ◦C, making it prone to igniting nearby combustible
materials and triggering a fire. Arc faults can result in substantial property damage, and the
extensive pollutants emitted by fires can contaminate the air. Furthermore, the shutdown
of PV power generation systems due to arc faults reduces the supply of renewable energy.
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Thus, arc faults can have severe negative impacts on both the environment and the economy.
Among these, series arc faults (SAFs) pose a significant threat to the safety and stability of
PV systems. SAFs represent an unstable plasma state that can cause a slight decrease in line
current [2], making them difficult to detect using traditional protective devices. Effectively
implementing SAF detection remains a highly challenging issue.

SAF detection can be achieved through the analysis of sound signals, light signals,
thermal signals, and electromagnetic radiation signals. However, these detection methods
rely on the external physical characteristics of SAFs and require the detection device
to be installed near the fault location. Unfortunately, the location of SAFs in practical
systems is highly uncertain. Therefore, the detection method based on the external physical
characteristics of arc faults is only suitable for systems with limited spaces [3].

The SAF detection methods based on current signals have garnered increasing at-
tention. Some scholars have implemented SAF detection using thresholds derived from
extracted capacitance voltage peaks [4], frequency domain energy [5], and autocorrelation
values [6]. However, practical systems often exhibit multiple working states, leading to
significant variations in the single features extracted under different operating conditions.
Consequently, determining an appropriate threshold for a single feature in a practical
system to accommodate different working states becomes challenging [7]. Currently, a
growing number of scholars are exploring the application of machine learning to fuse
various types of features for arc fault detection with the aim of enhancing the adaptability
of detection methods. In [8], the arc current signal was processed using empirical mode
decomposition (EMD) for noise reduction, and the extracted features (energy, Shannon en-
tropy, root mean square, and standard deviation) were input into a support vector machine
(SVM) to obtain detection results. In [9], a high-dimensional feature vector was constructed
by extracting the crest factor, correlation coefficient, harmonic values, and wavelet packet
entropy from the arc current. Feature selection based on random forests (RFs) was applied
to reduce the interference of low-contribution features on the detection results. In [10],
different components of the current signal were obtained using the improved empirical
wavelet transform, and weight energy entropy, sample entropy, and the root mean square
value were extracted to construct a feature vector. This feature vector was then processed
by an extreme learning machine to produce the detection results. In [11], to avoid the
subjectivity of manually extracting features, abstract fault features in the current signal
were directly mined using a 1D convolutional neural network.

Machine learning algorithms are complex, and the time costs and hardware costs of
training machine learning algorithms are higher than those of traditional threshold methods.
Moreover, the performance of machine learning algorithms depends on the quality of the
data, and how to further enhance the generalization ability of machine learning algorithms
is currently an important research topic in the field of artificial intelligence. However, it
cannot be ignored that the SAF detection methods based on machine learning can effectively
enhance adaptability compared to those based on single feature threshold.

However, previous studies have primarily focused on extracting features directly
from one-dimensional current signals. Converting these one-dimensional signals into
two-dimensional matrices can enhance the structural information of the signals, making it
easier to extract subtle fault information [12]. The method of converting one-dimensional
signals into two-dimensional matrices has been successfully applied in the field of fault
diagnosis and has achieved promising results [13]. The time–frequency matrix obtained
based on the generalized S-transform can accurately reflect the local characteristics of
frequency components over time [14]. SAF detection results can be obtained by inputting
the energy features extracted from the time–frequency matrix into an SVM. In [15], the arc
current signal was transformed into a two-dimensional matrix using the truncated matrix
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construction method, and singular values extracted from the matrix were used as features
to achieve SAF detection. Compared to traditional Hankel matrices, truncated matrices not
only have a faster construction speed but also can preserve fault information completely.
In [16], short-time Fourier transformation was utilized to convert the one-dimensional arc
current signal into a two-dimensional time–frequency matrix, effectively encapsulating
the spectral features that contain crucial fault information. In [17], the data of the same
time window of voltage and current at different positions of the system were fused into a
matrix, and the key components in the matrix were extracted as fault characteristics based
on principal component analysis. The time–frequency matrix can be obtained by using
fractional Fourier transform to analyze arc current signals in the rotating time–frequency
plane [18]. Singular values of different levels of the time–frequency matrix can be extracted
as fault features based on two-level block singular value decomposition, and accurate
detection results can be obtained based on an SVM. Converting an arc current into a two-
dimensional matrix can improve the performance of SAF detection, but it is still necessary to
explore more effective matrix conversion methods to overcome the interference of complex
transient working states of the systems, which is one of the motivations of this article.

Recurrence plots (RPs) are an excellent matrix conversion method, and the matrix
obtained based on RPs includes many signatures of the arc current that cannot easily
be extracted by other tools [3]. In [19], unthresholded recurrence plots were applied
to solve the problem that the matrix obtained based on traditional RPs being prone to
losing the subtle similarity information of arc currents. At the same time, texture features
and singular values extracted from the IRP-based matrix are input into a neural network
to obtain SAF detection results. Some scholars integrated the idea of multi-scale into
RPs [20], which can extract more abundant fault information than using a single scale,
thus helping to improve the accuracy of time series classification. In [21], cross-recurrence
plots were proposed to integrate the similarity information between vibration signals
at different locations in the bearing system, thus facilitating the improvement of fault
diagnosis performance. However, RPs and their improved forms have the following
shortcomings: (1) the adoption of Euclidean distance as a single similarity evaluation index
lacks the ability to comprehensively reveal the similarity between different states in phase
space; (2) the dynamic characteristics of time series can only be analyzed from the time
domain, and the critical fault information hidden in the frequency domain cannot be fully
utilized. Moreover, how to effectively extract fault features from RPs is an important aspect
to ensure accurate SAF detection.

