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Abstract: The finite-time cluster synchronization (FTCS) of fractional-order complex-valued
(FOCV) neural network has attracted wide attention. It is inconvenient and difficult to
decompose complex-valued neural networks into real parts and imaginary parts. This
paper addresses the FTCS of coupled memristive neural networks (CMNNs), which are
FOCV systems with a time delay. A controller is designed with a complex-valued sign
function to achieve FTCS using a non-decomposition approach, which eliminates the need
to separate the complex-valued system into its real and imaginary components. By ap-
plying fractional-order stability theory, some conditions are derived for FTCS based on
the proposed controller. The settling time, related to the system’s initial values, can be
computed using the Mittag–Leffler function. We further investigate the optimization of
control parameters by formulating an optimization model, which is solved using particle
swarm optimization (PSO) to determine the optimal control parameters. Finally, a numer-
ical example and a comparative experiment are both provided to verify the theoretical
results and optimization method.

Keywords: fractional-order complex-valued system; coupled memristive neural networks;
finite-time cluster synchronization; non-decomposition method; optimization of control
parameters

1. Introduction
Neural networks (NNs) have significant applications across various emerging fields,

including multilayer perceptron [1], food quality assessment [2], image recognition [3] and
so on [4]. An artificial neural network is a mathematical model that mimics the structure of
synaptic connections in the brain to process information. Coupled neural networks (CNNs)
enable the interconnection of information between different neurons. With advancements
in computers, algorithms, and software, the memristive neural network (MNN) model has
gained widespread adoption across diverse domains [5–7]. The existence of memristors
was confirmed by HP Labs in 2008, and since then, MNNs have been a focal point of
research [8–10]. MNNs offer memory, adaptability, and high parallel processing capabili-
ties. The features of memristors are close to the characteristics of neuronal synapses [11].
Compared to traditional cellular neural networks, MNNs can construct highly integrated
nervous systems that more closely approximate the size and structure of the human brain.
Fractional calculus extends integer-order calculus, and models described by fractional
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differential equations can more accurately simulate real-world systems, particularly vis-
coelastic models [12]. Complex-valued systems, as an extension of real-valued systems,
address certain problems that real-valued systems cannot solve [13,14]. For instance, real-
valued systems struggle with symmetry problems and the XOR problem, while a single
complex-valued system can handle these issues effectively. In light of these considerations,
this paper investigates FOCV-coupled memristive neural networks (FCCMNNs).

Finite-time synchronization (FTS) [15] is notable for its ability to achieve synchro-
nization within a settling time, which has garnered significant attention. Different from
asymptotic synchronization, which requires an infinite amount of time, FTS offers practical
advantages by reaching synchronization in a predetermined time frame. For effective
synchronization within a network, neurons must communicate with one another. In leader-
following synchronization scenarios, neurons also need to receive information from a
designated leader. Specifically, in the context of cluster synchronization (CS) [16], there may
be multiple leaders within each cluster. Consequently, neurons in different clusters must
follow the leaders assigned to their respective clusters. Due to its practical implications,
CS has attracted considerable interest from researchers [17,18]. This paper addresses the
FTCS [19] of FCCMNNs. Neurons within the same cluster can synchronize with their
leader’s state, achieving synchronization within a settling time that depends on their ini-
tial values.

There are various studies that employ the decomposition method, which converts
the complex-valued system into two real-valued parts [13,20,21]. However, in practical
applications, decomposing a complex-valued system can be challenging. To address this,
the Complex-Valued Sign Function (CVSF) [14] has been introduced, allowing for the
direct study of complex-valued systems. For example, if y = c + di is a complex number,
the CVSF of y is [y] = [c] + [d]i. Additionally, a complex 1-norm [14] is proposed, defined
as |y|1 = |c|+ |d|i. Using the CVSF, a controller is designed to achieve the FTCS of the
FCCMNNs without employing the decomposition method. To handle discontinuous terms
involving memristors and sign functions, the set-valued map theory [22] and complex-
valued Filippov solution [23] are essential. In the study of FTS, it is necessary to calculate
the settling time. The Mittag–Leffler function, implemented via the ’mlf’ function in MAT-
LAB, provides a means to compute the settling time.

