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Abstract: This work is devoted to the hyperbolic sine function (HSF) control-based finite-
time bipartite synchronization of fractional-order spatiotemporal networks and its applica-
tion in image encryption. Initially, the addressed networks adequately take into account the
nature of anisotropic diffusion, i.e., the diffusion matrix can be not only non-diagonal but
also non-square, without the conservative requirements in plenty of the existing literature.
Next, an equation transformation and an inequality estimate for the anisotropic diffusion
term are established, which are fundamental for analyzing the diffusion phenomenon
in network dynamics. Subsequently, three control laws are devised to offer a detailed
discussion for HSF control law’s outstanding performances, including the swifter con-
vergence rate, the tighter bound of the settling time and the suppression of chattering.
Following this, by a designed chaotic system with multi-scroll chaotic attractors tested with
bifurcation diagrams, Poincaré map, and Turing pattern, several simulations are pvorided
to attest the correctness of our developed findings. Finally, a formulated image encryption
algorithm, which is evaluated through imperative security tests, reveals the effectiveness
and superiority of the obtained results.

Keywords: anisotropic diffusion; fractional-order spatiotemporal network; finite-time
bipartite synchronization; hyperbolic sine function; image encryption

1. Introduction
Recent years have witnessed the flourishing development of complex networks (CNs)

across diverse fields, encompassing social networks [1], power grids [2] and transportation
networks [3]. Synchronization, a fundamental issue in the dynamic analysis of CNs, in
which all nodes should achieve a desired performance, has attracted extensive attention
from scholars. The theories and techniques developed in synchronization analyses have
already been successfully applied in a broad scope of fields, such as secure communica-
tion [4], biological engineering [5] and image encryption [6]. Notably, there is a widespread
occurrence of diffusion phenomena with spatiotemporal properties in practical engineering
scenarios, including electrons moving in a circuit to implement a neural network and the
substance concentration changes that occur during chemical reactions. Therefore, CNs with
a reaction term and a diffusion term, i.e., spatiotemporal networks (SNs), have captured
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much attention of the scholars, and some fascinating and remarkable achievements have
been published [7–9]. Nevertheless, the aforementioned works on SNs are all based on the
premise that the diffusion matrix should be diagonal, posing extremely strict restrictions
regarding the scope of their practical applications. Besides, there are few related works on
the synchronization of SNs with anisotropic diffusion, i.e., the diffusion matrix in a general
form. Hence, it is challenging but urgent to address this problem, as this would provide
significant guidance in dynamic behavior analyses of SNs, which is the starting point of
this work.

In another respect, due to the positive qualities of heritability and finite memory, frac-
tional calculus has attracted widespread research interest and has already been extensively
employed in various fields, including image enhancement [10], viscoelastic systems [11],
and Lithium–ion batteries [12]. Therefore, it is of great significance to discuss fractional
calculus in both theory and practice. Since fractional calculus was incorporated into net-
works, abundant remarkable accomplishments have been obtained in fractional-order (FO)
networks [13–15]. Notably, Wu et al. [13] established an FO partial differential inequality to
solve the pinning synchronization of multiple FO fuzzy complex-valued delayed spatiotem-
poral neural networks using a decomposition approach. In [14], projective synchronization
was analyzed for FO neural networks with mixed time delays using the extended Halanay
inequality. However, findings regarding the synchronization of FOSN appear limited,
which prompted us to further explore this interesting and meaningful problem.

Significantly, the focus of the above-mentioned works is networks with only positive
weights, meaning that the nodes in the networks are just only cooperative. In fact, com-
petition exists in almost all complex systems, such as different companies competing for
economic benefits and different countries competing to obtain military dominance. As a
consequence, it is highly valuable to consider the synchronization of networks featuring
both cooperation and competition. Additionally, ever since the publication of Altafini’s
pioneering work [16], bipartite synchronization (BS), in which a subset of the nodes syn-
chronize to a desired state while the remaining nodes synchronize to the same value with
the opposite sign, this has quickly emerged as a major research issue [17–20]. Xu et al. [17]
devised a hybrid impulsive to study the exponential BS of FO multilayer signed networks
with both positive and negative impulsive effects. Ding et al. [18] discussed the quasi-BS
of complex networks via memory-based self-triggered control. In [20], interval BS were
studied in multiple neural networks with signed graphs. Nonetheless, academic studies in-
volving the BS of FOSNs are relatively few, which strongly stimulated our research interest.

Another issue deserving attention is that the results set forth previously all concentrate
on asymptotic synchronization over an infinite time scale. However, real tasks often must
be finished within a limited window of time. Accordingly, based on a seminal work [21]
regarding finite-time (FN) stability, FN synchronization, where all nodes converge to the
desired performance within a limited window, quickly captured the attention of multiple
researchers. FN synchronization has achieved a multitude of excellent outcomes [22–25],
due to its distinct superiority in terms of its quick convergence rate, high control accuracy,
and anti-interference qualities. In control research domains, how to more accurately
estimate settling time (ST) has consistently been one of the most prominent research
hotspots. Furthermore, the hyperbolic sine function (HSF), as a generalized exponential
function with some trigonometric properties, plays a fascinating role in dynamic analysis.
The systems in [26,27] based on the HSF exhibited intricate bifurcation and strange chaotic
attractors. In [28], the HSF was introduced in sliding mode to solve the uncertain FO
chaos synchronization. Following this, it is natural to consider why the HSF, with such
admirable properties, could generate an excellent control effect in synchronization control.
Fortunately, Xu et al. [29] devised a novel control scheme involving an HSF and a linear
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term to synchronize CN within a finite time, achieving a tighter bound of ST and anti-
chattering abilities. However, the HSF control law has not gained the attention it deserves,
and nor has the FNBS of FOSNs. The primary challenges are summarized as follows: (1) the
spatial variability, anisotropic diffusion matrix, and diffusion term pose difficulties when
designing a control scheme based on Taylor expansion and HSF; (2) as the HSF control is a
relatively novel method, it is challenging to improve the control scheme in [29], and there
is no straightforward method to decouple the reason for its outstanding anti-chattering
qualities or its ability to achieve a tighter bound of ST. It is important to address these
challenges, which was the primary motivation for this paper.

Sparked by the above discussions, the intention of the paper is to pursue the FNBS of
FOSNs. The main achievements are summarized as follows:

(1) In contrast to the existing literature [7,30,31], which have relatively conservative
requirements for diagonal diffusion matrices, the addressed FOSN, with anisotropic diffu-
sion, is more in accordance with the actual circumstances, in which the diffusion matrix
can be non-diagonal or non-square, i.e., the number of state components is independent of
the spatio dimensions.

(2) Furthermore, in order to explore the synchronization issues, two novel lemmas
involving equation transformation and inequality estimate are established based on the
Hadamard product, Hamiltonian operator, as well as trace, which can be further degener-
ated into the special circumstances listed in [7,32,33].

(3) Differing strikingly from the the control protocol in [34] involving the linear term
and power-law term, a new kind of control law based on HSF is proposed to address
the FNBS of FOSNs, with distinctive superiority in terms of its swifter convergence rate,
the tighter bound of the ST, and the suppression of chattering.

(4) Compared to the controller in [29], our devised HSF control law considers the
effects of spatiotemporal information even without linear terms, which is more concise
and effective. Differing from the controller in [7,35], the sign function is not contained
in the devised HSF control law, avoiding chatter and improving the smoothness of the
control input.

The work is organized as follows. Section 2 provides some necessary preliminaries
and the model description. In Section 3, the HSF control is considered via a comparative
analysis with two additional specific control protocols. Some simulations are carried out
to support our findings in Section 4. In Section 5, the application of our results in image
encryption is presented.

Notations. Denote N = {1, 2, . . . , N} and n = {1, 2, . . . , n}. Let R, Rn, and Rn×m

represent the space of real numbers, the n-dimensional Euclidean space, and the n × m
real matrices, respectively. R+ = [0,+∞). Z+ is the set of all positive integers. diag{·}
represents the diagonal matrix. ⊗, 0m, and 1m denote the Kronecker product, column
vector with all zero elements, and column vector with of all ones, respectively. For any
Z ∈ Rn×n, ZT and Z ≤ 0 signify the transposition of matrix Z and negative semi-definite
matrix Z, respectively: ∥ Z ∥ =

√
λmax(ZTZ), [Z]s = Z+ZT

2 . For the symmetric matrix
Z, λmax(Z) is the maximum eigenvalue. For any Y ∈ Rn, ∥ Y ∥ =

√
YTY. ◦ denotes the

Hadamard product: A =
(
aij
)

n×m; B =
(
bij
)

n×m; A ◦ B =
(
aij·bij

)
n×m.vec(·) symbolizes

the straightening operation.

2. Preliminaries and Model Description
In this section, some essential definitions, lemmas, and assumptions are presented,

along with the model description.
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Definition 1 ([36]). The fractional-order Caputo derivative of F(t) ∈ C1(R+,R) is defined by

C
t0

Dα
t F(t) =

1
Γ(1 − α)

∫ t

t0

(t − s)−α Ḟ(s)ds. (1)

Let Q(x, t) : Ω ×R+ → R be derivable with regard to t and α ∈ (0, 1).

Definition 2 ([36]). The fractional-order Caputo derivative of continuous differentiable function
Q(x, t) with regard to t is defined by

∂αQ(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

t0

∂Q(x, s)
∂s

(t − s)−αds. (2)

Definition 3 ([37]). A signed graph G = (V , E ,A) is structurally balanced if it has a bipartite
division of nodes, V1 ∈ V and V2 ∈ V such that V1 ∪ V2 = V ,V1 ∩ V2 = ∅ and Aij ≥ 0, ∀i, j ∈
V q(q ∈ {1, 2}), Aij ≤ 0, ∀i ∈ V p, j ∈ V r, p ̸=r(p, r ∈ {1, 2}).
Assumption 1. The topology graph G of the addressed network is strongly connected and
structurally balanced.

Assumption 2. For nonlinear function f (·): Rn → Rn , there exists a positive constant ϑ > 0
such that for any vectors y1, y2 ∈ Rn,

∥ f (y1)− f (y2) ∥ ≤ ϑ∥ y1 − y2 ∥.

Lemma 1 ([36]). According to the properties of Q(x, t),

∂αQT(x, t)Q(x, t)
∂tα

⩽ 2QT(x, t)
∂αQ(t, x)

∂tα
. (3)

Lemma 2 ([36]). According to the properties of Q(x, t), suppose that Q(x, t) is integrable with
regard to Ω. Let

Q̃(t) =
∫

Ω
Q(x, t)dx,

then,
C
0 Dα

t Q̃(t) =
∫

Ω

∂αQ(x, t)
∂tα

dx. (4)

Lemma 3 ([30]). (Wirtinger inequality) Suppose that W(x) : [L1, L2] → Rn is a continuous and
square integrable function satisfying W(L1) = 0n or W(L2) = 0n; then,

∫ L2

L1

WT(x)SW(x)dx ≤ 4(L2 − L1)
2

π2

∫ L2

L1

(
∂W(x)

∂x
)TS

∂W(x)
∂x

dx. (5)

Lemma 4 ([38]). (Generalized Gauss–Ostrogradskii Theorem) Suppose that Ω is a bounded closed
region with a piecewise-smooth boundary surface ∂Ω and g(x) = (g1(x), g2(x), . . . , gn(x)), gi(x)∈
C1(Ω), i = 1, 2, . . . , n; then,

∫
· · ·

∫

Ω︸ ︷︷ ︸
q

∇ · g(x)dΩ =
∮
· · ·

∮

∂Ω︸ ︷︷ ︸
q−1

g(x) · ndS,
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where n is a outward-pointing unit normal vector determined by the areal element of ∂Ω. For conve-
nience, the above equation is denoted as follows:

∫

Ω
∇ · g(x)dΩ =

∮

∂Ω
g(x) · ndS. (6)

Lemma 5 ([39]). Suppose that function h(t) : R+ → RNn , and function V(h(t)) : RNn → R+

is C-regular (positive definite, regular and radially unbounded) if there are constants σ > 0 and
0 ≤ θ < 1 such that

C
0 Dα

t V(h(t)) ≤ −σVθ(h(t)), h(t) ∈ RNn/{0Nn}, (7)

then, V(t) converges to the origin within the ST χ(h(t0)). The χ(h(t0)) is estimated using the
following equation:

χ(h(t0)) ≤
(

αB(α,1−θ)Λ(h(t0))
α−θ

σ

) 1
α

. (8)

Remark 1. Equations (1) and (2) are the fundamental definitions of fractional-order Caputo
derivative and fractional-order Caputo partial derivative. Equations (3) and (4) provide the essential
calculation rules for the later calculation of the Caputo derivative. Equations (5) and (6) provide
the key tools needed to analyze the anisotropic diffusion term. Equation (7) presents the crucial
inequality estimate for the FN convergence problem and the ST can be described using Equation (8).