This article intends to excavate the rich texture information hidden in arc currents
based on RP theory. In this paper, a novel TFCRP is proposed. The TFCRP can overcome the
deficiency of traditional RPs, namely that the similarity analysis tool is too simple and the
critical fault information in the frequency domain cannot be mined. In addition, the TFCRP
solves the limitation of the traditional matrix conversion-based SAF detection method
being unable to mine time–frequency similarity signatures. A SAF detection framework,
integrating VMD, a TFCRP, FRE, singular value decomposition (SVD), and ET, is illustrated
in Figure 1. The contributions of this paper encompass the following four key aspects:

(1) To address the limitation of the similarity analysis method in traditional RP, a
composite similarity analysis method is proposed in the TFCRP. The proposed composite
similarity analysis method not only calculates the Euclidean distance between distinct
states in the phase space but also evaluates the directional similarity of these states based
on cosine distance. Additionally, it achieves a fusion of Euclidean distance and cosine
distances through a weighting factor;

(2) To surpass the limitation of the traditional RP’s inability to analyze fault informa-
tion in the frequency domain, the TFCRP proposes a method for examining the similarity



Fractal Fract. 2025, 9, 33 4 of 21

of dynamic frequency domain energy states. Firstly, the arc current is decomposed into dif-
ferent modes and a time–frequency energy state matrix is constructed. Then, the composite
similarity between frequency domain energy states at different time instants is calculated.
Finally, based on the RP concept, the extraction of fault information in the frequency domain
is innovatively realized;

(3) In this paper, SVD and FRE are used to extract features from the matrix obtained
from the TFCRP. The novel FRE is proposed to measure the complexity of recurrence
plots obtained from the TFCRP at different fractional orders. In contrast to the extraction
of traditional single-order recurrence entropy (RE), extracting FRE as fault features can
enhance the diversity of fault information, and the advantages of fault information of
different orders vary under different circumstances;

(4) This article validates the proposed SAF detection method under the diverse op-
erating conditions of PV systems and compares the proposed method with existing SAF
detection methods to demonstrate its advancement. Experimental results show that the
detection accuracy of the proposed method can reach 98.75%. Compared to other methods,
it more effectively mitigates the interference of changing working conditions on detection
results. Furthermore, the precision (98.39%), recall (99.18%), and F1 score (98.78%) of the
proposed method is higher than that of the other eight methods, which indicates that the
proposed method excels at suppressing false alarms.

The structure of this article is organized as follows: Section 2 introduces the basic
principles of VMD; Section 3 elaborates on the proposed TFCRP; Sections 4 and 5 present
the details of SVD and ET, respectively; Section 6 presents the experimental data collection;
Section 7 analyzes the experimental results; and Section 8 concludes this article.
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Figure 1. The framework of the proposed SAF detection method. 

2. Variational Mode Decomposition 
VMD achieves the extraction, recovery, and combination of signal modes using a re-

cursive method [22] which adaptively divides the spectrum of the input signal. Compared 
to EMD, VMD boasts a comprehensive mathematical foundation. Additionally, VMD ef-
fectively mitigates the non-stationarity of signals, facilitating a more precise extraction of 
arc fault features. 

If the arc current signal input into VMD is 𝐹ሺ𝑡ሻ = {𝑥௧|𝑡 = 1,2,⋯ ,𝑛}, 𝑥௧ is the t-th point 
of 𝐹ሺ𝑡ሻ. VMD needs to solve the constrained variational problem, as shown in Equation (1). min{௨ೖ},{ఠೖ}∑ ቛ𝜕௧ ቂቀ𝛿ሺ𝑡ሻ + ௝గ௧ቁ ∗ 𝑣௞ሺ𝑡ሻቃ 𝑒ି௝ఠೖ௧ቛଶଶ௄௞ୀଵ   

𝑠. 𝑡.෍ 𝑣௞(𝑡) = 𝐹(𝑡)௄௞  
(1)

Figure 1. The framework of the proposed SAF detection method.

2. Variational Mode Decomposition
VMD achieves the extraction, recovery, and combination of signal modes using a

recursive method [22] which adaptively divides the spectrum of the input signal. Compared
to EMD, VMD boasts a comprehensive mathematical foundation. Additionally, VMD
effectively mitigates the non-stationarity of signals, facilitating a more precise extraction of
arc fault features.

If the arc current signal input into VMD is F(t) = {xt|t = 1, 2, · · · , n}, xt is the t-th
point of F(t). VMD needs to solve the constrained variational problem, as shown in
Equation (1).

min
{uk},{ωk}

∑K
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jωkt

∥∥∥∥2

2
s.t.∑K

k vk(t) = F(t)
(1)
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where K is the number of modes obtained after decomposition. {vk} represents the k-th
mode. {ωk} is the center frequency of the k-th mode. δ(t) and * denote the dirac delta
function and convolution operation, respectively.

By introducing the Lagrange multiplication factor and quadratic penalty factor, the
constrained variational problem can be transformed into the unconstrained variational
problem, as shown in Equation (2).

L({uk}, {ωk},) = β
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥xt −
K
∑

k=1
uk(t)

∥∥∥∥2

2
+ ⟨λ(t), xt −

K
∑

k=1
vk(t)⟩

(2)

where λ and β are the Lagrange multiplication factor and quadratic penalty factor, re-
spectively. The method of solving the optimal solution of {vk}, {ωk}, and λ is given in
Appendix A.

K is a crucial parameter in VMD. If the value of K is too small, it becomes ineffective
in separating different fault components in the arc current F(t). Conversely, if the value of
K is too large, it can lead to modal confusion among adjacent modes. Therefore, to achieve
optimal decomposition performance, this article sets the value of K to 4.

3. Time–Frequency Composite Recurrence Plots
3.1. Traditional Recurrence Plots

RPs can encode one-dimensional signals into a two-dimensional matrix, effectively
capturing the dynamical characteristics of phase space trajectories. The phase space repre-
sentation of an arc current signal F(t) is depicted in Equation (3).

F =


f1 =

(
x1, x1+τ , · · · , x1+(m−1)τ

)
f2 =

(
x2, x2+τ , · · · , x2+(m−1)τ

)
...

fN =
(

xn−(m−1)τ , xn−(m−2)τ , · · · , xn

)

 (3)

where the embedding dimension and time delay are m and τ, respectively. N = n − (m − 1)τ
is the number of phase states in F(t). For example, f2 is a row vector with m elements and
is the second phase states in F(t).

The RP of F(t) can be expressed as

RPi,j = H(θ −
∥∥ fi − f j

∥∥) = {
1,
∥∥ fi − f j

∥∥ > θ

0,
∥∥ fi − f j

∥∥ ≤ θ
(4)

where i, j = 1, 2, · · · , n − (m − 1)τ.
∥∥ fi − f j

∥∥ represents calculating the Euclidean distance
between fi and f j. H(·) is heaviside function. θ is the threshold value of Euclidean distance.
When two states ( fi and f j) in the phase space are close to each other, RPm,τ

i,j is set to 1;
otherwise, RPm,τ

i,j is set to 0.