The proposed controller in this paper is a typical negative feedback controller utilizing
the CVSF. In the study of network synchronization, many papers design controllers and
provide conditions that control parameters must satisfy, often offering a range for these
parameters. However, selecting the optimal control parameters within this broad range is a
significant challenge that is frequently overlooked. This paper proposes an optimization
model to facilitate the selection of control parameters. The fitness function of the model
is constructed according to actual control requirements. The constraints of the model
are considered by the theoretical results of FTCS. Due to the complexity of the optimiza-
tion model, an algorithm based on PSO [24] is proposed to find the optimal solution. This
method provides guidance for selecting control parameters, leading to an optimal controller
that conserves resources. Typically, research on the synchronization of neural networks
(NNs) focuses on synchronization criteria, aiming to reduce control energy through various
control methods, such as event-triggered control [25], intermittent control [26], impulsive
control [27], adaptive control [28], and sampled control [29]. Among these, feedback con-
trol [8] is the most commonly used in practical applications. The proposed optimization
method offers guidance for parameter selection in feedback control, contributing to more
efficient controller design.

It is natural to incorporate time delay into research, given its significant impact on real
systems [30]. The study in [31] addressed the FTCS of FOCV NNs without considering
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time delay and memristors. Both asymptotic and FTS of coupled NNs, excluding clus-
ters and memristors, were explored in [32], where the focus was on real-valued systems.
Additionally, the controller designed in [32] included a time delay, which is not required
in this paper. The FTS of FCCMNNs using the decomposition method was investigated
in [33]. After decomposition, the research process closely resembles that of real-valued
systems. However, there are no prior works that have addressed the FTCS of FCCMNNs
using a non-decomposition method. Furthermore, none of the aforementioned studies
considered the optimization of control parameters. Therefore, this paper focuses on the
FTCS of FCCMNNs, employing a non-decomposition method with optimized control
parameters. The major contributions are highlighted below. The difference between this
paper and other references is outlined in Table 1.

1⃝ This paper studies the fractional-order CNNs with a time delay, where the network in-
cludes memristive elements and complex-valued states, resulting in a model that is not
only more complex than those studied in [31,32] but also better suited for simulating
real-world scenarios. Unlike the conventional decomposition approach [20,21,34], this
study employs a non-decomposition method. Although the decomposition method
simplifies theoretical analysis, it often falls short in practical applications. The non-
decomposition approach, on the other hand, provides a more realistic representation
of complex systems, aligning more closely with real-world dynamics.

2⃝ This paper focuses on FTCS, extending beyond conventional CS [35,36] or FTS [37],
which has faster convergence time, and the synchronization time can be calculated in
advance. To achieve FTCS, we design a simple controller based on the CVSF and derive
synchronization criteria that provide a range of control parameters. The settling time
for FTCS can be readily determined through the Mittag–Leffler function. While FTCS
has been explored in previous studies [19,31,32], the networks investigated in those
works differ significantly from the one considered here. Notably, this is the first
study to address FTCS for FOCV-coupled neural networks with memristors using a
non-decomposition method.

3⃝ An optimization model solved by PSO is proposed to select the most cost-effective
control parameters. This optimization approach guides the selection of control pa-
rameters within a broad range that satisfies the synchronization conditions. Although
previous studies [31,32] designed similar controllers, they only provided a range for
the parameters without specifically focusing on actual control requirement.

Table 1. The difference between this paper and others in the literature.

Item [19] [32] [20] [31] [34] [21] [37] This Paper

Fractional-order ✓ ✓ ✓ ✓ ✓
Complex-valued ✓ ✓ ✓ ✓ ✓ ✓

Memristor ✓ ✓ ✓ ✓
FTS ✓ ✓ ✓ ✓ ✓ ✓
CS ✓ ✓ ✓ ✓

Non-decomposition ✓ ✓ ✓
Parameter optimization ✓

The remainder of this paper is structured as follows: Section 2 outlines the essential
definitions and lemmas, as well as the model of FCCMNNs and the foundational assump-
tions. Section 3 introduces the designed controller and provides the theorem for achieving
FTCS. Section 4 is dedicated to the optimization of control parameters. Section 5 illustrates
the effectiveness of the proposed methods through two simulations. Finally, Section 6
provides the conclusions.
Notations. R,Rn,Rn×n represent the set of real numbers, n-dimensional real vectors and
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n × n real matrices, respectively. N+ denotes the set of positive integers. C,Cn,Cn×n

represent the set of complex numbers, n-dimensional complex vectors and n × n complex
matrices. If y ∈ C, y = yR + yI i. yR and yI means real and imaginary parts of y, i is the
imaginary unit. |y|1 = |yR|+ |yI |. [y] = [yR] + [yI ]i, and [· ] represents the sign function.
If Y ∈ Cn, Y = (y1, y2, · · · , yn). YH is the conjugate transpose of Y. YT is the transpose of
Y. |Y|1 = ∑n

i=1(|yR
i |+ |yI

i |). [Y] = ([y1], [y2], · · · , [yn]). Θ ∈ Rn×n > 0 means that Θ is a
positive definite matrix. λmin(Θ) is the minimum eigenvalue of Θ. diag(· · · ) denotes a
diagonal matrix. The notation ⊗ is the Kronecker product operator. IN is an N-dimensional
identity matrix. 1N is an N-dimensional full one vectors.