Consider a kind of FOSN with N vertices, described as follows:

∂αmi(x, t)
∂tα

=∇·(D ◦ ∇mi(x, t)) + Ami(x, t) + B f (mi(x, t))

+g
N

∑
j=1

∣∣pij
∣∣Γ
(
sign

(
pij
)
mj(x, t)− mi(x, t)

)
+ Ui(x, t),

(9)

where i ∈ N , (x, t) ∈ Ω×R+, mi(x, t)∈ Rn signifies the spatiotemporal state vector of the
ith node and region Ω =

{
x =

(
x1, x2, . . . , xq

)T ∈ Rq :
∣∣∣xk

∣∣∣≤ Lk, k = 1, . . . , q
}

is an open
bounded domain with a smooth boundary ∂Ω. ∂Ω is the interior of region Ω, ∂Ω is the
boundary of region Ω. ∇ represents the Hamiltonian operator. D =

(
djk

)
n×q

denotes the

diffusion coefficient matrix, djk > 0. ∇·(D ◦ ∇mi(x, t))= (∑
q
k=1 ∂/∂xk

(
djk∂m1(x, t)/∂xk

)
,

∑
q
k=1 ∂/∂xk

(
djk∂m2(x, t)/∂xk

)
, . . . , ∑

q
k=1 ∂/∂xk

(
djk∂mn(x, t)/∂xk

)
)T . A ∈ Rn×n and

B ∈ Rn×n are the coefficient matrices. f (·): Rn → Rn is a continuous vector func-
tion and satisfies f (−mi(x, t)) = − f (mi(x, t)). g stands for the coupling strength.
Γ = diag{Γ1, . . . , Γn} > 0 depicts the internal coupling matrix. P =

(
pij
)

N×N depicts the
external coupling matrix, pij ⩾ 0, where pij ̸= 0 unless there is no direct link from node j to
node i. Ui(x, t) is the control protocol that is to be devised.

Remark 2. Compared with [7,30,31], the anisotropic diffusion is adequately taken into account
in the FOSN (9) using the Hadamard product and Hamiltonian operator, and the diffusion matrix
can be non-diagonal or non-square. On the one hand, the diffusion matrix characterizes the
spatiotemporal diffusion phenomenon. Therefore, it is required to be diagonal in [7,30,31], indicating
that the diffusion weights of each node’s state component for different spatial dimensions should
all be the same. However, the above construction is relatively conservative and incompatible with
typical spatiotemporal neural networks. On the other hand, if the diffusion matrix is a diagonal
matrix, this implies that the number of state components for the network nodes must match the
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number of spatiotemporal dimensions, resulting in an extraordinary idealized model. Considering
these two points, our addressed network aligns more closely with real-life scenarios.

Remark 3. It is noteworthy that when the diffusion matrix in FOSN (9) is diagonal, the model can
transform into the one considered in [7,30,31]. When the diffusion matrix in an FOSN (9) collapses
into a scalar, the model can reduce to the one discussed in [32]. When n is equal to 1 in FOSN (9),
the model can revert to the version of the spatiotemporal neural network model in [33]. This proves
that the network presented in this paper is more universal.

The initial condition and the Dirichlet boundary condition of FOSN (9) are derived
as follows: {

mi(x, 0) = m0
i (x), x ∈ ∂Ω,

mi(x, t) = 0n, (x, t) ∈ ∂Ω ×R+.
(10)

The corresponding isolated orbit is provided by the following equation:

∂αs(x, t)
∂tα

=∇·(D ◦ ∇s(x, t)) + As(x, t) + B f (s(x, t)), (11)

where s(x, t) ∈ Rn represents the state vector of the isolated node. The initial condition and
the Dirichlet boundary condition is shown as follows:

{
s(x, 0) = s0(x), x ∈ ∂Ω,
s(x, t) = 0n, (x, t) ∈ ∂Ω ×R+.

(12)

As per the properties of the Laplacian matrix, the FOSN (9) can be transitioned into
the following:

∂αmi(x, t)
∂tα

=∇·(D ◦ ∇mi(x, t)) + Ami(x, t) + B f (mi(x, t))

+g
N

∑
j=1

p̃ijΓmj(x, t) + Ui(x, t),
(13)

where P̃ =
(

p̃ij
)

N×N , p̃ij = pij for i ̸= j, and p̃ii = −∑N
j=1,j ̸=i

∣∣pij
∣∣.

In the light of Assumption 1, there must be a gauge transformation matrix Π =

diag{ξ1, ξ2, . . . , ξN} and ξi ∈ {1,−1}. Hence, P = ΠP̃Π =
(

pij

)
N×N

, where pij =

ξi p̃ijξ j =
∣∣pij
∣∣, for i ̸= j and pii = −∑N

j=1,j ̸=i
∣∣pij
∣∣, for i = j. Therefore, the FOSN (13) can

be collated as follows:

∂αmi(x, t)
∂tα

=∇·(D ◦ ∇mi(x, t)) + Ami(x, t) + B f (mi(x, t))

+g
N

∑
j=1

pijΓmj(x, t) + ξiUi(x, t),
(14)

where mi(x, t) = ξi mi(x, t).
Take Mi(x, t) = mi(x, t)− s(x, t) for the synchronization error. Using the FOSN (14)

and (11), the homologous error system can be derived as follows:

∂α Mi(x, t)
∂tα

=∇·(D ◦ ∇Mi(x, t)) + AMi(x, t) + B f (Mi(x, t))

+g
N

∑
j=1

pijΓMj(x, t) + ξiUi(x, t),
(15)
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where f̃ (Mi(x, t)) = f (mi(x, t))− f (mi(x, t)). The initial condition and Dirichlet boundary
condition are given by the following:

{
Mi(x, 0) = m0

i (x)− s0(x), x ∈ ∂Ω,
Mi(x, t) = 0n, (x, t) ∈ ∂Ω ×R+.

(16)

Let M0
i = Mi(x, 0), M0 =

((
M0

1
)T,
(

M0
2
)T, . . . ,

(
M0

N
)T
)T

, M(x, t) =
(
(M1(x, t))T, (M2(x, t))T,

. . . , (MN(x, t))T)T .

Definition 4 ([40]). The FOSN (9) and (11) are said to be FTBS provided that there is a constant
χ
(

M0) ≥ 0, such that lim
t→χ(M0)

||M(x, t)|| = 0, ||M(x, t)||≡ 0 for any t ≥ χ
(

M0). χ
(

M0) is

regarded as the ST.

For simplicity of representation, suppose
Mi(x, t) = Mi = (Mi1, Mi2, . . . , Min)

T ∈ Rn.
D =

(
djk

)
n×q

= (D1, D2, . . . , Dn)
T , Dj =

(
dj1, dj2, . . . , djq

)T is a column vector.

∇Mi = (∇Mi1,∇Mi2, . . . ,∇Min)
T , ∇Mi1 =

(
∂Mi1
∂x1

, ∂Mi1
∂x2

, . . . , ∂Mi1
∂xq

)T
.

H =
(

HT
1 , HT

2 , . . . , HT
n
)T ∈ Rn×q, Hi ∈ R1×q is a row vector.

∇·H = (∇·H1,∇·H2, . . . ,∇·Hn)
T , ∇·Hi =

∂Hi1
∂x1

+ ∂Hi2
∂x2

+ . . . +
∂Hiq
∂xq

.

Lemma 6. For Mi ∈ Rn, the following equation transformation is satisfied:

MT
i [∇·(D ◦ ∇Mi)] = ∇·

[
MT

i (D ◦ ∇Mi)
]
− 1T

n [∇Mi ◦ (D ◦ ∇Mi)]1q.

Proof.

MT
i [∇·(D ◦ ∇Mi)]

=




Mi1

Mi2
...

Min




T




∇·







d11 d12 . . . d1q

d21 d22 . . . d2q
...

...
...

dn1 dn2 . . . dnq




◦




∂Mi1
∂x1

∂Mi1
∂x2

. . .
∂Mi1
∂xq

∂Mi2
∂x1

∂Mi2
∂x2

. . .
∂Mi2
∂xq

...
...

...
∂Min
∂x1

∂Min
∂x2

. . .
∂Min
∂xq










=




Mi1

Mi2
...

Min




T




∇·




d11
∂Mi1
∂x1

d12
∂Mi1
∂x2

. . . d1q
∂Mi1
∂xq

d21
∂Mi2
∂x1

d22
∂Mi2
∂x2

. . . d2q
∂Mi2
∂xq

...
...

...

dn1
∂Min
∂x1

dn2
∂Min
∂x2

. . . dnq
∂Min
∂xq







=




Mi1

Mi2
...

Min




T




∇·
(

d11
∂Mi1
∂x1

d12
∂Mi1
∂x2

. . . d1q
∂Mi1
∂xq

)

∇·
(

d21
∂Mi2
∂x1

d22
∂Mi2
∂x2

. . . d2q
∂Mi2
∂xq

)

...

∇·
(

dn1
∂Min
∂x1

dn2
∂Min
∂x2

. . . dnq
∂Min
∂xq

)




(17)
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=




Mi1

Mi2
...

Min




T




q
∑

k=1
d1k

∂2 Mi1

∂x2
k

q
∑

k=1
d2k

∂2 Mi2

∂x2
k

...
q
∑

k=1
dnk

∂2 Min

∂x2
k




=
n

∑
j=1

q

∑
k=1

djk Mij
∂2 Mij

∂x2
k

=
n

∑
j=1

q

∑
k=1

djk




∂

(
Mij

∂Mij

∂xk

)

∂xk
−
(

∂Mij

∂xk

)2




=
n

∑
j=1

q

∑
k=1

djk

∂

(
Mij

∂Mij

∂xk

)

∂xk
−

n

∑
j=1

q

∑
k=1

djk

(
∂Mij

∂xk

)2

.

(17)

Moreover,

n

∑
j=1

q

∑
k=1

djk

∂

(
Mij

∂Mij

∂xk

)

∂xk
=∇·




n

∑
j=1

dj1 Mij
∂Mij

∂x1
,

n

∑
j=1

dj2 Mij
∂Mij

∂x2
, . . . ,

n

∑
j=1

djq Mij
∂Mij

∂xq




=∇·







Mi1

Mi2
...

Min




T




d11
∂Mi1
∂x1

d12
∂Mi1
∂x2

. . . d1q
∂Mi1
∂xq

d21
∂Mi2
∂x1

d22
∂Mi2
∂x2

. . . d2q
∂Mi2
∂xq

...
...

...

dn1
∂Min
∂x1

dn2
∂Min
∂x2

. . . dnq
∂Min
∂xq







=∇·
[

MT
i (D ◦ ∇Mi)

]
,

(18)

n

∑
j=1

q

∑
k=1

djk

(
∂Mij

∂xk

)2

=




n

∑
j=1

dj1

(
∂Mij

∂x1

)2

,
n

∑
j=1

dj2

(
∂Mij

∂x2

)2

, . . . ,
n

∑
j=1

djq

(
∂Mij

∂xq

)2

1q

=1T
n




d11

(
∂Mi1
∂x1

)2
d12

(
∂Mi1
∂x2

)2
. . . d1q

(
∂Mi1
∂xq

)2

d21

(
∂Mi2
∂x1

)2
d22

(
∂Mi2
∂x2

)2
. . . d2q

(
∂Mi2
∂xq

)2

...
...

...

dn1

(
∂Min
∂x1

)2
dn2

(
∂Min
∂x2

)2
. . . dnq

(
∂Min
∂xq

)2




1q

=1T
n







d11 d12 . . . d1q

d11 d22 . . . d2q
...

...
...

d11 d12 . . . dnq




◦




∂M11
∂x1

∂Mi1
∂x2

. . .
∂Mi1
∂xq

∂M12
∂x1

∂Mi2
∂x2

. . .
∂Mi2
∂xq

...
...

...
∂Min
∂x1

∂Min
∂x2

. . .
∂Min
∂xq




◦




∂M11
∂x1

∂Mi1
∂x2

. . .
∂Mi1
∂xq

∂Mi2
∂x1

∂Mi2
∂x2

. . .
∂Mi2
∂xq

...
...

...
∂Min
∂x1

∂Min
∂x2

. . .
∂Min
∂xq







1q

=1T
n (D ◦ ∇Mi ◦ ∇Mi)1q

=1T
n [∇Mi ◦ (D ◦ ∇Mi)]1q.

(19)
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From (17)–(19), one can deduce that

MT
i [∇·(D ◦ ∇Mi)] = ∇·

[
MT

i (D ◦ ∇Mi)
]
− 1T

n [∇Mi ◦ (D ◦ ∇Mi)]1q.

□

Lemma 7. For Mi ∈ Rn, the following can be derived:

N

∑
i=1

∫

Ω
1T

n [D ◦ ∇Mi(x, t) ◦ ∇Mi(x, t)]1q dx

⩾
π2

4
min

j,k

{
djk

} q

∑
k=1

1
L2

k

N

∑
i=1

∫

Ω
MT

i (x, t)Mi(x, t)dx.