3.2. The Basic Principle of Time-Frequency Composite Recurrence Plots

Traditional RPs and their improved forms have the two following shortcomings:
1⃝ they solely rely on Euclidean distance, which is not comprehensive enough to measure

the similarity between different states in the phase space; 2⃝ RPs can only analyze the
similarity of different states in the phase space from a time domain perspective, overlooking
the fault information implicitly contained in the frequency domain.
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To address the above issues, this article proposes a novel TFCRP. The advancement of
this method is reflected in two aspects as follows:

1⃝ By integrating Euclidean distance and cosine distance, a composite similarity index
is obtained, overcoming the limitation of the Euclidean norm in analyzing the direction
similarity between different states in the phase space;
2⃝ The arc current signal is decomposed into multiple modes through VMD, and the TFCRP

can analyze the composite distance between different phase points in each mode, thereby
obtaining time composite recurrence plots (TCRPs). At the same time, the TFCRP can
analyze the composite similarity of frequency domain energy states at different instants of
time, thereby obtaining frequency composite recurrence plots (FCRPs).

3.2.1. Time Composite Recurrence Plots

Based on VMD, the arc current signal F(t) can be decomposed into multiple modes.
The k-th mode is vk(t) =

{
sk

t

∣∣∣t = 1, 2, · · · , n
}

and sk
t is the t-th point of vk(t). With the

embedding dimension m and the time delay τ, the phase space representation of vk(t) can
be calculated by Equation (5).

VTk =


vtk,1 =

(
sk

1, sk
1+τ , · · · , sk

1+(m−1)τ

)
vtk,2 =

(
sk

2, sk
2+τ , · · · , sk

2+(m−1)τ

)
...

vtk,N =
(

sk
n−(m−1)τ , sk

n−(m−2)τ , · · · , sk
n

)

 (5)

where N = n − (m − 1)τ is the number of states in the phase space. For example, vtk,2 is a
row vector with m elements and is the second state of vk(t).

The TCRPk of vk(t) can be expressed as

TCRPk
i,j = β

∥∥vtk,i − vtk,j
∥∥+ (

1 − β
)
Cosd

(
vtk,i, vtk,j

)
(6)

Cosd
(
vtk,i, vtk,j

)
= 1 −

〈
vtk,i, vtk,j

〉∥∥vtk,i
∥∥·∥∥vtk,j

∥∥ (7)

where TCRPk
i,j an element in the i-th row and j-th column of TCRPk.

∥∥vtk,i − vtk,j
∥∥ is the

Euclidean distance between vtk,i and vtk,j. β denotes the weight factor. Cosd
(
vtk,i, vtk,j

)
represents the cosine distance between vtk,i and vtk,j, Cosd ∈ [0, 2]. The smaller the value
of Cosd, the higher the directional similarity of the two vectors.

〈
vtk,i, vtk,j

〉
is the inner

product of vtk,i and vtk,j.
∥∥vtk,i

∥∥ and
∥∥vtk,j

∥∥ are the modular values of vk,i and vk,j. β can
control the proportion of Euclidean distance and cosine distance; thus, the fusion of these
two similarity indexes in the TCRP is realized.

The TCRP can measure the similarity between states in the phase space of modes,
from which the mutual interference between different level components is avoided.

3.2.2. Frequency Composite Recurrence Plots

Based on K modes {vk}, the time–frequency matrix corresponding to the arc current
signal F(t) can be expressed as
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VF =


v1

v2
...

vK

 =


s1

1s1
2 · · · s1

n
s2

1s2
2 · · · s2

n
...
...
. . .

...
sK

1 sK
2 · · · sK

n

 = [v f1v f2 · · · v fn] (8)

where the k-th mode is vk(t) =
{

sk
t

∣∣∣t = 1, 2, · · · , n
}

and sk
t is the t-th point of vk(t).

VF consists of n column vectors. For example, in VF, the second column vector
v f2 =

[
s1

2; s2
2; · · · ; sK

2
]
.

The FCRP of F(t) can be calculated by Equation (9).

FCRPi,j = β
∥∥v f i − v f j

∥∥+ (1 − β)Cosd
(
v f i, v f j

)
(9)

Cosd
(
v f i, v f j

)
= 1 −

〈
v f i, v f j

〉∥∥v f i
∥∥·∥∥v f j

∥∥ (10)

where FCRPi,j is an element in the i-th row and j-th column of the FCRP.
∥∥v f i − v f j

∥∥ is
the Euclidean distance between v f i and v f j. β denotes the weight factor. Cosd

(
v f i, v f j

)
represents the cosine distance between v f i and v f j, Cosd ∈ [0, 2]. The smaller the value of
Cosd, the higher the directional similarity of the two vectors.

〈
v f i, v f j

〉
is the inner product

of v f i and v f j.
∥∥v f i

∥∥ and
∥∥v f j

∥∥ are the modular values of v f i and v f j. β can control the
proportion of Euclidean distance and cosine distance in the FCRP.

In VF, each column vector represents the frequency domain energy distribution of the
arc current signal F(t) at different instants of time. By calculating the FCRP, the composite
similarity of the frequency domain energy distribution characteristics at different time
instants can be analyzed.

3.2.3. Parameter Selection

The weight factor β, decomposition level K, embedding dimension m, and time delay
τ are the pivotal parameters for calculating the TFCRP of arc current F(t). The selection
of these four parameters has a significant impact on the accuracy of SAF detection. As
mentioned in the last paragraph of Section 2, the value of K is set to four in this paper to
enable VMD to achieve optimal decomposition performance. The study of [3] analyzed the
arc current signal of photovoltaic systems using the mutual information method and the
averaged false neighbors method, indicating that the optimal values for the embedding
dimension m and time delay τ in the phase space of the arc current are four and two.
Therefore, in this article, the embedding dimension m and time delay τ are set to four and
two, respectively. In Section 7, the appropriate value of β will be selected by analyzing its
influence on SAF detection accuracy.