2. Preliminaries and Model Description
2.1. Preliminaries

Definition 1 ([14]). The sign function of the complex vector x(t) =
(
x1(t), x2(t), · · · ,

xn(t)
)T is defined by [x(t)] =

(
[xR

1 (t)] + [xI
1(t)]i, [x

R
2 (t)] + [xI

2(t)]i, · · · , [xR
n (t)] + [xI

n(t)]i
)T ,

where [· ] = sign(· ) and sign(· ) is the sign function. Obviously, [xH(t)] = [x(t)]H .

Definition 2 ([38]). When fractional order α ∈ (0, 1), the Caputo derivative with function ω(s) is
defined as:

Dα
t0,tω(s) =

1
Γ(1 − α)

∫ t

t0

(s − τ)−αω′(τ)dτ, (1)

where t ≥ t0, and Γ(·) is the Gamma function that Γ(α) =
∫ ∞

0 tα−1e−tdt.

Definition 3 ([38]). The two-parameter Mittag–Leffler function is defined by the series expansion

Ep,q(x) =
+∞

∑
j=0

xj

Γ(pj + q)
, (2)

where p, q > 0, x ∈ C. As q = 1, the one-parameter Mittag–Leffler function is

Ep(x) = Ep,1(x) =
+∞

∑
j=0

xj

Γ(pj + 1)
, (3)

where Γ(· ) is the same Gamma function with Definition 2.
For any x(t) ∈ Cn, the convex hull of [xj(t)](j = 1, 2, · · · , n) is defined as [14]:

c̄o([xj(t)]) =



{1 + i}, xR
j (t) > 0, xI

j (t) > 0,

1 + c̄o{−1, 1}i, xR
j (t) > 0, xI

j (t) = 0,

{1 − i}, xR
j (t) > 0, xI

j (t) < 0,

c̄o{−1, 1}+ i, xR
j (t) = 0, xI

j (t) > 0,

c̄o{−1, 1}+ c̄o{−1, 1}i, xR
j (t) = 0, xI

j (t) = 0,

c̄o{−1, 1} − i, xR
j (t) = 0, xI

j (t) < 0,

{−1 + i}, xR
j (t) < 0, xI

j (t) > 0,

− 1 + c̄o{−1, 1}i, xR
j (t) < 0, xI

j (t) = 0,

{−1 − i}, xR
j (t) < 0, xI

j (t) < 0.

(4)

Lemma 1. For column vector χ(t) : [t0,+∞) → Cn, there are some properties.
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1⃝ [31] 2[χH(t)][χ(t)] = [χH(t)]ω(t) + ωH(t)[χ(t)], where ω(t) = (ω1(t), ω2(t), · · · ,
ωn(t))T ∈ c̄o([χ(t)]).

2⃝ [14] χH
p (t) + χp(t) = 2χR

p (t) ≤ 2|χp(t)|1, p = 1, 2, · · · , n.

3⃝ 2|χ(t)|1 = [χH(t)]χ(t) + χH(t)[χ(t)].

4⃝ |[χ(t)]|1 = [χH(t)][χ(t)].

Proof. Based on the definition of |χ(t)|1, [χ(t)] and the Lemma 3 in [14], one has

3⃝

2|χ(t)|1 = 2
n

∑
p=1

|χp(t)|1 =
n

∑
p=1

(
[χp(t)]χp(t) + χp(t)[χp(t)]

)
= [χH(t)]χ(t) + χH(t)[χ(t)].

4⃝

|[χ(t)]|1 =
n

∑
p=1

|[χp(t)]|1 =
n

∑
p=1

[χp(t)][χp(t)] = [χH(t)][χ(t)].