Proof. Based on Lemma 3 and Lemma 4,

N

∑
i=1

∫

Ω
1T

n [D ◦ ∇Mi(x, t) ◦ ∇Mi(x, t)]1q dx

⩾min
j,k

{
djk

} N

∑
i=1

∫

Ω
1T

n [∇Mi(x, t) ◦ ∇Mi(x, t)]1q dx

=min
j,k

{
djk

} N

∑
i=1

∫

Ω
trace

[
∇T Mi(x, t)∇Mi(xt)

]
dx

=min
j,k

{
djk

} N

∑
i=1

∫

Ω
vecT(∇Mi(x, t))vec(∇Mi(x, t))dx

=min
j,k

{
djk

} N

∑
i=1

∫

Ω

q

∑
k=1

(
∂Mi1
∂xk

,
∂Mi2
∂xk

, . . . ,
∂Min
∂xk

)T(∂Mi1
∂xk

,
∂Mi2
∂xk

, . . . ,
∂Min
∂xk

)
dx

=min
j,k

{
djk

} n

∑
i=1

q

∑
k=1

∫

Ω

(
∂Mi(x, t)

∂xk

)T ∂Mi(x, t)
∂xk

dx

⩾
π2

4
min

j,k

{
djk

} q

∑
k=1

1
L2

k

N

∑
i=1

∫

Ω
MT

i (x, t)Mi(x, t)dx.

□

Remark 4. Compared to the studies in [7,30,31] concerning spatiotemporal networks with a
diagonal diffusion matrix, Lemma 6 establishes an equality transformation for the anisotropic
diffusion term, employing the vector’s inner product, the Hadamard product, and the Hamiltonian
operator. Based on the matrix–vector relations, this equation transformation reveals a more concise
structure and highlights a more integrated understanding of the anisotropic diffusion term at the
vector level, facilitating further research into the complex dynamic behaviors of SNs.

Remark 5. Based on the trace results, vector straightening operation, Hadamard product, and
Hamiltonian operator, Lemma 7 establishes an inequality estimate involving the anisotropic diffusion
term in an effective and more compact form, which serves as the basis for the synchronization
analysis later.

Remark 6. Notably, when the anisotropic diffusion matrix is diagonal, the conclusions of
Lemmas 6 and 7 are in accordance with those in [7,30,31]. In addition, if the anisotropic diffu-
sion matrix becomes a scalar, the results of Lemmas 6 and 7 also match the ones in [32]. More
importantly, if n = 1, Lemmas 6 and 7 are compatible with the results for the spatiotemporal neural
network model in [33], demonstrating the broader applicability of Lemmas 6 and 7.
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3. Main Results
Before the detailed discussion of the designed HSF control law, the polynomial form-

based control protocol and the HSF control protocol with linear terms are discussed, serving
as the basic for comparison purposes.

3.1. Polynomial Form-Based Control Protocol

First, the conventional polynomial form-based control protocol was designed, as
described below:

Ui(x, t) =





ξiUi(x, t), Mi(x, t) ̸= 0n,

0n, Mi(x, t) = 0n,
(20)

where Ui(x, t) = −φMi(x, t) − ψMi(x, t)Gν, G(t) =
∫

Ω MT(x, t)M(x, t)dx, φ > 0,
ψ > 0, ν ∈ (−1, 0).

Theorem 1. Based on Assumptions 9 and 10 and control protocol (20), if

C1 < 0, (21)

then FOSN (9) achieves FNBS with (11). The ST is established by

χ
(

M0
)
≤
(

αB(α,−ν)V
(

M0)α−ν−1

ψ

) 1
α

,

where C1 = −π2

4
min

j,k

{
djk

} q
∑

k=1

1
L2

k
+ λmax

(
[A]s

)
+ ϑ∥ [B]s ∥+ λmax

(
g
[
P
]s ⊗ Γ

)
− φ.

Proof. Construct the following Lyapunov function:

V(t) =
∫

Ω
MT(x, t)M(x, t)dx.

For M(x, t) ∈ RNn/{0Nn}, in light of Lemmas 1 and 2, the following can be inferred:

C
0 Dα

t V(t) ⩽2
∫

Ω

[
MT(x, t)[IN ⊗ (∇·(D ◦ ∇M(x, t)))]

+MT(x, t)(IN ⊗ A)M(x, t) + MT(x, t)(IN ⊗ B)F(M(x, t))

+gMT(x, t)
(

P ⊗ Γ
)

M(x, t))+MT(x, t)U(x, t)
]
dx,

(22)

where U(x, t) =
(
UT

1 (x, t), UT
2 (x, t), . . . , UT

N(x, t)
)T, F(M(x, t)) = ( f̃ T(M1(x, t)), f̃ T(M2( x,

t)), . . . , f̃ T(MN(x, t)))T .
Using Lemma 4 and the Dirichlet boundary condition (16), the diffusion term can be

further explored as follows:
∫

Ω
MT(x, t)[IN ⊗ (∇ · (D ◦ ∇M(x, t)))]dx

=
N

∑
i=1

∫

Ω
MT

i (x, t)[∇ · (D ◦ ∇Mi(x, t))]dx

=
N

∑
i=1

∫

Ω
{∇ · [MT

i (x, t)(D ◦ ∇Mi(x, t))]− 1T
n [∇Mi(x, t) ◦ (D ◦ ∇Mi(x, t))]1q}dx

=
N

∑
i=1

[
∮

∂Ω
MT

i (x, t)(D ◦ ∇Mi(x, t)) · ndS −
∫

Ω
1T

n [∇Mi(x, t) ◦ (D ◦ ∇Mi(x, t))]1qdx]

= −
N

∑
i=1

∫

Ω
1T

n [∇Mi(x, t) ◦ (D ◦ ∇Mi(x, t))]1qdx.

(23)
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In view of Lemma 7 and (23), the following can be obtained:

−
N

∑
i=1

∫

Ω
1T

n [∇Mi(x, t) ◦ (D ◦ ∇Mi(x, t))]1qdx

⩽−π2

4
min

j,k
{djk}

q

∑
k=1

1
L2

k

N

∑
i=1

∫

Ω
MT(x, t)M(x, t)dx.

(24)

Assumption 2 can be used to obtain the following:

∫

Ω
M(x, t)(IN ⊗ B)F(M(x, t))dx

=
N

∑
i=1

∫

Ω
MT

i (x, t)[B]s f̃ (Mi(x, t))dx

⩽
N

∑
i=1

∫

Ω
∥ Mi(x, t) ∥·∥ [B]s ∥·∥ f̃ (Mi(x, t)) ∥dx

⩽
∫

Ω
MT(x, t)

[
IN ⊗

(
ϑ∥ [B]s ∥In

)]
M(x, t)dx.

(25)

Furthermore,
∫

Ω
g

N

∑
i=1

MT
i (x, t)

N

∑
j=1

pijΓMj(x, t)dx

=
∫

Ω
g

N

∑
i=1

n

∑
k=1

Mik(x, t)
N

∑
j=1

pijγk Mjk(x, t)dx

=
∫

Ω
g

n

∑
k=1

MT
k (x, t)Pγk Mk(x, t)dx

=
∫

Ω

n

∑
k=1

MT
k (x, t)g

[
P
]s

γk Mk(x, t)dx

⩽
∫

Ω
MT(x, t)λmax

(
g
[
P
]s ⊗ Γ

)
M(x, t)dx,

(26)

where Mk(x, t) = (M1k(x, t), M2k(x, t), . . . , MNk(x, t))T . Afterwards, according to the
control protocol (20),

∫

Ω
MT(x, t)U(x, t)dx

=
N

∑
i=1

∫

Ω
MT

i (x, t)(−φMi(x, t)− ψMi(x, t)Gν)dx

=−φV(t)− ψVν+1(t).

(27)

Substituting (23)–(27) into (22) and homoplastically considering condition (21), one
can obtain

C
0 Dα

t V(t) ≤C1 V(t)− ψ Vν+1(t)

≤−ψVν+1(t).
(28)

According to Lemma 5, an FOSN (9) can achieve FNBS with (11). The ST is determined
as follows:

χ
(

M0) ≤
(

αB(α,−ν)V(M0)
α−ν−1

ψ

) 1
α

. (29)

□
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3.2. HSF Control Protocol with Linear Term

Inspired by the aforementioned discussion, the result of (28) triggered us to introduce
the HSF to control protocols (20), on account of its outstanding performance in [29].

Based on the conventional polynomial form-based control protocol, we introduced the
HSF to explore whether it could allow for more effective control. The HSF control protocol
was designed by linear terms, as follows:

Ui(x, t) =





ξiUi(x, t), Mi(x, t) ̸= 0n,

0n, Mi(x, t) = 0n,
(30)

where Ui(x, t) = −φMi(x, t)− Mi(x,t)sinh(δGσ(t))
G(t) , φ > 0, δ > 0, 1 > σ > 0. sinh(·) is the

HSF: sinh(y) = (ey + e−y)/2, y ∈ R.

Theorem 2. Based on Assumptions 9 and 10 and control protocol (30), if

C1 < 0, (31)

then the FOSN (9) achieves FNBS with (11). The ST is estimated by:

χ
(

M0
)
≤
(

αB(α, 1 − σ)V
(

M0)α−σ

δ

) 1
α

,

where C1 = −π2

4
min

j,k

{
djk

} q
∑

k=1

1
L2

k
+ λmax

(
[A]s

)
+ ϑ∥ [B]s ∥+ λmax

(
g
[
P
]s ⊗ Γ

)
− φ.

Proof. Construct the following Lyapunov function:

V(t) =
∫

Ω
MT(x, t)M(x, t)dx.

For M(x, t) ∈ RNn/{0Nn}, in light of Lemmas 1 and 2, the following can be inferred:

C
0 Dα

t V(t) ⩽2
∫

Ω

[
MT(x, t)[IN ⊗ (∇·(D ◦ ∇M(x, t)))]

+MT(x, t)(IN ⊗ A)M(x, t) + MT(x, t)(IN ⊗ B)F(M(x, t))

+gMT(x, t)
(

P ⊗ Γ
)

M(x, t))+MT(x, t)U(x, t)
]
dx.

(32)

Following the proof process like Theorem 1, together with the control protocol (30),
one can obtain the following:

C
0 Dα

t V(t) ≤C1 V(t)− sinh(δGσ(t))

≤−
∞

∑
r=0

[δGσ(t)]2r+1

(2r + 1)!

≤−δGσ(t)

=−δVσ(t).

(33)

According to Lemma 5, the FOSN (9) achieves FNBS with (11). The ST is estimated by:

χ
(

M0) ≤
(

αB(α,1−σ)V(M0)
α−σ

δ

) 1
α

. (34)
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□

3.3. HSF Control Law Without Linear Terms

Notably, not only can the key second power term in the devised control protocol (20)
be replaced by composing the HSF with G(t), but the remaining linear term, which is an
important part of both control protocols (20) and (30), can also be eliminated. The HSF
control law without linear terms was designed as follows:

Ui(x, t) =





ξiUi(x, t), Mi(x, t) ̸= 0n,

0n, Mi(x, t) = 0n,
(35)

where Ui(x, t) = −Mi(x,t)sinh(δGσ(t))
G(t) , σ = 1

2h+1 , h ∈ Z+.

Theorem 3. Based on Assumptions 9 and 10 and control law (35), if

C2 <
δ2h+1

(2h + 1)!
, (36)

then the FOSN (9) achieves FNBS with (11). The ST is estimated by:

χ
(

M0
)
≤




α(2h − 1)!B
(

α, 2
2h+1

)
V
(

M0)α− 2h−1
2h+1

δ2h−1




1
α

,

where C2 = −π2

4
min

j,k

{
djk

} q
∑

k=1

1
L2

k
+ λmax

(
[A]s

)
+ ϑ∥ [B]s ∥+ λmax

(
g
[
P
]s ⊗ Γ

)
.

Proof. Construct the following Lyapunov function:

V(t) =
∫

Ω
MT(x, t)M(x, t)dx.

For M(x, t) ∈ RNn/{0Nn}, in light of Lemmas 1 and 2, the following can be inferred:

C
0 Dα

t V(t) ⩽2
∫

Ω

[
MT(x, t)[IN ⊗ (∇·(D ◦ ∇M(x, t)))]

+MT(x, t)(IN ⊗ A)M(x, t) + MT(x, t)(IN ⊗ B)F(M(x, t))

+gMT(x, t)
(

P ⊗ Γ
)

M(x, t))+MT(x, t)U(x, t)
]
dx

⩽C2V(t)− sinh(δGσ(t)).

(37)

Besides,

sinh(δGσ(t))

=
∞

∑
r=0

(δGσ(t))2r+1

(2r + 1)!

=
h−2

∑
r=0

(δGσ(t))2r+1

(2r + 1)!
+

δ2h−1

(2h − 1)!
G

2h − 1
2h + 1 (t) +

δ2h+1

(2h + 1)!
G(t) +

∞

∑
r=0

(δGσ(t))2(r+h)+3

(2(r + h) + 3)!