Figure 2 shows the TCRPs and FCRP obtained based on the TFCRP under a SAF
condition and normal condition. The images obtained under normal conditions visually
differ significantly from those obtained under the SAF condition, initially demonstrating
that the proposed TFCRP can effectively describe the differences in current signals between
normal conditions and SAF conditions. In Section 7 of this paper, the performance of the
proposed TFCRP will be adequately verified through experimental analysis.



Fractal Fract. 2025, 9, 33 8 of 21

Fractal Fract. 2025, 9, x FOR PEER REVIEW 7 of 21 
 

 

where FCRP௜,௝ is an element in the i-th row and j-th column of the FCRP. ฮ𝑣𝑓௜ − 𝑣𝑓௝ฮ is 
the Euclidean distance between 𝑣𝑓௜ and 𝑣𝑓௝. 𝛽 denotes the weight factor. 𝐶𝑜𝑠𝑑൫𝑣𝑓௜ ,𝑣𝑓௝൯ 
represents the cosine distance between 𝑣𝑓௜ and 𝑣𝑓௝, 𝐶𝑜𝑠𝑑 ∈ [0, 2]. The smaller the value 
of 𝐶𝑜𝑠𝑑 , the higher the directional similarity of the two vectors. 〈𝑣𝑓௜ ,𝑣𝑓௝〉  is the inner 
product of 𝑣𝑓௜ and 𝑣𝑓௝. ‖𝑣𝑓௜‖ and ฮ𝑣𝑓௝ฮ are the modular values of 𝑣𝑓௜ and 𝑣𝑓௝. 𝛽 can 
control the proportion of Euclidean distance and cosine distance in the FCRP. 

In VF, each column vector represents the frequency domain energy distribution of 
the arc current signal 𝐹(𝑡) at different instants of time. By calculating the FCRP, the com-
posite similarity of the frequency domain energy distribution characteristics at different 
time instants can be analyzed. 

3.2.3. Parameter Selection 

The weight factor 𝛽, decomposition level K, embedding dimension m, and time de-
lay 𝜏 are the pivotal parameters for calculating the TFCRP of arc current 𝐹(𝑡). The selec-
tion of these four parameters has a significant impact on the accuracy of SAF detection. 
As mentioned in the last paragraph of Section 2, the value of K is set to four in this paper 
to enable VMD to achieve optimal decomposition performance. The study of [3] analyzed 
the arc current signal of photovoltaic systems using the mutual information method and 
the averaged false neighbors method, indicating that the optimal values for the embed-
ding dimension m and time delay 𝜏 in the phase space of the arc current are four and 
two. Therefore, in this article, the embedding dimension m and time delay 𝜏 are set to 
four and two, respectively. In Section 7, the appropriate value of β will be selected by 
analyzing its influence on SAF detection accuracy. 

Figure 2 shows the TCRPs and FCRP obtained based on the TFCRP under a SAF 
condition and normal condition. The images obtained under normal conditions visually 
differ significantly from those obtained under the SAF condition, initially demonstrating 
that the proposed TFCRP can effectively describe the differences in current signals be-
tween normal conditions and SAF conditions. In Section 7 of this paper, the performance 
of the proposed TFCRP will be adequately verified through experimental analysis. 

0.1565
1.6852

0
0

1.9692
0.6507

0
0

0.9307
0.5033

0
0

0.6353
0.6005

0
0

1.3043
1.7221

0
0

TCRP1 TCRP2 TCRP3 TCRP4 FCRP(Normal) (Normal) (Normal) (Normal) (Normal)

TCRP1 TCRP 2 TCRP3 TCRP4 FCRP(SAF) (SAF) (SAF) (SAF) (SAF)

 

Figure 2. TCRPs and FCRP obtained based on TFCRP under SAF condition and normal condition. 

4. Fault Feature Extraction 
The size of TCRPs and the FCRP obtained based on the TFCRP is (𝑛 − 6) × (𝑛 − 6) 

and 𝑛 × 𝑛, respectively. n denotes the point number of arc current 𝐹(𝑡). For SAF detec-
tion, TCRPs and FCRPs should be reduced to extract critical fault information. This paper 
presents a method for extracting arc fault features based on fractional recurrence entropy 
and singular value decomposition. 

Figure 2. TCRPs and FCRP obtained based on TFCRP under SAF condition and normal condition.

4. Fault Feature Extraction
The size of TCRPs and the FCRP obtained based on the TFCRP is (n − 6)× (n − 6)

and n × n, respectively. n denotes the point number of arc current F(t). For SAF detection,
TCRPs and FCRPs should be reduced to extract critical fault information. This paper
presents a method for extracting arc fault features based on fractional recurrence entropy
and singular value decomposition.

4.1. Fractal Recurrence Entropy

Recurrence entropy (RE) is a key indicator used to measure the dynamic character-
istics of a system. RE can be used to calculate the amount of information contained in a
recurrence graph, and the smaller the RE, the lower the complexity of the system [23]. SAF
introduces complex fluctuation patterns in the current signal; therefore, RE is suitable for
distinguishing between normal states and arc fault states as a fault characteristic. However,
the traditional method of calculating RE only considers a single fractional order. Fractional
calculus is capable of introducing distinctive traits to fractional entropy while preserving
the fundamental attributes of Shannon entropy. When extending RE to the fractional
derivative form, fractional recurrence entropy (FRE) can be expressed as follows:

FREα = −∑N
j=2

[p(j)]−α

Γ(α + 1)
{ln [p(j)] + φ(1)− φ(1 − α)}p(j) (11)

where the digamma function is represented by φ(·) and the gamma function is represented
by Γ(·). The fractional order factor α lies within the range of (−1, 1). When α equals 0, Γ(1)
is equal to one and FRE becomes the classical RE. In the process of calculating FREα, in
order to binarize, this paper sets the critical level µ to 0.4. The impact of critical level µ on
the accuracy of SAF detection will be discussed in Section 7.2. The probability density p(j)
represents the distribution of diagonal lines of length j.

FRE can be considered as a generalized form of RE. The FRE obtained for diverse val-
ues of α contributes variably to the results of SAF detection [24]. Through the introduction
of fractional calculus into RE, the diversity of fault information and the anti-noise capability
can be enhanced [25]. In practical applications, α should assume discrete values at specific
intervals within the range of (−1, 1). If the interval of α is overly large, the operation time
will rise, which is detrimental to real-time SAF detection. By referring to reference [24]
and taking into account both the operation time and the fault information diversity, α is
allocated at intervals of 0.1 within the range of [−0.9, 0.9]. For one sample of the arc current,
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four TCRPs and one FCRP can be obtained; therefore, 95 FREs can be extracted from each
SAF detection.