Lemma 2 ([37]). If there is a continuous and analytic function χ(t) =
(
χ1(t), χ2(t), · · · ,

χn(t)
)T ∈ Cn, then for t ∈ [t0,+∞), α ∈ (0, 1), one has:

Dα
t0,t
(
[χH(t)]χ(t) + χH(t)[χ(t)]

)
≤ [χH(t)]Dα

t0,tχ(t) + Dα
t0,tχ

H(t)[χ(t)]. (5)

Lemma 3. If there is a continuous and differentiable function v(t) > 0, t ∈ [t0,+∞), v(t0) > 0,
κ1, κ2 > 0, α ∈ (0, 1], then for Dα

t0,tv(t) ≤ −κ1v(t)− κ2, one has

1⃝ [32] v(t) ≤
(

v(t0) +
κ2

κ1

)
Eα

(
− κ1(t − t0)

α
)
− κ2

κ1
.

2⃝ There exists t∗ > t0 such that limt→t∗ v(t) → 0, when t ≥ t∗, v(t) ≡ 0. t∗ = t0 +
(
− ϖ

κ1

) 1
α ,

where ϖ = max
{

y
∣∣∣∣Eα(y) =

κ2

κ1v(t0) + κ2

}
.

Proof. As demonstrated in [31], let Σ(t) =

(
v(t0) +

κ2

κ1

)
Eα

(
− κ1(t − t0)

α
)
− κ2

κ1
. Since

κ1 > 0 and α ∈ (0, 1], it is clear that Eα

(
− κ1(t − t0)

α
)

is non-increasing. Firstly, the
existence of t∗ needs to be verified. Obviously, Eα(0) = 1 and limt→+∞ Eα(−t) = 0,

then Σ(t0) = v(t0) > 0, limt→∞ Σ(t) = −κ2

κ1
< 0. Consequently, there is t∗ > t0 such

that Σ(t∗) = 0. That is to say Eα

(
− κ1(t∗ − t0)

α
)
=

κ2

κ1v(t0) + κ2
. In addition, t∗ =

t0 +
(
− ϖ

κ1

) 1
α , where ϖ = max

{
y
∣∣∣∣Eα(y) =

κ2

κ1v(t0) + κ2

}
< 0. Secondly, it is proved by

contradiction that v(t) ≡ 0(t ≥ t∗). If v(t) ≡ 0(t ≥ t∗) is not true, then ∃t′ > t∗ such that

v(t′) > 0. However, v(t′) ≤ Σ(t′) =

(
v(t0) +

κ2

κ1

)
Eα

(
− κ1(t′ − t0)

α
)
− κ2

κ1
≤
(

v(t0) +

κ2

κ1

)
Eα

(
− κ1(t∗ − t0)

α
)
− κ2

κ1
= 0, which is a contradiction with v(t′) > 0. Consequently,

there exists t∗ > t0 such that limt→t∗ v(t) → 0, when t ≥ t∗, v(t) ≡ 0.

2.2. Model Description

An FCCMNN with a time delay is considered as follows:
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Dα
t0,tzi(t) =− Czi(t) + A(zi(t)) f (zi(t)) + B(zi(t)) f (zi(t − τ)) + σ

N

∑
j=1

gijΓzj(t) + I(t) + ui(t), (6)

where α ∈ (0, 1), i, j = 1, 2, · · · , N. zi(t − τ) =
(
zi1(t − τ), zi2(t − τ), · · · , zin(t − τ)

)T ∈
Cn and zi(t) =

(
zi1(t), zi2(t), · · · , zin(t)

)T ∈ Cn are the state of ith neuron with and
without the time delay, 0 < τ ≤ τmax. C = diag(c1, · · · , cn) ∈ Cn×n. f (∗) : Cn → Cn

represents the activation function. σ > 0 is the coupled strength. G = (gij)N×N and
gij ∈ R , gij ̸= 0 means that the neuron i can receive the information from the neuron j.
Otherwise, there is no link. Define gii = −∑N

j=1,i ̸=j gij, which is equivalent to ∑N
j=1 gij = 0.

Γ = diag{γ1, γ2, · · · , γn} ∈ Rn×n is an inner matrix and Γ > 0. I(t) ∈ Cn is an external
input. ui(t) is the controller that needs to be designed. A(zi(t)) = (apq(zip(t)))n×n,
B(zi(t)) = (bpq(zip(t)))n×n, and A(zi(t)), B(zi(t)) ∈ Cn×n. Based on the characteristics of
memristors, apq(zip(t)) and bpq(zip(t)) are given as follows:

apq(zip(t)) =

{
ápq, |zip(t)|1 ≤ I,

àpq, |zip(t)|1 > I,
bpq(zip(t)) =

{
b́pq, |zip(t)|1 ≤ I,

b̀pq, |zip(t)|1 > I,
(7)

where I > 0 represents the switching jump, ápq, àpq, b́pq and b̀pq are all known complex
numbers, p, q = 1, 2, · · · , n. The initial value of network (6) is that zi(w) = ψi(w), w ∈
[t0 − τ, t0], i = 1, 2, · · · , N.