≥ δ2h−1

(2h − 1)!
G

2h − 1
2h + 1 (t) +

δ2h+1

(2h + 1)!
G(t).

(38)
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Following the proof process in Theorem 1, together with the control laws presented in (35)
and (38), one can obtain

C
0 Dα

t V(t) ≤
[

C2 −
δ2h+1

(2h + 1)!

]
V(t)− δ2h−1

(2h − 1)!
V

2h−1
2h+1 (t),

≤− δ2h−1

(2h − 1)!
V

2h−1
2h+1 (t).

(39)

According to Lemma 5, the FOSN (9) achieves FNBS with (11). The ST can be derived
as follows:

χ
(

M0
)
≤




α(2h − 1)!B
(

α, 2
2h+1

)
V
(

M0)α− 2h−1
2h+1

δ2h−1




1
α

.

□

Remark 7. Differing from the designed control schemes in [29,41], the devised HSF control law
(35) only has one term based on the HSF without the linear term. Actually, the linear term can
ensure asymptotic synchronization, and the term based on the HSF in [29,41] is the key to ensuring
synchronization in a finite time. Truthfully if FN synchronization holds, asymptotic synchronization
automatically follows. Moreover, in (38), it is evidenced that the HSF can compensate the linear term
by itself. Hence, the devised HSF control law (35) is more concise and further reduces the number of
control parameters, facilitating easier implementation. Also, the synchronization condition (36) is
less conservative and more flexible.

Remark 8. As opposed to the designed control schemes in [7,35], the devised HSF control law (35)
does not have the sign function, which effectively avoids chattering and makes the system dynamics
more smoothly. On the other hand, as a generalized exponential function, the HSF can degenerate
into the standard exponential function; that is to say, the devised control law (35) can degenerete
into the designed control scheme in [7,35] to some extent. In these two applications, compared with
the designed control schemes in [7,35], the devised HSF control law (35) serves as not only an
extension but also as an improvement, avoiding the chattering and increasing the smoothness for
the control input.

Remark 9. As is widely recognized, in contrast to the hyperbolic cosine function, the HSF is an
odd function and continuous at the origin, with the range (−∞,+∞). However, the range of the
hyperbolic cosine function is [1,+∞), without any values in [0, 1). Therefore, compared to the
controller with a hyperbolic cosine function in [42], the devised HSF control law (35) can provide a
more flexible control input. Moreover, the control input based HSF is more smooth than the one
in [42] because it does not have the sign function.

Remark 10. The devised HSF control law (35) can effectively control both the spatial and temporal
information during the evolution of systems. To some extent, the devised control law (35) can
degenerate into the control scheme in [29] through being sliced in the spatial dimension and ignoring
the remaining spatial influences. This indicates that the control law we designed is more universal.

The above analysis is summarized in the following table, which shows the spatial
information, linear term, sign function, and number of terms in different control laws.



Fractal Fract. 2025, 9, 36 15 of 38

References Spatial Information Linear Term Sign(·) Number of Terms

[29,41] ✓ ✓ × 2
[7] ✓ × ✓ 1
[34] × ✓ ✓ 2

This work ✓ × × 1

4. Numerical Simulations
In this section, some numerical experiments are provided to show the feasibility of the

proposed control laws for FOSNs. All the simulations took place in the environment of MAT-
LAB R2023a in Intel(R) Core(TM) i7-8750HQ CPU @2.20GHZ, a 64 bit operating system.

Example 1. Triggered by the improved Chua’s circuit in [43], the following isolated node system
is established:

∂αs(x, t)
∂tα

=∇·(D ◦ ∇s(x, t)) + As(x, t) + B f (s(x, t)), (40)

where s(x, t) = (s1(x, t), s2(x, t), s3(x, t))T , x ∈ [−2, 2]

A =




−0.0815 8.8236 0
0.8159 −0.8975 0.8159
0 −11.4232 0


,

and B = diag{0.8159, 0, 0}, D = diag{0.0612, 0.0612, 0.0612}, f (s(x, t)) = ( f (s1(x, t)),
f (s2(x, t)), f (s3(x, t)))T , f (sh(x,t)) = 2.1628sin(1.2π sh(x, t)), h = 1, 2, 3. α = 0.95,
η = 1.25. The initial condition is s0(x) = (0.1, 0.3, 0.05)T .

The phase portraits of s1(x, t), s2(x, t), and s3(x, t) are simulated in Figure 1. When x = 1.33,
the phase trajectory clearly has a 2-scroll chaotic attractor. When x = −0.66, the phase portrait
clearly has a 3-scroll chaotic attractor, and when x = 0, the phase portrait clearly has a 4-scroll
chaotic attractor. It is so interesting that diverse forms of multi-scroll chaotic attractors could be
generated from a deterministic system.

Fractal Fract. 2025, 1, 0 16 of 41

The spatiotemporal evolutions of s1(x, t), s2(x, t) and s3(x, t) are simulated in Figure 2.
The Turing patterns of s1(x, t), s2(x, t) and s3(x, t) are simulated in Figure 3. The patterns

reveal that the system (40) possesses Turing instability.
Figure 4a exhibits the bifurcation diagram with bifurcation parameter a32. Following careful

observation, the system state undergoes period-1 orbit, period-2 orbit, and period-4 orbit, and
ultimately enters a chaotic region. Interestingly, as the system state passes through period-doubling
bifurcation routed to chaos, the bifurcation diagram makes some amazing jumps, indicating that
the system exhibits complex chaotic behavior. Therefore, it has better resistance to attacks regarding
image encryption and decryption. Furthermore, it is apparent that the system falls in the chaotic
region within the parameters of Example 1.

(a) (b)

(c)

Figure 1. (a) The strange attractor of system (40) at x = 1.33. (b) The strange attractor of system (40)
at x = −0.66. (c) The strange attractor of system (40) at x = 0.

(a) (b)

Figure 1. (a) The strange attractor of system (40) at x = 1.33. (b) The strange attractor of system (40)
at x = −0.66. (c) The strange attractor of system (40) at x = 0.
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The spatiotemporal evolutions of s1(x, t), s2(x, t) and s3(x, t) are simulated in Figure 2.
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(a) (b)

(c)

Figure 2. (a) The spatiotemporal evolution of s1(x, t). (b) The spatiotemporal evolution of s2(x, t).
(c) The spatiotemporal evolution of s3(x, t).
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Figure 3. (a) The Turing pattern of s1(x, t). (b) The Turing pattern of s2(x, t). (c) The Turing pattern of
s3(x, t).

Figure 2. (a) The spatiotemporal evolution of s1(x, t). (b) The spatiotemporal evolution of s2(x, t).
(c) The spatiotemporal evolution of s3(x, t).

The Turing patterns of s1(x, t), s2(x, t) and s3(x, t) are simulated in Figure 3. The patterns
reveal that the system (40) is Turing instability.
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(c)

Figure 2. (a) The spatiotemporal evolution of s1(x, t). (b) The spatiotemporal evolution of s2(x, t).
(c) The spatiotemporal evolution of s3(x, t).
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Figure 3. (a) The Turing pattern of s1(x, t). (b) The Turing pattern of s2(x, t). (c) The Turing pattern of
s3(x, t).

Additionally, there are some dense points with fractal structures in the Poincaré map on the
plane 5x − 6.1y + 0.92z = 0 in Figure 4b, providing additional evidence that the system is indeed
chaotic. This was the primary motivation behind our application of the theoretical results to the
image encryption.

Figure 3. (a) The Turing pattern of s1(x, t). (b) The Turing pattern of s2(x, t). (c) The Turing pattern
of s3(x, t).
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Figure 4a exhibits the bifurcation diagram with bifurcation parameter a32. Following careful
observation, the system state undergoes period-1 orbit, period-2 orbit, and period-4 orbit, and
ultimately enters a chaotic region. Interestingly, as the system state passes through period-doubling
bifurcation routed to chaos, the bifurcation diagram makes some amazing jumps, indicating that
the system exhibits complex chaotic behavior. Therefore, it has better resistance to attacks in image
encryption and decryption. Furthermore, it is apparent that the system falls in the chaotic region
within the parameters of Example 1.
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Figure 4. (a) Bifurcation diagram. (b) Poincaré map: the projection on the plane is 5x − 6.1y + 0.92z =

0.

Remark 11. Based on the analysis of the phase portrait, spatiotemporal evolution, bifurcation
diagram, Poincaré map, and Turing pattern, the established system (40) is demonstrated to be a
chaotic system with strong chaos properties; this information forms the basis of the application of the
obtained synchronization results to image encryption.

Example 2. Consider the following FOSN, with six nodes:

∂αmi(x, t)
∂tα

=∇ · (D ◦ ∇mi(x, t)) + Ami(x, t) + B f (mi(x, t))

+ g
N

∑
j=1

∣∣pij
∣∣Γ
(
sign

(
pij
)
mj(x, t)− mi(x, t)

)
+ Ui(x, t), (41)

where mi(x, t) = (mi1(x, t), mi2(x, t), mi3(x, t))T , ϑ = 0.1, g = 10, Γ = I3, i = 1, 2, . . . , 6

P =




0 0.1 0 0 0 0
0 0 0.3 0 −0.4 0
0 0 0 −0.8 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.6

−0.2 0 0 0 0 0




.

The initial condition is m0
1(x) = (0.6, 0.5, 0.7)T , m0

2(x) = (0.8, 0.8, 0.8)T , m0
2(x) =

(1, 1.1, 0.9)T , m0
4(x) = (−1.2,−1.4,−1)T , m0

5(x) = (−1.4,−1.7,−1.1)T , m0
6(x) =

(−1.6,−2,−1.15)T . The network topology of FOSN (41) is depicted in Figure 5a, which in-
dicates that the signed networks are structurally balanced with V1 = {1, 2, 3}, and V2 = {4, 5, 6}.
In Figure 5a, the red lines and the yellow lines represent the cooperation relationship using positive
weights; the blue lines indicate the competition relationship using negative weights.

(a) (b)

Figure 5. (a) Network topology. (b) The evolution over time of error Mij(x, t) without control.

Figure 4. (a) Bifurcation diagram. (b) Poincaré map: the projection on the plane is 5x − 6.1y + 0.92z = 0.

Additionally, there are some dense points with fractal structures in the Poincaré map on the
plane 5x − 6.1y + 0.92z = 0 in Figure 4b, providing additional evidence that the system is indeed
chaotic. This was the primary motivation behind our application of the theoretical results to the
image encryption.

Remark 11. Based on the analysis of the phase portrait, spatiotemporal evolution, bifurcation dia-
gram, Poincaré map, and Turing pattern, the established system (40) is demonstrated to be a chaotic
system with strong chaos properties, which set the basis for applying the obtained synchronization
results to image encryption.

Example 2. Consider the following FOSN, with six nodes:

∂αmi(x, t)
∂tα

=∇·(D ◦ ∇mi(x, t)) + Ami(x, t) + B f (mi(x, t))

+g
N

∑
j=1

∣∣pij
∣∣Γ
(
sign

(
pij
)
mj(x, t)− mi(x, t)

)
+ Ui(x, t),

(41)

where mi(x, t) = (mi1(x, t), mi2(x, t), mi3(x, t))T , ϑ = 0.1, g = 10, Γ = I3, i = 1, 2, . . . , 6

P =




0 0.1 0 0 0 0
0 0 0.3 0 −0.4 0
0 0 0 −0.8 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.6

−0.2 0 0 0 0 0




.

The initial condition is m0
1(x) = (0.6, 0.5, 0.7)T , m0

2(x) = (0.8, 0.8, 0.8)T , m0
2(x) =

(1, 1.1, 0.9)T , m0
4(x) = (−1.2,−1.4,−1)T , m0

5(x) = (−1.4,−1.7,−1.1)T , m0
6(x) =

(−1.6,−2,−1.15)T . The network topology of FOSN (41) is depicted in Figure 5a, which in-
dicates that the signed networks are structurally balanced with V1 = {1, 2, 3}, and V2 = {4, 5, 6}.
In Figure 5a, the red lines and the yellow lines represent the cooperation relationship by positive
weights and the blue lines indicate the competition relationship using negative weights, respectively.
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(a) (b)

Figure 5. (a) Network topology. (b) The evolution over time of error Mij(x, t) without control.

The evolution over time of Mij(x, t) without control is demonstrated in Figure 5b and the
spatiotemporal evolution is presented in Figure 6 using a contour map, indicating that the isolated
orbit does not possess self-stability. Figure 7 represents the states of the systems (40) with an FOSN
(41), signifying that they cannot achieve bipartite synchronization without control.

Then, the parameters of the control protocol (20) are selected as φ = 7.49, ψ = 1.5, υ = −0.75.
The evolution of Mij(x, t) under the control protocol (20) is depicted in Figure 8, which shows that
Mij(x, t) gradually converges to 0 over time. Furthermore, the estimated upper bound for ST is
18.03. However, Mij(x, t) seems to already be very close to zero at 0.33, which indicates that the
control protocol (20) deserves further investigation.