4.2. Singular Value Decomposition

SVD is a powerful tool for feature extraction and has been applied in various fields
such as battery capacity estimation [26], recommender systems [27], and fault detection [19].
In this paper, SVD is employed to extract abstract features from TCRPs and FCRPs.

Supposing the size of matrix Z is p × q and p ≥ q, then the SVD of Z can be defined
as follows:

Z = VDUT (12)

where the sizes of V and U are p × p and q × q, respectively. The elements in the main
diagonal of D = diag

(
ξ1, ξ2, · · · , ξq

)
are singular values and ξ1 ≥ ξ2 ≥ · · · ≥ ξq.

Typically, the crucial fault information is mainly contained in the larger singular
values with lower order, while the higher-order singular values with smaller values do
not contribute significantly to the detection results. By extracting only the first h singular
values from TCRPs and the FCRP, we can not only avoid the negative impact of smaller
singular values on the detection results but also reduce the computational complexity of
SVD, thereby improving the SAF detection speed. In the experimental section, this article
will discuss the impact of the number of singular values h on the accuracy and speed of
SAF detection in detail, and the value of h will be determined.

5. Extra Tree-Based Classifier
Ensemble algorithms utilize multiple independent base learners to obtain prediction

results, providing better generalization capabilities and noise immunity compared to
algorithms based on a single classifier. ET is an ensemble algorithm that consists of multiple
decision trees. During the training process of ET, the optimal node division is selected from
random split values of each feature, effectively reducing the correlation between different
trees. ET has been applied to stealthy cyber-attack detection [28], object detection [29], and
endomicroscopic image classification [30].

This paper employs ET as the classifier to explore the complex nonlinear relationship
between the extracted feature vectors based on singular values and the fault states. When
using ET to handle classification problems, it is necessary to use all samples to train each
tree in ET. The diagram of ET is shown in Figure 3. In Figure 3, ET contains C decision trees,
each of which is trained based on a complete dataset. After training all decision trees, the
training of ET is completed. The trained C decision trees constitute the trained ET, which
can handle unknown samples. When a sample is input to the trained ET, each decision tree
in the ET will independently output the corresponding prediction result. For classification
problems, the output of ET is obtained based on the principle of majority voting.

The training process of the trees primarily involves implementing a random feature
value splitting at each node, with the following splitting steps [30]:

(1) m features {sv1, sv2, · · · , svm} are randomly selected.
(2) Calculating the maximum value svmax

i and minimum value svmin
i of the feature svi in

the dataset.
(3) The splitting point sv f

i of feature svi is randomly selected in
[
svmin

i , svmax
i

]
.

(4) Calculating the Gini index G f
i of the feature svi with the splitting point sv f

i .
(5) Selecting the splitting point with the maximum Gini index as the final splitting point

for feature svi to achieve the partitioning of the current node.

Each node in the tree is split according to the aforementioned process, enabling the
training of all trees in ET. During the training process, 5-fold cross-validation is used to



Fractal Fract. 2025, 9, 33 10 of 21

verify the performance of ET with different numbers of trees. In this paper, the applicable
number of trees in ET is set to 30.
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6. Experimental Data Collection
To validate the performance of the proposed SAF detection method, an experimental

platform is established, as shown in Figure 4. The platform can simulate SAFs under
different load types of photovoltaic systems, and arc current data under different conditions
can be obtained and analyzed through a data acquisition and analysis system. In Figure 4,
the PV simulated source can supply power to three types of loads, namely the inverter
(YanXu YXMG-SGA05), DC-DC converter, and resistor. The output voltage range of the PV
simulated source is 50 V to 400 V. The selector switch allows for the selection of the load
type in the circuit. The electronic arc generator is connected in series to the circuit. Under
normal conditions, the two electrodes of the arc generator are closed. The arc fault generator
controller then separates the two electrodes at a certain speed, generating an SAF. According
to standard UL1699B, the separation speed and arc length are set to 5 mm/s and 1.1 mm,
respectively. The current signals collected by the current sensor are transmitted to the
microprogrammed control unit (MCU) for storage through a data acquisition (DAQ) board,
and the PC can access the MCU and download the saved data. The algorithm programming
in this article is implemented using Python 3.7, with a programming environment of
Windows 11 operating system, Intel-Core-i5 CPU, and 32 GB RAM. The MCU is equipped
with a Cortex-A72 CPU and 4 GB RAM.

Figure 5 illustrates the system current waveforms across various load types and
operating conditions. Under SAF conditions, the current signal exhibits more pronounced
random fluctuations compared to the steady-state current signal observed under normal
conditions. However, under normal conditions, transient system actions (such as voltage
fluctuations and MTTP operations) can introduce arc-like noise into the current signal.
Additionally, visually, the current fluctuation state caused by the high-frequency switching
action of the inverter is similar to the fluctuation state of the arc current of a resistor load.
Therefore, the diverse operating states and load types in PV systems pose significant
challenges for SAF detection.
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Although the arc current exhibits differences under different operating conditions,
arc faults consistently alter the time domain fluctuations and spectral energy distribution
of the current signal. Before and after arc faults, subtle changes occur in the similarity of
the high-dimensional time–frequency space of the current signal. Thus, the TFCRP aims
to simultaneously extract this critical consistency similarity information from both the
time and frequency domains, which is beneficial for the classifier to accurately distinguish
between normal conditions and arc faults.
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Based on the established experimental platform, a total of 31,500 samples were
collected. Table 1 presents the operating conditions corresponding to the dataset. In
each case, 60% of the samples was used to constitute the training dataset, while the re-
maining 40% was used for the test dataset. Consequently, the training dataset contains
18,900 samples, and the test dataset contains 12,600 samples. The characteristics of arc
faults can be effectively captured with a sampling rate of 100 kHz [3]; hence, the sampling
rate of the DAQ board was set to 100 kHz in this study, with each sample containing
512 data points. To verify the adaptability of the proposed method, the samples under
normal conditions included transient system actions.

Table 1. Experimental conditions corresponding to the dataset.