(a) (b)

(c)

Figure 6. (a) The spatiotemporal evolution of Mi1(x, t). (b) The spatiotemporal evolution of Mi2(x, t).
(c) The spatiotemporal evolution of Mi3(x, t).

Figure 5. (a) Network topology. (b) The time evolutions of error Mij(x, t) without control.

The time evolutions of Mij(x, t) without control are demonstrated in Figure 5b and the
spatiotemporal evolutions are presented in Figure 6 with contour map, indicating that the isolated
orbit is not self-stability. Figure 7 represents the states of the systems (40) with FOSN (41),
signifying that they cannot achieve bipartite synchronization without control.
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The evolution over time of Mij(x, t) without control is demonstrated in Figure 5b and the
spatiotemporal evolution is presented in Figure 6 using a contour map, indicating that the isolated
orbit does not possess self-stability. Figure 7 represents the states of the systems (40) with an FOSN
(41), signifying that they cannot achieve bipartite synchronization without control.

Then, the parameters of the control protocol (20) are selected as φ = 7.49, ψ = 1.5, υ = −0.75.
The evolution of Mij(x, t) under the control protocol (20) is depicted in Figure 8, which shows that
Mij(x, t) gradually converges to 0 over time. Furthermore, the estimated upper bound for ST is
18.03. However, Mij(x, t) seems to already be very close to zero at 0.33, which indicates that the
control protocol (20) deserves further investigation.

(a) (b)

(c)

Figure 6. (a) The spatiotemporal evolution of Mi1(x, t). (b) The spatiotemporal evolution of Mi2(x, t).
(c) The spatiotemporal evolution of Mi3(x, t).

Figure 6. (a) The spatiotemporal evolutions of Mi1(x, t) with contour map. (b) The spatiotempo-
ral evolutions of Mi2(x, t) with contour map. (c) The spatiotemporal evolutions of Mi3(x, t) with
contour map.
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Figure 7. (a) The evolution of mi1(x, t) over time. (b) The evolution of mi2(x, t) over time. (c) The
evolution of mi3(x, t) over time.
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Figure 8. The evolution of Mij(x, t) over time under the control protocol (20).

Figure 9 presents the spatiotemporal evolution of Mij(x, t) using a contour map, which makes
it clear that Mij(x, t) gradually converges to 0 without any alteration in height.

Figure 7. (a) The time evolutions of mi1(x, t). (b) The time evolutions of mi2(x, t). (c) The time
evolutions of mi3(x, t).

Then, the parameters of the control protocol (20) are selected as φ = 7.49, ψ = 1.5, υ = −0.75.
The time evolutions of Mij(x, t) under the control protocol (20) are depicted in Figure 8, which show
that Mij(x, t) gradually converges to 0 over time. Furthermore, the estimated upper bound for ST is
18.03. However, Mij(x, t) seems to already be very close to zero at 0.33, which indicates that the
control protocol (20) deserves further investigation.
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Figure 7. (a) The evolution of mi1(x, t) over time. (b) The evolution of mi2(x, t) over time. (c) The
evolution of mi3(x, t) over time.
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Figure 8. The evolution of Mij(x, t) over time under the control protocol (20).

Figure 9 presents the spatiotemporal evolution of Mij(x, t) using a contour map, which makes
it clear that Mij(x, t) gradually converges to 0 without any alteration in height.

Figure 8. The time evolutions of Mij(x, t) under the control protocol (20).

Figure 9 presents the spatiotemporal evolutions of Mij(x, t) with contour map, which make it
clear that Mij(x, t) gradually converges to 0 without any alteration in height.
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(a) (b)

(c)

Figure 9. (a) The spatiotemporal evolution of Mi1(x, t), shown using a contour map, for the control
protocol (20). (b) The spatiotemporal evolution of Mi2(x, t), shown using a contour map, for the
control protocol (20). (c) The spatiotemporal evolution of Mi3(x, t), shown using a contour map, for
the control protocol (20).

The evolution over time of each component of mi(x, t) and s(x, t) is depicted in Figure 10,
which indicates that the states of the network nodes in the system (40) with an FOSN (41) ultimately
achieve BS.

Therefore, FNBS is achieved for the system (40) with an FOSN (41) which verifies the correct-
ness of the developed control protocol (20).

Figure 9. (a) The spatiotemporal evolutions of Mi1(x, t) with contour map under control protocol
(20). (b) The spatiotemporal evolutions of Mi2(x, t) with contour map undercontrol protocol (20).
(c) The spatiotemporal evolutions of Mi3(x, t) with contour map undercontrol protocol (20).

The time evolutions for each component of mi(x, t) and s(x, t) are depicted in Figure 10, which
indicate that the states of the network nodes in system (40) and FOSN (41) ultimately achieve BS.
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Figure 10. (a) The evolution over time of s1(x, t) and mi1(x, t). (b) The evolution of s2(x, t) and
mi2(x, t) over time. (c) The evolution of s3(x, t) and mi3(x, t) over time.

Example 3. The example will simulate a system (40) with an FOSN (41) under the HSF control
protocol (30) using the linear term in Theorem 2.

The parameters of the control protocol (30) were designed as φ = 7.49, δ = 1.5, σ = 0.25
and the estimated upper bound for ST was 18.03. These parameters were selected to emphasize the
excellent control performance of the HSF control protocol in comparison with this method using
Algorithm 1.

Algorithm 1 Parameter selection for contrasting control protocol (20) with (30)

Input: Controlled system parameters
Output: Control parameters
START
Step 1: Design identical control gains in linear terms for (20) and (30), meeting the cond-

itions of (21) and (31), respectively;
Step 2: By setting (28) equal to (33), one can obtain the following: δ = ψ, σ = υ + 1;
Step 3: Using Step 2, one can determine the ST in (29), which is naturally equal to the result

in (34) due to Lemma (5).
EXIT

The evolution of Mij(x, t) under the control protocol (30) is depicted in Figure 11, which shows
that Mij(x, t) gradually converges to 0 as time evolves. Furthermore, the estimated upper bound for
ST is 18.03. However, it is worth considering that Mij(x, t) seems to already be very close to zero at
0.28, which indicates that the introduction of the HSF had a positive effect.

Figure 10. (a) The time evolutions of s1(x, t) and mi1(x, t). (b) The time evolutions of s2(x, t) and
mi2(x, t). (c) The time evolutions of s3(x, t) and mi3(x, t).
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Therefore, FNBS is achieved for the system (40) with FOSN (41) which verifies the correctness
of the developed control protocol (20).

Example 3. The example will simulate system (40) with FOSN (41) under the HSF control protocol
(30) with linear term in Theorem 2.

The parameters of the control protocol (30) were designed as φ = 7.49, δ = 1.5, σ = 0.25
and the estimated upper bound for ST was 18.03. These parameters were selected to emphasize
the excellent control performance of the HSF control protocol in comparison with this method by
Algorithm 1.

Algorithm 1 Parameter selection for contrasting control protocol (20) with (30)

Input : Controlled system parameters
Output : Control parameters
START
Step 1 : Design identical control gains in linear terms for (20) and (30), meeting the conditions of (21) and
(31), respectively;
Step 2 : By setting (28) equal to (33), one can obtain the following: δ = ψ, σ = υ + 1;
Step 3 : Using Step 2, one can determine the ST in (29), which is naturally equal to the result in (34) due
to Lemma (5).
EXIT

The time evolutions of Mij(x, t) under the control protocol (30) are depicted in Figure 11,
which show that Mij(x, t) gradually converges to 0 as time evolves. Furthermore, the estimated
upper bound for ST is 18.03. However, it is worth considering that Mij(x, t) seems to already be very
close to zero at 0.28, which indicates that the introduction of the HSF had produced positive effect.
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Figure 11. The evolution of Mij(x, t) under the control protocol (30).

Figure 12 describes the spatiotemporal evolutions of Mij(x, t) using a contour map, which
makes it clear that Mij(x, t) gradually converges to 0 in its spatiotemporal evolution without any
alteration in height.

Figure 11. The time evolutions of Mij(x, t) under the control protocol (30).

Figure 12 describes the spatiotemporal evolutions of Mij(x, t) with a contour map, which
make it clear that Mij(x, t) gradually converges to 0 in its spatiotemporal evolution without any
alteration in height.

The time evolutions of each component of mi(x, t) and s(x, t) are depicted in Figure 13, which
show that the states of the network nodes in system (40) and FOSN (41) ultimately achieve BS.



Fractal Fract. 2025, 9, 36 22 of 38
Fractal Fract. 2025, 1, 0 24 of 41

(a) (b)

(c)

Figure 12. (a) The spatiotemporal evolution of Mi1(x, t), shown using a contour map, under the
control protocol (30). (b) The spatiotemporal evolution of Mi2(x, t), shown using a contour map,
under the control protocol (30). (c) The spatiotemporal evolutions of Mi3(x, t), shown using a contour
map, under the control protocol (30).

The evolution of each component of mi(x, t) and s(x, t) over time is depicted in Figure 13,
which shows that the states of the network nodes in the system (40) with an FOSN (41) ultimately
achieve BS.

Figure 12. (a) The spatiotemporal evolutions of Mi1(x, t) with contour map under control protocol
(30). (b) The spatiotemporal evolutions of Mi2(x, t) with contour map under control protocol (30).
(c) The spatiotemporal evolutions of Mi3(x, t), with contour map under control protocol (30).
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Figure 13. (a) The evolution of s1(x, t) and mi1(x, t) over time. (b) The evolution of s2(x, t) and
mi2(x, t) over time. (c) The evolution of s3(x, t) and mi3(x, t) over time.

Therefore, FNBS is achieved for the system (40) with an FOSN (41), which verifies the
correctness of the developed control protocol (30).

Remark 12. In order to make a clearer distinction between the control protocol (20) and (30),
specific control parameters were selected according to Algorithm 1, guaranteeing that the estimated
STs in (29) and (34) were the same. Also, the theoretical control effects were the same under the
identical power-law presented in (28) and (33). As shown in Figures 8 and 11, the error converges
more quickly under the control protocol (30), indicating that the introduction of the HSF can reduce
the convergence time and strengthen the control performance, which is tremendously significant for
practical engineering applications.

Example 4. This example will simulate the system (40) with an FOSN (41) under the HSF control
law without the linear term in Theorem 3.

The control parameters of (35) are designed as follows: δ = 3.897, σ = 0.2. The evolution of
Mij(x, t) over time under the control law (35) is depicted in Figure 14, which shows that Mij(x, t)
gradually converges to 0. The estimated upper bound for ST is 1.12.

Figure 15 describes the spatiotemporal evolution of Mij(x, t) using a contour map, which
makes it clear that Mij(x, t) gradually converges to 0 during its spatiotemporal evolution without
any alteration in height.

Figure 13. (a) The time evolutions of s1(x, t) and mi1(x, t). (b) The time evolutions of s2(x, t) and
mi2(x, t). (c) The time evolutions of s3(x, t) and mi3(x, t).
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Therefore, FNBS is achieved for the system (40) with FOSN (41), which verifies the
correctness of the developed control protocol (30).

Remark 12. In order to make a clearer distinction between the control protocol (20) and (30),
specific control parameters were selected according to Algorithm 1, guaranteeing that the estimated
STs in (29) and (34) were the same. Also, the theoretical control effects were the same under the
identical power-law presented in (28) and (33). As shown in Figures 8 and 11, the error converges
more quickly under the control protocol (30), indicating that the introduction of the HSF can reduce
the convergence time and strengthen the control performance, which is tremendously significant for
practical engineering applications.

Example 4. This example will simulate the system (40) with FOSN (41) under HSF control law
without linear term in Theorem 3.

The control parameters of (35) are designed as follows: δ = 3.897, σ = 0.2. The time
evolutions of Mij(x, t) under the control law (35) are depicted in Figure 14, which show that
Mij(x, t) gradually converges to 0. The estimated upper bound for ST is 1.12.
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Figure 14. The evolution of Mij(x, t) over time under the control law (35).

(a) (b)

(c)

Figure 15. (a) The spatiotemporal evolution of Mi1(x, t) using a contour map under the control law
(35). (b) The spatiotemporal evolution of Mi2(x, t) using a contour map under the control law (35).
(c) The spatiotemporal evolution of Mi3(x, t) using a contour map under the control law (35).

Figure 14. The time evolutions of Mij(x, t) under the control law (35).

Figure 15 describes the spatiotemporal evolutions of Mij(x, t) with contour map, which makes
it clear that Mij(x, t) gradually converges to 0 during its spatiotemporal evolutione without any
alteration in height.

The time evolution of each component of mi(x, t) and s(x, t) are depicted in Figure 16, which
indicate that the states of the network nodes in system (40) and FOSN (41) ultimately achieve BS.

Therefore, FNBS is achieved for system (40) with FOSN (41), which verifies the correctness of
the developed control law (35).
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Figure 14. The evolution of Mij(x, t) over time under the control law (35).
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Figure 15. (a) The spatiotemporal evolution of Mi1(x, t) using a contour map under the control law
(35). (b) The spatiotemporal evolution of Mi2(x, t) using a contour map under the control law (35).
(c) The spatiotemporal evolution of Mi3(x, t) using a contour map under the control law (35).

Figure 15. (a) The spatiotemporal evolutions of Mi1(x, t) with contour map under control law (35).
(b) The spatiotemporal evolutions of Mi2(x, t) with contour map under control law (35). (c) The
spatiotemporal evolutions of Mi3(x, t) with contour map under control law (35).
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The evolution of each component of mi(x, t) and s(x, t) over time is depicted in Figure 16,
which indicates that the states of the network nodes in the system (40) with an FOSN (41) ultimately
achieve BS.

Therefore, FNBS is achieved for the system (40) with an FOSN (41), which verifies the
correctness of the developed control law (35).
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Figure 16. (a) The evolution of s1(x, t) and mi1(x, t) over time. (b) The evolution of s2(x, t) and
mi2(x, t) over time. (c) The evolution of s3(x, t) and mi3(x, t) over time.

Remark 13. In contrast to the control protocol (20) in polynomial form and the control protocol
(30) which incorporates the linear term as well as the HSF, the control law (35) not only has fewer
control parameters and a simpler exhibition without the linear terms, but also effectively reduces the
ST (ST (35) < ST (30) < ST (20)) under smaller control gains. The superiority of the control law
(35) based on the HSF is attested by its swifter convergence rate, the tighter bound of ST, and the
suppression of chattering both in theory and during simulations. This is extremely significant in
practical applications, especially in engineering problems requiring a high control intensity or rapid
control response.

Using the controller designed in [7]: Ui(x, t) = − 7.49sign(Mi(x,t))e0.1G0.25(t)

|Mi(x,t)| . Figure 17a
describes the control inputs of the control law (35) in this work and [7]. Figure 17b
depicts the synchronization error of the control law (35) in this work and [7]. As shown in
Figure 17a,b, the control law (35) effectively avoids chattering, increases the smoothness
of the control input, and reduces the settling time, which further validates the theoretical
analysis results presented in Remark 8.

Figure 16. (a) The time evolutions of s1(x, t) and mi1(x, t). (b) The time evolutions of s2(x, t) and
mi2(x, t). (c) The time evolutions of s3(x, t) and mi3(x, t).
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Remark 13. In contrast to the control protocol (20) in polynomial form and the control protocol
(30) which incorporates the linear term as well as the HSF, the control law (35) not only has fewer
control parameters and a simpler exhibition without the linear terms, but also effectively reduces
the ST (ST (35) < ST (30) < ST (20)) under smaller control gains. The superiority of the control
law (35) based on the HSF is attested by its swifter convergence rate, the tighter bound of ST,
and the suppression of chattering both in theory and simulations. This is extremely significant in
practical applications, especially in engineering problems requiring a high control intensity or rapid
control response.

Using the controller designed in [7]: U0i(x, t) = − 7.49sign(Mi(x,t))e0.1G0.25(t)

|Mi (x,t)| . Figure 17a
describes the control inputs of the control law (35) in this work and [7]. Figure 17b
depicts the synchronization error of the control law (35) in this work and [7]. As shown in
Figure 17a,b, the control law (35) effectively avoids chattering, increases the smoothness
of the control input, and reduces the ST, which further validates the theoretical analysis
results presented in Remark 8.
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Figure 17. (a) The control inputs of the control law (35) in this work and [7]. (b) The synchronization
errors in this work and [7].

Example 5. This example will simulate the HSF to explore why it has excellent qualities in terms
of its control performance.

The equivalence measure of the HSF y = sinh(t) = et−e−t

2 is y = et

2 , for t → ∞. y =

sinh(t) ≤ et

2 , for t ≥ 0. The evolutions of y = t and y = sinh(t) are depicted in Figure 18. They
indicate that the HSF can provide control inputs at an exponential function level, yielding very
noticeable control effects. This elucidates why the the error convergence rate is much faster under
the control law (35) compared to the control protocols in (20) and (30).
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Figure 18. (a) t ∈ [0, 2], y = t and y = sinh(t). (b) t ∈ [0, 6], y = t and y = sinh(t).

We conducted a further analysis of the effectiveness of the control law (35), using a sensitivity

analysis. By performing these calculations, one can derive
∣∣∣∣

∂Ui(x,t)
∂σ

∣∣∣∣ = cz(ez + e−z), where c is a

positive constant and z = Gσ. In other words, the absolute value of the partial derivative of Ui(x, t)
with respect to σ equals the product of the exponential function and the power function, which shows
that parameter σ significantly influences this control effect. The analysis regarding δ was similar, so
it will not be shown again here. These results indicate that the control intensity is very convenient
to adjust, which is a desired feature in practical scenarios.

Figure 17. (a) The control inputs of the control law (35) in this work and [7]. (b) The synchronization
errors in this work and [7]. (U0i(x, t) and M0i(x, t) are the controllor and error in [7], respectively).

Example 5. This example will simulate the HSF to explore why it has excellent qualities in terms
of its control performance.

The equivalence measure of the HSF y = sinh(t) = et−e−t

2 is y = et

2 , for t → ∞ .
y = sinh(t) ≤ et

2 , for t ≥ 0. The evolutions of y = t and y = sinh(t) are depicted in
Figure 18. It indicate that the HSF can provide control inputs at an exponential function level,
yielding very noticeable control effects. This elucidates why the the error convergence rate is much
faster under the control law (35) compared to the control protocols (20) and (30).

Subsequently, we conducted a further analysis for the effectiveness of the control law (35),
by applying the methodology of sensitivity analysis. By performing these calculations, one can
derive

∣∣∣ ∂Ui(x,t)
∂σ

∣∣∣= cz(ez + e−z) , where c is a positive constant and z = Gσ. In other words,
the absolute value of the partial derivative of Ui(x, t) with respect to σ equals the product of the
exponential function and the power function, which shows that parameter σ significantly influences
this control effect. The analysis regarding δ was similar, so it will not be shown again here. These
results indicate that the control intensity is very convenient to adjust, which is a desired feature in
practical scenarios.
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Figure 17. (a) The control inputs of the control law (35) in this work and [7]. (b) The synchronization
errors in this work and [7].

Example 5. This example will simulate the HSF to explore why it has excellent qualities in terms
of its control performance.

The equivalence measure of the HSF y = sinh(t) = et−e−t

2 is y = et

2 , for t → ∞. y =

sinh(t) ≤ et

2 , for t ≥ 0. The evolutions of y = t and y = sinh(t) are depicted in Figure 18. They
indicate that the HSF can provide control inputs at an exponential function level, yielding very
noticeable control effects. This elucidates why the the error convergence rate is much faster under
the control law (35) compared to the control protocols in (20) and (30).
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Figure 18. (a) t ∈ [0, 2], y = t and y = sinh(t). (b) t ∈ [0, 6], y = t and y = sinh(t).

We conducted a further analysis of the effectiveness of the control law (35), using a sensitivity

analysis. By performing these calculations, one can derive
∣∣∣∣

∂Ui(x,t)
∂σ

∣∣∣∣ = cz(ez + e−z), where c is a

positive constant and z = Gσ. In other words, the absolute value of the partial derivative of Ui(x, t)
with respect to σ equals the product of the exponential function and the power function, which shows
that parameter σ significantly influences this control effect. The analysis regarding δ was similar, so
it will not be shown again here. These results indicate that the control intensity is very convenient
to adjust, which is a desired feature in practical scenarios.

Figure 18. (a) t ∈ [0, 2], y = t and y = sinh(t). (b) t ∈ [0, 6], y = t and y = sinh(t).

5. Image Encryption and Decryption
Following the theory of limited-time chaotic synchronization, this section demon-

strates image encryption and decryption as an application of Theorem 3.

5.1. The Algorithm of Image Encryption and Decryption

A flowchart of image encryption and decryption algorithm is presented in Figure 19.
The image encryption algorithm is described in detail below.
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Figure 19. The image encryption and decryption algorithm.

Step 1. Preprocess the plaintext image. Import the plaintext image to be encrypted as
P. Let R = P(:, :, 1), G = P(:, :, 2), and B = P(:, :, 3). [m, n] = size(R).

Step 2. Chaotic system-based secret code streams generator. Following the estimated
ST, extract the pseudo-random sequences s11×mn, s21×2mn and s31×mn from the 2-scroll,
3-scroll, and 4-scroll attractors previously discussed. Further disrupt these pseudo-random
sequences to obtain the chaotic system-based secret code streams, which can be executed
as follows:

S1 = ⊙[ f loor((s1 + 100)× 1014)] + 1,

S2 = ⊙[ f loor((s2 + 100)× 1014)] + 1,

S3 = ⊙[ f loor((s3 + 100)× 1014)] + 1,

where f loor refers to the operation used for rounding down and ⊙ signifies the modulo
256 operation.

Step 3. Forward diffusion. To enhance the effectiveness of encryption, we modified
each pixel’s value using a forward diffusion algorithm. The specific calculation rules are
expressed as Algorithm 2.

Step 4. Arnold’s cat map-based permutation. With forward diffusion, the pixel values
undergo distinct changes. Further scrambling operations lead to additional disruption of
the pixel locations. Let a = S2(1 : mn) and b = S2(mn + 1 : 2mn). Scramble every element
(1, k) of KR, KG, and KB using q, calculated with the following equation:

[
p
q

]
=

[
1 a
b ab + 1

][
1
l

]
.

Step 5. Backward diffusion. Since forward diffusion only distributes information
from partial pixels across the full image, while a large amount of pixel information is

Figure 19. The image encryption and decryption algorithm.

Step 1. Preprocess the plaintext image. Import the plaintext image to be encrypted as
P. Let R = P(:, :, 1), G = P(:, :, 2), and B = P(:, :, 3).[m, n] = size(R).

Step 2. Chaotic system-based secret code streams generator. Following the estimated
ST, extract the pseudo-random sequences s11×mn, s21×2mn and s31×mn from the 2-scroll,
3-scroll, and 4-scroll attractors previously discussed. Further disrupt these pseudo-random
sequences to obtain the chaotic system-based secret code streams, which can be executed
as follows:

S1 = ⊙
[

f loor
(
(s1 + 100)× 1014

)]
+ 1,

S2 = ⊙
[

f loor
(
(s2 + 100)× 1014

)]
+ 1,

S3 = ⊙
[

f loor
(
(s3 + 100)× 1014

)]
+ 1,
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where f loor refers to the operation used for rounding down and ⊙ signifies the modulo
256 operation.

Step 3. Forward diffusion. To enhance the effectiveness of encryption, we modified
each pixel’s value by a forward diffusion algorithm. The specific calculation rules are
expressed as Algorithm 2.

Step 4. Arnold’s cat map-based permutation. With forward diffusion, the pixel values
undergo distinct changes. Further scrambling operations lead to additional disruption of
the pixel locations. Let a = S2(1 : mn) and b = S2(mn + 1 : 2mn). Scramble every element
(1, k) of KR, KG, and KB by q, calculated with the following equation:

[
p
q

]
=

[
1 a
b ab + 1

][
1
l

]
.

Step 5. Backward diffusion. Since forward diffusion only distributes information
from partial pixels across the full image, while a large amount of pixel information is
still limited in local areas, we conducted backward diffusion to disseminate each pixel’s
information throughout the entire image to enhance the security and resilience of the
encryption algorithm. The specific calculation rules are expressed as Algorithm 2. At this
point, the plaintext image has been encrypted to generate the ciphertext image.

As the Forward diffusion presented above, as well as the Arnold’s cat map-based
permutation and Backward diffusion, are reversible, the decryption process only consists of
reversing the steps used in encryption. Notably, the image decryption process is grounded
in the time series of FOSN (41) under the control law (35).