State Voltage(V) Current(A) Label Number of
Samples Load Type

Normal
condition

50~400 2~17

1
2500 Resistor
2500 DC-DC
5800 Inverter

SAF
condition 2

2200 Resistor
2200 DC-DC
5800 Inverter

7. Analysis of Experimental Results
7.1. Experimental Results of Proposed Method

This article validates the performance of the proposed method based on the dataset
constructed in Section 6. Table 2 presents the detection results of the proposed method
under different conditions. The proposed method achieves an overall detection accuracy of
98.75%, with only 158 samples out of 12,600 samples in the test set being misdetected.

Table 2. Detection results of the proposed method under different conditions.

Detection Results Load Type

Normal condition
98.80% (1482/1500) DC-DC
99.53% (1493/1500) Resistor
99.19% (3452/3480) Inverter

SAF condition
97.95% (1293/1320) DC-DC
99.09% (1308/1320) Resistor
98.10% (3414/3480) Inverter

Overall detection accuracy: 98.75% (12,442/12,600)

The detection accuracy under normal conditions is 99.18% (6427/6480), and the de-
tection accuracy corresponding to the resistor load (99.53%) is higher than that of DC-DC
(98.80%) and inverter (99.19%) loads. This is attributed to the fact that the DC-DC and in-
verter are nonlinear loads, and the arc-like noise introduced by their internal high-frequency
switching action enhances the difficulty of detection.

Under SAF conditions, the detection accuracy is 98.28% (6015/6120), which is signif-
icantly lower than that under normal conditions. SAF is an unstable plasma state, and
compared to normal conditions, the random fluctuations of the arc current can cause
stronger interference to the detection algorithm, resulting in a significantly lower detection
accuracy under SAF conditions. When the load types are DC-DC converter and inverter, the
detection accuracies under the SAF condition are 97.95% and 98.10%, respectively. Under
the SAF condition, the detection accuracy of the resistor is 99.09%. This indicates that the
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high-frequency switching state and energy control mechanism of nonlinear loads (DC-DC
converter and inverter) introduce more complex fluctuation patterns in the arc current
signal, making it more challenging to accurately identify arc faults under nonlinear loads
compared to linear loads.

The experimental results demonstrate that the proposed method can handle false
alarms under normal conditions and can detect arc faults in multiple operating states
of the system with an accuracy of over 98.5%, thus indicating the effectiveness of the
proposed method.

7.2. Impact of Typical Factors on Detection Performance

Based on the analysis in Sections 2 and 3, it is evident that the weight factor β (in
TFCRP), the number of singular values h signal, critical level µ, and the decomposition
method have significant impacts on the detection performance. This section explores the
influence of these three factors on the detection performance.

Figure 6 shows the detection accuracy under different values of β. If β = 0, it is
indicated that the TFCRP only uses cosine distance to measure the similarity between
different states in the phase space, with a detection accuracy of 97.93%. If β = 1, it is
indicated that TFCRP only uses Euclidean distance to measure the similarity between
different states in the phase space, with a detection accuracy of 98.55%. The maximum
detection accuracy of 98.76% is achieved when β = 0.7. The results in Figure 6 show
that the employing of a composite similarity index has a beneficial effect on improving
detection accuracy.
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Figure 7 displays the relationship between detection accuracy and detection time for
varying numbers of singular values. As the number of singular values (h) increases, the
detection accuracy initially rises sharply before stabilizing. Specifically, when h equals
13, the detection accuracy peaks at 98.75%. Beyond this point, further increases in h do
not enhance detection accuracy but linearly prolong the detection time. This suggests that
once a certain threshold of singular values is reached, additional extraction singular values
introduce redundant information that fails to meaningfully improve performance while
increasing computational overhead. Thus, for a balance of accuracy and efficiency, this
paper sets h to 13. Figure 8 presents the corresponding detection accuracy for various
critical level µ values. The critical level µ is capable of achieving binary of recurrence
plots. If the µ value is overly large, only distant points in the recurrence plots can contain
information, resulting in significant information loss. If the µ value is too small, there will
be redundant fault information. The maximum detection accuracy is attained at µ = 0.4,
and therefore, this paper sets µ to 0.4. For feature visualization, the t-distributed stochastic
neighbor embedding (t-SNE) method is employed to reduce the dimensionality of the
170-dimensional fault features to two dimensions. As depicted in Figure 9, the t-SNE
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visualization of the extracted singular values reveals a clear separation between most
data points under normal conditions and SAF conditions, with only a minority exhibiting
overlap. This underscores the effectiveness of the feature vector constructed from the
extracted singular values.
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Figure 10 shows the detection accuracy under different signal decomposition methods.
Wavelet transform (WT) is based on the bior3.1 wavelet basis function [31], and both WT
and EMD decompose the current signal into four components. The detection accuracy
of WT and empirical mode decomposition are 91.59% and 95.62%, respectively. The
experimental results show that in this paper, compared with WT and EMD, VMD is more
suitable for combining with TFCRPs to form an SAF detection algorithm. Therefore, VMD
is chosen to implement the decomposition of the arc current signal.
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The voltage levels and load characteristics in aviation DC power supply systems,
electric vehicle DC power supply systems, and shipboard DC systems differ significantly
from those in photovoltaic systems, which poses challenges for the application of the
method proposed in this paper in these systems. To adapt the arc fault detection algorithm
proposed in this paper for application in these systems, the following adjustments should
be considered: (1) select an appropriate signal decomposition algorithm tailored to the
specific characteristics of each system and (2) carefully determine the values of the three
key parameters, namely the weight factor β, the number of singular values h, and the
critical level µ, ensuring they are optimized for the target system.

7.3. Comparing the Performance of Different Methods

In this article, the proposed method (PR1) is compared with eight existing methods to
further validate the reliability of PR1.

Comparison method CO1: CO1 is a method based on an autocorrelation algorithm
(AAL) [6]. The Pearson correlation coefficient value of the current signal is extracted using
ALL. If the Pearson correlation coefficient value exceeds the set threshold, it indicates SAF
occurred in the system; otherwise, the system is in a normal state. In CO1, the time interval
is 40 ms and the optimal threshold 0.3842 can be calculated based on the C4.5 algorithm.

Comparison method CO2: CO2 is a method based on RF [32]. The random fluctuations
of the current signal are measured by extracting the average (AVE), median (MED), variance
(VAR), root mean square (RMS), and the difference between the maximum and minimum
values (DMM) from the current signal, and the extracted features are input into RF to obtain
the detection results. In CO2, the number of trees in RF is set to 30.