Algorithm 2 Bidirectional Diffusion

Input: Plainnext image
Output: Diffused image
START
1: Set the secret key parameters in this location KR(0) = 1; KG(0) = 1; KB(0) = 1;
Forward Diffusion
2: KR(1) = KR(0)

⊕
S1(1)

⊕
R(1);

3: KG(1) = KG(0)
⊕

S1(1)
⊕

G(1);
4: KB(1) = KB(0)

⊕
S1(1)

⊕
B(1);

5: for i = 2 to mn do
6: KR(i) = KR(i − 1)

⊕
S1(i)

⊕
R(i);

7: KG(i) = KG(i − 1)
⊕

S1(i)
⊕

G(i);
8: KB(i) = KB(i − 1)

⊕
S1(i)

⊕
B(i);

9: end for
Backward Diffusion
10: Set the secret key parameters in this location KkR(0) = 0; KkG(0) = 0;

KkB(0) = 0;
11: KkR(mn) = KkR(0)

⊕
S3(mn)

⊕
KR(mn);

12: KkG(mn) = KkG(0)
⊕

S3(mn)
⊕

KG(mn);
13: KkB(mn) = KkB(0)

⊕
S3(mn)

⊕
KB(mn);

14: for j = mn − 1 to 1 do
15: KkR(j) = KkR(j + 1)

⊕
S3(j)

⊕
KR(j);

16: KkG(j) = KkG(j + 1)
⊕

S3(j)
⊕

KG(j);
17: KkB(j) = KkB(j + 1)

⊕
S3(j)

⊕
KB(j);

18: end for
EXIT
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The encrypted object in the experiment is the Quick Response (QR) code, as shown
in Figure 20a, where the scanned results are “Chaotic Encryption by Finite-time Bipartite
Synchronization of Fractional-order Spatiotemporal Networks” and “8364”, as described in
Figure 20b. The ciphertext image shows noise-like patterns, without leakage of the visual
information in terms of visuals, as described in Figure 20c. No hidden information from
the plaintext image can be obtained by scanning the ciphertext image. Figure 20d depicts
the decrypted image, which shows consistent results, as described in Figure 20b “Chaotic
Encryption by Finite-time Bipartite Synchronization of Fractional-order Spatiotemporal
Networks” and “8364”, with the plaintext image. Such impressive results indicate the
effectiveness of the designed encryption–decryption algorithm based on the HSF control-
based FNBS of FOSN.
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Figure 20. (a) The plaintext image to be encrypted. (b) The content obtained via scanning the plaintext
image. (c) The ciphertext image. (d) The decryption image.

5.2. Security Analysis and Tests

To illustrate the validity of the proposed image encryption=-decryption system based
on the HSF control-based FNBS of an FOSN, several classic statistical analysis tests are es-
sential.

5.2.1. Histogram Analyses and χ2 Test

The histogram, a essential metric to reflect the distribution information of every pixel in
a grayscale space, reveals the fundamental statistical information of the image. An excellent
encryption algorithm is expected to have a uniform distribution of gray levels to minimize
the statistical cues that are available to potential attackers. Figure 21 depicts a histogram of
a plaintext image and ciphertext image. It is evident from Figure 21 that the histogram of
the plaintext image fluctuates significantly, with substantial variations between the peaks
and valleys, but the histogram of the ciphertext image tends toward a uniform distribution,
eliminating the distribution information of the plaintext image.

To evaluate the quality of the encryption algorithm from the perspective of uniform
distribution, the χ2 test is introduced. The χ2 test is conducted to evaluate the consistency
of the histogram distribution. Specifically, a lower test value reflects greater consistency in
the histogram, which can be calculated with the following equation:

χ2 =
255

∑
i=0

(Cardi − mn/256)
mn/256

,

where Cardi refers to the observed frequency of pixels for grey level i. The computed χ2

test values are shown in Table 1. The critical value, with a α = 1% significance level and
256 degrees of freedom, is χ2

0.01 = 310.4574. According to Table 1, the χ2 test values for

Figure 20. (a) The plaintext image to be encrypted. (b) The content obtained via scanning the plaintext
image. (c) The ciphertext image. (d) The decryption image.

5.2. Security Analysis and Tests

To illustrate the validity of the proposed image encryption-decryption system based on
the HSF control-based FNBS of FOSN, several classic statistical analysis tests are essential.

5.2.1. Histogram Analyses and χ2 Test

The histogram, a essential metric to reflect the distribution information of every pixel in
a grayscale space, reveals the fundamental statistical information of the image. An excellent
encryption algorithm is expected to have a uniform distribution of gray levels to minimize
the statistical cues available to potential attackers. Figure 21 depicts the histograms of
plaintext image and ciphertext image. It is evident from Figure 21 that the histogram of
the plaintext image fluctuates significantly, with substantial variations between the peaks
and valleys, but the histogram of the ciphertext image tends toward a uniform distribution,
eliminating the distribution information of the plaintext image.
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the plaintext images are consistently greater than the theoretical values, whereas the test
values for the ciphertext images consistently fall below the standard values. This means
that, at the α = 1% significance level, the hypothesis that the histogram follows a consistent
distribution cannot be rejected, which indicates that the proposed encrypted–decrypted
algorithm successfully safeguards against attacks trying to access the histogram.
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Figure 21. (a) The histogram of the plaintext image. (b) The histogram of the ciphertext image.

Table 1. χ2 test values.

Image Red Green Blue

Plain Image 21,374,609.0996 21,374,609.0996 21,374,609.0996
Cipher Image 254.7695 254.7695 254.7695

5.2.2. Correlation Analysis of Adjacent Pixels in Scatter Diagram and Pearson
Correlation Coefficients

In general, there is a substantial correlation among adjacent pixels in plaintext images,
which enables attackers to analyze the plaintext image. To safeguard against these statistical
attacks, it is imperative to decrease this correlation.

A random selection is made of n = 50, 000 pairs of adjacent pixels (xi, yi) in four
distinct directions: horizontal, vertical, positive diagonal, and counter diagonal. The distri-
bution of adjacent pixel values in the four distinct directions of the plain and cipher images
is presented in Figure 22. It is apparent that there is a strong and positive correlation rela-
tionship in the plaintext images in the four distinct directions of adjacent pixels, as shown
in Figure 22(a1,b1,c1,d1). As outlined in Figure 22(a2,b2,c2,d2), the proposed encryption–
decryption algorithm effectively eradicated this correlation to ensure uniformity in the
ciphertext image and minimize correlations, thus ensuring that the ciphertext image is
statistically unpredictable.

To enable a quantitative analysis of the correlation, the Pearson correlation coefficient
ρxy is introduced, which can be calculated as follows:

ρxy =
cov(X, Y)√

D(X)
√

D(Y)
,

where X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn}; cov denotes the co-correlation coefficient; D
represents the variance. Table 2 offers an overview of the adjacent pixels Pearson correlation
coefficient in four distinct directions for plaintext images and ciphertext images. One can
observe that the correlation coefficients are all close to one in the four distinct directions

Figure 21. (a) The histogram of the plaintext image. (b) The histogram of the ciphertext image.

To evaluate the quality of the encryption algorithm from the perspective of uniform
distribution, the χ2 test is introduced. The χ2 test is conducted to evaluate the consistency
of the histogram distribution. Specifically, a lower test value reflects greater consistency in
the histogram, which can be calculated with the following equation:

χ2 =
255

∑
i=0

(Cardi − mn/256)
mn/256

,

where Cardi refers to the observed frequency of pixels for grey level i. The computed χ2

test values are shown in Table 1. The critical value, with a α = 1% significance level and
256 degrees of freedom, is χ2

0.01 = 310.4574. According to Table 1, the χ2 test values for
the plaintext image are consistently greater than the theoretical values, whereas the test
values for the ciphertext images consistently fall below the standard values. This means
that, at the α = 1% significance level, the hypothesis that the histogram follows a consistent
distribution cannot be rejected, which indicates that the proposed encrypted–decrypted
algorithm successfully safeguards against attacks trying to access the histogram.

Table 1. χ2 test values.

Image R Channel G Channel B Channel

Plain Image 21,374,609.0996 21,374,609.0996 21,374,609.0996
Cipher Image 254.7695 254.7695 254.7695

5.2.2. Correlation Analysis of Adjacent Pixels in Scatter Diagram and Pearson
Correlation Coefficients

In general, there is a substantial correlation among adjacent pixels in plaintext images,
which enables attackers to analyze the plaintext image. To safeguard against these statistical
attacks, it is imperative to decrease this correlation.

A random selection is made of n = 50, 000 pairs of adjacent pixels (xi, yi) in four
distinct directions: horizontal, vertical, positive diagonal, and counter diagonal. The distri-
bution of adjacent pixel values in the four distinct directions of the plain and cipher images
are presented in Figure 22. It is apparent that there is a strong and positive correlation
relationship ofthr plaintext image in the four distinct directions of adjacent pixels, as shown
in Figure 22(a1,b1,c1,d1). As outlined in Figure 22(a2,b2,c2,d2), the proposed encryption–
decryption algorithm effectively eradicated this correlation to ensure uniformity in the
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ciphertext image and minimize correlations, thus ensuring that the ciphertext image is
statistically unpredictable.
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for the plaintext image. However, the correlation coefficients are all close to 0 in the four
distinct directions for the ciphertext image. This remarkable performance reveals that the
encryption algorithm has strong resistance to statistical attacks, lowering the risks of using
the ciphertext.
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Figure 22. (a1,b1,c1,d1): The scatter plots of adjacent horizontal, vertical, positive diagonal and
counter-diagonal for plaintext image, respectively. (a2,b2,c2,d2): the scatter plots of adjacent horizon-
tal, vertical, positive diagonal and counter diagonal for ciphertext image, respectively.

Table 2. The Pearson correlation coefficients.

Image Plaintext Image Ciphertext Image

R G B R G B

Horizontal 0.9778 0.9784 0.9785 −0.0005 −0.0004 −0.0001
Vertical 0.9779 0.9783 0.9777 −0.0004 −0.0004 0.0011

Main Diagonal 0.9562 0.9566 0.9567 −0.0039 −0.0060 −0.0023
Counter Diagonal 0.9566 0.9568 0.9563 0.0052 0.0024 0.0042

5.2.3. Information Entropy Test

Ideally, the ciphertext image is expected to contain significant uncertainty and ran-
domness, restricting statistical insights for potential attackers. Therefore, the information
entropy test was introduced, where higher values imply fewer differences in grayscale
value distribution and a lower risk of information exposure. The calculation formula is
shown below:

H(s) = −
255

∑
i=0

p(si)log2 p(si),

where p(si) denotes the probability of occurrence for the ith signal, indicating that the
information entropy of an 8-bit random grayscale image is 8.

Table 3 presents a general outline of the information entropy values for plaintex and
ciphertex images on different colour channels, which shows the superiority of the proposed
encryption algorithm owing to its unpredictability and randomness.

Table 3. The information entropy test results.

Image R Channel G Channel B Channel

Plain Image 2.877934 2.877934 2.877934
Cipher Image 7.999299 7.999299 7.999299

5.2.4. Key Sensitivity Analysis

An effective encryption system requires its key parameters to be highly sensitive to
thwart attackers trying to crack the ciphertext using brute-force or guessing techniques. We
will implement a slight alteration to the key parameters s0(x) + (10−14, 0, 0)T . Decrypting
Figure 20c using the chaotic sequence derived from the changed initial values, one can

Figure 22. (a1,b1,c1,d1): The scatter plots of adjacent horizontal, vertical, positive diagonal and
counter-diagonal for plaintext image, respectively. (a2,b2,c2,d2): the scatter plots of adjacent horizon-
tal, vertical, positive diagonal and counter diagonal for ciphertext image, respectively.

To enable a quantitative analysis of the correlation, the Pearson correlation coefficient
ρxy is introduced, which can be calculated as follows:

ρxy =
cov(X, Y)√

D(X)
√

D(Y)
,

where X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn}; cov denotes the co-correlation coefficient;
D represents the variance. Table 2 offers an overview of the adjacent pixels Pearson correla-
tion coefficients in four distinct directions for plaintext image and ciphertext image. One
can observe that the correlation coefficients are all close to 1 in the four distinct directions
for the plaintext image. However, the correlation coefficients are all close to 0 in the four
distinct directions for the ciphertext image. This remarkable performance reveals that the
encryption algorithm has strong resistance to statistical attacks, lowering the risks of using
the ciphertext.

Table 2. The Pearson correlation coefficients.

Image
Plaintext Image Ciphertext Image

R G B R G B

Horizontal 0.9778 0.9784 0.9785 −0.0005 −0.0004 −0.0001
Vertical 0.9779 0.9783 0.9777 −0.0004 −0.0004 0.0011

Main Diagonal 0.9562 0.9566 0.9567 −0.0039 −0.0060 −0.0023
Counter Diagonal 0.9566 0.9568 0.9563 0.0052 0.0024 0.0042

5.2.3. Information Entropy Test

Ideally, the ciphertext image is expected to contain significant uncertainty and ran-
domness, restricting statistical insights for potential attackers. Therefore, the information
entropy test was introduced, where higher values imply fewer differences in grayscale
value distribution and a lower risk of information exposure. The calculation formula is
shown below:

H(s) = −
255

∑
i=0

p(si)log2 p(si),

where p(si) denotes the probability of occurrence for the ith signal, indicating that the
information entropy of an 8-bit random grayscale image is 8.
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Table 3 presents a general outline of the information entropy values for plaintex and
ciphertex images on different colour channels, which shows the superiority of the proposed
encryption algorithm owing to its unpredictability and randomness.

Table 3. The information entropy test results.

Image R Channel G Channel B Channel

Plain Image 2.877934 2.877934 2.877934
Cipher Image 7.999299 7.999299 7.999299

5.2.4. Key Sensitivity Analysis

An effective encryption system requires its key parameters to be highly sensitive to
thwart attackers trying to crack the ciphertext using brute-force or guessing techniques. We
will implement a slight alteration to the key parameters s0(x) +

(
10−14, 0, 0

)T . Decrypting
Figure 20c using the chaotic sequence derived from the changed initial values, one can
obtain the decrypted image, as shown in Figure 23. There is a marked difference between
Figure 23 and the plaintext image (Figure 20a), which does not provide the information
included in Figure 20b after scanning. Therefore, it can be concluded that the designed
encryption–decryption system is sensitive to key variations, granting it significant resistance
to differential attacks.
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Figure 23. The decrypted image with s0(x) + (10−14, 0, 0)T .

5.2.5. Resistance to Noise Attacks

Encrypted images can be subjected to various disturbances during transmission, re-
sulting in various forms of noise, such as salt–pepper noise, Gaussian noise, and speckle
noise. Therefore, it is essential for the encryption–decryption algorithm to decrypt infected
images to evaluate its ability to withstand noise attacks. Therefore, 5% salt–pepper noise,
5% Gaussian noise, and 3% speckle noise were introduced. Adding 5% salt–pepper noise
to the image shown in Figure 20c resulted in the image shown in Figure 24(a1), with Fig-
ure 24(a2) showing the corresponding decrypted image. Although Figure 20(a2) contains
a great deal of noise, it is still possible to yield the information contained in Figure 20b.
Adding 5% Gaussian noise to the image shown in Figure 24(a1) resulted in the image
shown in Figure 24(b1), with Figure 24(b2) showing the corresponding decrypted image.
Although Figure 24(b2) contains more significant noise, it is still possible to yield the
information contained in Figure 20b. Adding 3% speckle noise to the image shown in
Figure 24(b1) resulted in the image shown in Figure 24(c1), with Figure 24(c2) containing
the corresponding decrypted image. Although Figure 24(c2) contains more significant
noise, it is still possible to yield the information contained in Figure 20b. This confirms that
the proposed encryption–decryption algorithm is able to resist noise attacks to an extent.

Figure 23. The decrypted image with s0(x) +
(
10−14, 0, 0

)T .

5.2.5. Resistance to Noise Attacks

Encrypted images can be subjected to various disturbances during transmission,
resulting in various forms of noise, such as salt–pepper noise, Gaussian noise, and speckle
noise. Therefore, it is essential for the encryption–decryption algorithm to decrypt the
infected images to evaluate its ability to withstand noise attacks. Therefore, 5% salt–pepper
noise, 5% Gaussian noise, and 3% speckle noise were introduced. Adding 5% salt–pepper
noise to the image shown in Figure 20c resulted in the image shown in Figure 24(a1),
with Figure 24(a2) showing the corresponding decrypted image. Although Figure 20(a2)
contains a great deal of noise, it is still possible to yield the information contained in
Figure 20b. Adding 5% Gaussian noise to the image shown in Figure 24(a1) resulted in the
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image shown in Figure 24(b1), with Figure 24(b2) showing the corresponding decrypted
image. Although Figure 24(b2) contains more significant noise, it is still possible to yield
the information contained in Figure 20b. Adding 3% speckle noise to the image shown in
Figure 24(b1) resulted in the image shown in Figure 24(c1), with Figure 24(c2) containing
the corresponding decrypted image. Although Figure 24(c2) contains more significant
noise, it is still possible to yield the information contained in Figure 20b. This confirms that
the proposed encryption–decryption algorithm is able to resist noise attacks to anextent.
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Figure 24. (a1) The ciphertext image with 5% salt–pepper noise. (a2). The decryption image for the
ciphertext image with 5% salt–pepper noise. (b1) The ciphertext image with 5% salt–pepper noise
and 5% Gaussian noise. (b2) The decryption image for the ciphertext image with 5% salt–pepper
noise and 5% Gaussian noise. (c1) The ciphertext image with 5% salt–pepper noise, 5% Gaussian
noise, and 3% speckle noise. (c2) The decryption image for the ciphertext image with 5% salt–pepper
noise, 5% Gaussian noise, and 3% speckle noise.

5.2.6. Anti Shear Attacks

The ciphertext image may lose some of its information during transmission due to
malicious assaults by attackers; therefore, it is indispensable for an encryption–decryption
algorithm to decrypt the incomplete image to evaluate its ability to resist shear attacks.

Adding a center shear attack at 25% intensity to the image in Figure 20a resulted in the
image shown in Figure 25(a1), with Figure 25(a2) showing the image under bidirectional
diffusion and Figure 25(a3) showing the corresponding decrypted image. Although Fig-
ure 25(a2) appears to be missing some information, the corresponding decrypted image is
still recognizable and can yield the information contained in Figure 20b.

Adding a perimeter shear attack at 50% intensity to the image shown in Figure 20a
resulted in the image shown in Figure 25(b1), with Figure 25(b2) showing the image
under bidirectional diffusion and Figure 25(b3) showing the corresponding decrypted

Figure 24. (a1) The ciphertext image with 5% salt–pepper noise. (a2). The decryption image for the
ciphertext image with 5% salt–pepper noise. (b1) The ciphertext image with 5% salt–pepper noise
and 5% Gaussian noise. (b2) The decryption image for the ciphertext image with 5% salt–pepper
noise and 5% Gaussian noise. (c1) The ciphertext image with 5% salt–pepper noise, 5% Gaussian
noise, and 3% speckle noise. (c2) The decryption image for the ciphertext image with 5% salt–pepper
noise, 5% Gaussian noise, and 3% speckle noise.

5.2.6. Anti Shear Attacks

The ciphertext image may lose some of its information during transmission due to
malicious assaults by attackers;.tTerefore, it is indispensable for an encryption–decryption
algorithm to decrypt the incomplete image to evaluate its ability to resist shear attacks.
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Adding a center shear attack at 25% intensity to the image in Figure 20a resulted in
the image shown in Figure 25(a1), with Figure 25(a2) sshowhng the image under bidirec-
tional diffusion and Figure 25(a3) showing the corresponding decrypted image. Although
Figure 25(a2) appears to be missing some information, the corresponding decrypted image
is still recognizable and can yield the information contained in Figure 20b.
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image. Although Figure 25(b2) appears to be missing more information, the corresponding
decrypted image is still recognizable and can be used to yield the information contained in
Figure 20b. This demonstrates the efficacy of the bidirectional diffusion algorithm, which
enables the encryption and decryption techniques to be robust against specific types of
shear attacks.

(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 25. (a1) The ciphertext image with a center shear attack at 25% intensity. (a2) The diffused
ciphertext image with a center shear attack at 25% intensity. (a3) The decryption image for the
ciphertext image with a center shear attack at 25% intensity. (b1) The ciphertext image with a
perimeter shear attack at 50% intensity. (b2) The diffused ciphertext image with a perimeter shear
attack at 50% intensity. (b3) The decryption image for the ciphertext image with a perimeter shear
attack at 50% intensity.

Remark 14. It is highly valuable to compare the performances of the image encryption algorithm we
designed and the AES (Advanced Encryption Standard), which is a widely adopted image encryption
standard developed by the U.S. National Institute of Standards and Technology. The comparison is
depicted in the table below and was carried out using the standard 10-round AES-128 algorithm.
As shown in Table 4, the entropy of our designed encryption algorithm is larger than that of the
AES, which suggests that the ciphertext generated by our algorithm exhibits more randomness.
Furthermore, the correlation between the ciphertext images in our algorithm is lower than that in the

Figure 25. (a1) The ciphertext image with a center shear attack at 25% intensity. (a2) The diffused
ciphertext image with a center shear attack at 25% intensity. (a3) The decryption image for the
ciphertext image with a center shear attack at 25% intensity. (b1) The ciphertext image with a
perimeter shear attack at 50% intensity. (b2) The diffused ciphertext image with a perimeter shear
attack at 50% intensity. (b3) The decryption image for the ciphertext image with a perimeter shear
attack at 50% intensity.

Adding a perimeter shear attack at 50% intensity to the image shown in Figure 20a
resulted in the image shown in Figure 25(b1), with Figure 25(b2) showing the image
under bidirectional diffusion and Figure 25(b3) showing the corresponding decrypted
image. Although Figure 25(b2) appears to be missing more information, the corresponding
decrypted image is still recognizable and can be used to yield the information contained in
Figure 20b. This demonstrates the efficacy of the bidirectional diffusion algorithm, which
enables the encryption and decryption techniques to be robust against specific types of
shear attacks.
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Remark 14. It is highly valuable to compare the performances of the image encryption algorithm we
designed and the AES (Advanced Encryption Standard), which is a widely adopted image encryption
standard developed by the U.S. National Institute of Standards and Technology. The comparison is
depicted in the table below which was carried out by the standard 10-round AES-128 algorithm.
As shown in Table 4, the entropy of our designed encryption algorithm is larger than that of the
AES, which suggests that the ciphertext generated by our algorithm exhibits more randomness.
Furthermore, the correlation between the ciphertext images in our algorithm is lower than that in the
AES, indicating greater security in our designed algorithm. According to Figure 19, our encryption
algorithm has a simpler structure compared to the AES. From an abstract viewpoint, the Arnold’s
cat map, forward diffusion, and backward diffusion used in this paper have the same methods as
S-box, ShiftRows, and AddRoundKey in the AES. In addition, the times required for our algorithm
and AES are 8.1675 s and 60.2783 s, respectively. Therefore, the encryption algorithm designed in
this work demonstrates significant application value.

Table 4. The performances of the AES encryption algorithm.

Entropy
Pearson Correlation Codfficients

Time
Horizontal Vertical Diagonal Counter Diagonal

AES 7.9806 −0.0022 0.0469 −0.0259 0.0049 60.2783 s

Remark 15. It is important to highlight that the extracted pseudo-random sequence for the chaotic
system-based secret code streams generator follows the estimated ST. Actually, the starting time is
highly flexible. For example, one can choose T = (1 + θ)ST as the starting time, where parameter θ

is related to the plaintext image (if the maximum pixel value of the plaintext image is 0, set θ = 0).

θ =
mean pixel value o f the plaintext image + median pixel value o f the plaintext image

2 ∗ maximum pixel value o f the plaintext image
.

The plaintext-related parameter T ensures that the equivalent key is also linked to the plaintext
image, meaning that the parameter helps protect against key information leakage during the analysis
of specific images formed by identical pixel values. Therefore, the encryption algorithm designed
with the plaintext-related key parameter θ can effectively resist the chosen-plaintext attacks and the
chosen-ciphertext attacks.

Remark 16. In this work, an image encryption–decryption algorithm was designed based on the
characteristics of the devised FO spatiotemporal chaotic system, which contains different numbers
of chaotic attractor scrolls in different positions, employing the derived HSF control law for FNBS
of FOSN. In contrast to the ordinary differential equations-based image encryption–decryption
algorithms, this paper simultaneously used 2-scroll, 3-scroll, and 4-scroll chaotic attractors to
encrypt the plaintext image, which enhances the security and the attack resistance ability. Moreover,
the excellent control obtained of the control law (35) significantly reduces the time required for image
encryption and decryption, further increasing the risk-resistance of the image encryption–decryption
system, showing the effectiveness and superiority of the devised control law based on the HSF.

Remark 17. Evidently, the tighter bound on settling time will reduce the time required for image
encryption and decryption, which is vital in protecting against malicious hackers. Hence, the tighter
bound on settling time increases the risk-resistance of the image encryption–decryption system.
Furthermore, the smoother control input improves the stable dynamic behavior of the system, which
will produce a similarly positive effect on the encryption algorithm’s security as the tighter bound
on settling time. However, the methods that can quantify these qualities to improve the security
parameters (e.g., entropy or correlation coefficients) are lacking. This challenge but interesting
question will be the topic of our research in the future.
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6. Conclusions
The paper explore the HSF control-based FNBS of an FOSN and its application in

image encryption. The addressed networks adequately take into account the nature of
anisotropic diffusion, i.e., the diffusion matrix can not only be non-diagonal but also
non-square. Subsequently, an equation transformation and an inequality estimate for the
anisotropic diffusion term were established, which are fundamental for analyzing the
diffusion phenomenon in network dynamics. Three control laws were devised and we
present a detailed discussion of the HSF control law’s outstanding performance regarding
its swifter convergence rate, the tighter bound of the ST and the suppression of chatter.
Furthermore, several simulations were carried out to attest to the correctness of our findings
by the designed chaotic system with multi-scroll chaotic attractors, which were tested via
bifurcation diagram, Poincaré map, and Turing pattern. Later, a formulated image encryp-
tion algorithm was evaluated through imperative security tests, revealing the effectiveness
and superiority of the obtained results. Given that the use of a sampling-based control
could effectively save the communication source, we will concentrate on the sample-based
control protocol for SNs in the future.
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Abbreviations
The following abbreviations are used in this paper:

Abbreviations Full Names
SN spatiotemporal networks
FN finite-time
BS bipartite synchronization
ST settling time
HSF hyperbolic sine function
FO fractional-order
CN complex networks
AES advanced encryption standard
FNBS finite-time bipartite synchronization
FOSN fractional-order spatiotemporal networks
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