Comparison method CO3: CO3 is a method based on a back propagation neural
network (BPNN) [19]. Firstly, the current signal is converted into a two-dimensional matrix
based on the improved recurrence plots (IRPs). Then, singular values, DET, LDL, TND,
and LAM are extracted from the matrix to construct a feature vector. Finally, the BPNN
is used to process the feature vector and obtain the detection results. The structure of
the BPNN is [9 20 2]. The embedding dimension m and time delay τ of IRP are four and
two, respectively.

Comparison method CO4: CO4 is a method based on SVMs [33]. The arc current is
decomposed into eight modes using VMD, and then the sample entropy (SE) and energy
entropy of the first three modes are extracted to construct a feature vector. An SVM is used to
process the feature vector to achieve arc fault detection. In the SVM, the penalty parameter
c and kernel parameter g are optimized using the particle swarm optimization algorithm.
The relative tolerant r and embedding dimension m are set to 2 and 0.1, respectively.

Comparison method CO5: CO5 is a method based on a gradient boosted decision tree
(GBDT) [34]. The variance, normalized energy ratio, and energy entropy of the current
signal are extracted based on the db2 wavelet, and then the energy entropy of the current
signal is extracted based on empirical mode decomposition. GBDT is used to fuse the



Fractal Fract. 2025, 9, 33 16 of 21

extracted multiple features and obtain the detection results. The number of wavelet layers
is five and the number of trees in the GBDT is 30.

Comparison method CO6: CO6 is a method based on VGG11 [35]. VGG11 is a deep
learning model that constructs a deep network by stacking multiple smaller convolutional
layers and pooling layers to enhance the feature extraction capability. VGG11 consists of
11 convolutional layers and three fully connected layers. For details about VGG11, please
refer to the literature [35]. During the training process, the learning rate of VGG11 is set to
0.0007 and the number of training epochs is set to 500.

Comparison method CO7: CO7 is a method based on LOCALVIT [36]. LOCALVIT
introduces a locality mechanism in the transformer’s feedforward network. This mecha-
nism can effectively combine the locality of a convolutional neural network (CNN) with the
global connectivity of the visual transformer and can improve the performance of networks
without increasing the complexity of the model. For details about VGG11, please refer to
reference [36]. In this paper, the learning rate for the training of VGG11 is set to 1 × 10−5

and the number of training epochs is 500.
Comparison method CO8: CO8 is a method based on weighted multi-scale fractional

permutation entropy (WMFPE) [37]. Firstly, the multi-scale fractional permutation entropy
is extracted from the current signal. Then, the optimal weights of different permutation
entropy values are obtained based on particle swarm optimization, and the features are
input into an SVM to obtain the detection results. By referring to [37], coarse-grain scale,
fractional-order factor α, embedding dimension m, and time lag τ are set as 20, 0.5, 4, and
1, respectively.

Table 3 and Figure 11 show the detection results of different methods. Some useful
metrological field parameters like detection accuracy, precision, recall, and the F1 score are
presented. The detection accuracy of PR1 (98.75%) is higher than that of the comparative
methods CO1 (67.52%), CO2 (80.33%), CO3 (96.42%), CO4 (94.37%), CO5 (89.69%), CO6
(98.16%), CO7 (94.81%), and CO8 (95.34%). CO1 solely detects SAF based on the threshold
of correlation features extracted using ALL, from which it is hard to effectively adapt to
the different operating conditions of PV systems. CO2, CO3, CO4, CO5, and CO8 can
fuse different types of features based on machine learning algorithms. CO2, CO3, CO4,
CO5, and CO8 are able to improve the detection accuracy compared to CO1. CO6 and
CO7 adaptively mine abstract fault information in arc current signals based on VGG11 and
LOCALVIT, respectively. The detection accuracy of CO6 and CO7 is 98.16% and 94.81%,
which are still lower than the detection accuracy of PR1. The detection accuracy of CO3,
CO4, CO6, CO7, and CO8 is close to that of the proposed method. However, when the
detection accuracy exceeds 95%, increasing it by 0.5% is a challenging task [32,38]. SAFs
in photovoltaic systems can generate temperatures as high as 3000 ◦C, which can easily
lead to fire accidents. Therefore, even if the detection accuracy is increased by 0.59%, it
has a positive significance for maintaining the safety of photovoltaic systems. As shown
in Table 3, precision, recall, and the F1 score of the proposed method are higher than
the compared methods; it is indicated that the proposed method has more advantages to
prevent false alarms and ensure that fault samples are correctly identified. Comparing
with other eight methods, PR1 can more effectively distinguish between SAF conditions
and normal conditions by mining composite correlation information in the time–frequency
domain of arc current signals in high-dimensional phase space.
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Table 3. The performance of different detection methods.

Feature Extraction
Method Classifier Training

Time Test Time Detection
Accuracy Precision Recall F1 Scores

PR1 VMD+TFCRP+FRE+SVD ET 0.55 s 209 ms 98.75% 98.39% 99.18% 98.78%

CO1 [6] AAL Threshold 0.12 s 0.07 ms 67.52% 68.34% 68.35% 68.34%

CO2 [32] AVE+MED+VAR+
RMS+DMM RF 0.61 s 0.05 ms 80.33% 86.84% 72.68% 79.13%

CO3 [19] IRP+RQA+SVD BPNN 42 s 16.8 ms 96.42% 96.18% 96.86% 96.52%

CO4 [33] VMD+SE+EE SVM 2.38 s 141 ms 94.37% 94.46% 94.56% 94.51%

CO5 [34] WT+EMD GBDT 4.93 s 3.5 ms 89.69% 89.92% 89.98% 89.95%

CO6 [35] \ VGG11 7571 s 5.9 ms 98.16% 98.04% 98.25% 98.14%

CO7 [36] \ LOCALVIT 6750 s 4.6 ms 94.81% 94.64% 95.09% 94.86%

CO8 [37] WMFPE SVM 2.79 s 21.96 ms 95.34% 93.88% 97.26% 95.54%
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The training time of PR1 (0.55 s) is slightly higher than that of CO1 (0.12 s) and is lower
than that of CO2, CO3, CO4, CO5, and CO8. The complexity of the threshold calculation
process in CO1 is significantly lower than the machine learning training processes of the
other eight methods. In PR1, the ET with random splitting of nodes can acquire a lower
training time compared to machine learning algorithms such as RF, the SVM, and GBDT.
The feature vector dimension corresponding to PR1, CO2, CO4, CO5, and CO8 are 65, 5,
6, 14, and 20, respectively. With the same number of training samples, the feature vector
dimension of ET is significantly higher than those of RF, the SVM, and GBDT, and the
training time of ET is shorter than that of RF, the SVM, and GBDT. It is proved that ET
used in PR1 has a significant advantage in training efficiency. CO3, CO6, and CO7 use the
backpropagation algorithm to train BPNN, VGG11, and LOCALVIT, respectively, resulting
in the training times of CO3 (42 s), CO6 (7571 s), and CO7 (7571 s) being significantly
longer compared to the other six methods. Notably, the training processes of the BPNN,
VGG11, and LOCALVIT require the use of an NVIDIA RTX3050 GPU, which improves the
hardware costs.

Among the nine evaluated algorithms, PR1 exhibits the longest test time of 209 ms.
This is attributed to the intricate process of mining composite similarity information con-
cealed within the time–frequency domain of arc current signals, which imposes substantial
computational demands. In contrast, CO1 and CO2 boast test times under 1 ms due to their
relatively straightforward feature extraction procedures—correlation feature extraction
in CO1 and time-domain feature calculation in CO2. CO3, CO5, and CO8 involve com-
plex feature extraction methods incorporating data decomposition algorithms like SVD,
WT, EMD, and multi-scale techniques, resulting in notably longer test times compared
to CO1 and CO2, albeit still less than one-tenth of PR1’s duration. In CO4, the iterative
optimization process involved in decomposing arc current using VMD, coupled with the
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computation of distances between distinct phase states for SE extraction, contributes to a
test time exceeding 140 ms.

Despite PR1’s relatively longer test time, it emerges as the superior algorithm in terms
of detection accuracy, underscoring its reliability and advancement. The ET classifier
employed in PR1 excels in training efficiency. While PR1’s 209 ms test time is higher than
that of six other methods, it remains well within the 2.5 s detection threshold stipulated
by the UL1699B standard [38,39], rendering its detection speed acceptable and compliant
with industry requirements. Consequently, the proposed method in this paper holds
considerable promise for practical engineering applications.

8. Conclusions
This article introduces a novel SAF detection method leveraging a TFCRP tailored

to adapt to the complex operating conditions of PV systems. Initially, the arc current
is decomposed into distinct modes using VMD, effectively mitigating potential mutual
interference among various frequency components during subsequent feature extraction
processes. Subsequently, a TFCRP is employed to process these modes, transforming the
arc current into two-dimensional matrices. This transformation facilitates the extraction of
crucial time–frequency composite correlation fault information. Ultimately, the FREs and
singular values extracted from these matrices are fed into an ET classifier to yield precise
detection results.

The cornerstone contribution of this article lies in the introduction of an innovative
TFCRP technique. The TFCRP adeptly integrates Euclidean distance and cosine distance
within a composite similarity index, surpassing the limitations of traditional RPs in analyz-
ing directional similarity between various phase space states. Furthermore, by processing
the modes derived from VMD, the TFCRP uniquely captures the composite similarity
information across frequency energy states at different time instances, where the traditional
RP falls short in extracting fault information within the frequency domain.

The performance of the proposed method is substantiated through experimental data
encompassing diverse operating conditions. With a detection accuracy of 98.75%, surpass-
ing six comparative methods, the proposed method adeptly identifies SAF occurrences
while effectively mitigating false alarms during transient conditions. Moreover, its detec-
tion time of 209 ms aligns with UL1699B standards, underscoring its practical potential for
engineering applications.

Future endeavors will explore the application of TFCRPs in broader contexts, including
mechanical fault diagnosis and power electronic device fault diagnosis. The principle of
the SAF detection method proposed in this paper is complex. How to effectively run the
proposed method in real time on an embedded processor to ensure the safe and stable
operation of actual photovoltaic systems is a very challenging task. If the parallel computing
of different steps in the feature extraction process is implemented based on FPGA, the
online detection speed can be effectively improved.
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Nomenclature

SAF Series arc fault
PV Photovoltaic
TFCRP Time–frequency composite recurrence plot
VMD Variational mode decomposition
ET Extra tree
FRE Fractional recurrence entropy
EMD Empirical mode decomposition
SVM Support vector machine
RF Random forests
RP Recurrence plot
SVD Singular value decomposition
RE Recurrence entropy
TCRP Time composite recurrence plot
FCRP Frequency composite recurrence plot
MCU Microprogrammed control unit
DAQ Data acquisition
AAL Autocorrelation algorithm
AVE Average
MED Median
VAR Variance
RMS Root mean square
DMM The difference between the maximum and minimum values
BPNN Back propagation neural network
t-SNE t-distributed stochastic neighbor embedding
BPNN Back propagation neural network
IRP Improved recurrence plot
SE Sample entropy
GBDT Gradient boosted decision tree
CNN Convolutional neural network
MFPE Multi-scale fractional permutation entropy

Appendix A
In VMD, the optimal solution of {vk}, {ωk}, and λ can be obtained based on the

alternate direction method of multipliers, as shown in Equation (A1).

ûn+1
k (ω) =

Ŝ(ω)− ∑i ̸=k v̂i(ω) +
λ̂(ω)

2
1 + 2ξ(ω − ωk)

2

λ̂n+1(ω) = λ̂(n)(ω) + ξ

(
f̂ (ω)−

K
∑

k=1
v̂n+1

k (ω)

)

ωn+1
k =

∫ ∞
0 ω

∣∣∣v̂(n+1)
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣v̂(n+1)
k (ω)

∣∣∣2dω

(A1)

where after processing sequence vn+1
k (t), S(t) and λn+1

k (t), based on Fourier transform,
v̂n+1

k (ω), Ŝ(ω), and λ̂n+1(ω) can be obtained.
Stopping the iteration when the condition is satisfied, as shown in Equation (A2),

gives the following:

K

∑
k=1

∥∥∥v̂n+1
k (ω)− v̂n

k (ω)
∥∥∥2

2∥∥v̂n
k (ω)

∥∥2
2

≥ ε (A2)

where ε denotes convergence precision.
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