The leaders of the network (6) is stated as follows:

Dα
t0,tsl(t) =− Csl(t) + A(sl(t)) f (sl(t)) + B(sl(t)) f (sl(t − τ)) + I(t), (8)

where sl(t) =
(
sl1(t), sl2(t), · · · , sln(t)

)T ∈ Cn is the leader of the lth cluster. The initial
value of network (8) is that sl(w) = ϕl(w), w ∈ [t0 − τ, t0], l = 1, 2, · · · , m, m ∈ N+.
The definitions of C, A(· ), B(· ), f (· ), I(t) are same with Equation (6).

Suppose that all neurons in network (6) are divided into m clusters, with neurons
within the same cluster following the same leader. For example,

zn0+1(t), · · · , zn0+n1(t)⇝ s1(t),

zn0+n1+1(t), · · · , zn0+n1+n2(t)⇝ s2(t), · · · ,

zn0+n1+···+nm−1+1(t), · · · , zn0+n1+n2+···+nm(t)⇝ sm(t),

(9)

where nl is the number of neurons in the lth cluster, l = 1, 2, · · · , m, n0 = 0, n0 + n1 + n2 +

· · ·+ nm = N. Define Λl = {n0 + n1 + · · ·+ nl−1 + 1, · · · , n0 + n1 + · · ·+ nl}.
According to the set-valued map theory and complex-valued Filippov solution [34],

the networks (6) and (8) can be rewritten to Equations (10) and (11).

Dα
t0,tzi(t) =− Czi(t) + Ã(zi(t)) f (zi(t)) + B̃(zi(t)) f (zi(t − τ)) + σ

N

∑
j=1

gijΓzj(t) + I(t) + ui(t), (10)

Dα
t0,tsl(t) =− Csl(t) + Ã(sl(t)) f (sl(t)) + B̃(sl(t)) f (sl(t − τ)) + I(t). (11)

where Ã(zi(t)) = (ãpq(zip(t)))n×n, B̃(zi(t)) = (b̃pq(zip(t)))n×n, ãpq(zip(t)) ∈ c̄o[apq(zip(t))],
b̃pq(zip(t)) ∈ c̄o[bpq(zip(t))]. c̄o[· ] is a convex hull. Similarly, Ã(sl(t)) = (ãpq(slp(t)))n×n,
B̃(sl(t)) = (b̃pq(slp(t)))n×n. It is worth noting that ãpq(slp(t)) ̸= ãpq(zip(t)), and
b̃pq(slp(t)) ̸= b̃pq(zip(t)), p, q = 1, 2, · · · , n.

For convenience, there are some assumptions and propositions.
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Assumption 1. G = (gij)N×N is the adjacent matrix of network (6),

G =


G11 G12 · · · G1m

G21 G22 · · · G2m
...

...
. . .

...
Gm1 Gm2 · · · Gmm

, (12)

where Gll ∈ Rnl×nl , Gkl ∈ Rnk×nl (k ̸= l). Suppose that Gll and Gkl are both zero row-sum
matrices, k, l = 1, 2, · · · , m. Obviously, G is a zero row-sum matrix.

Assumption 2. 1⃝ For a, b ∈ C, there exists L > 0, such that the activation functions f (· )
satisfies | f (a)− f (b)|1 ≤ L|a − b|1. 2⃝ There exists F > 0, such that | f (c)|1 ≤ F for ∀c ∈ C.

Proposition 1. Given Assumptions 1 and 2, the following inequalities can be derived:

1⃝ ∣∣ãpq(zip(t)) fq(ziq(t))− ãpq(slp(t)) fq(slq(t))
∣∣
1 ≤ apqL|eiq(t)|1 + ǎpqF;

2⃝ ∣∣b̃pq(zip(t)) fq(ziq(t − τ))− b̃pq(slp(t)) fq(slq(t − τ))
∣∣
1 ≤ 2bpqF;

where apq = max{|ápq|1, |àpq|1}, bpq = max{|b́pq|1, |b̀pq|1}, ǎpq = |ápq − àpq|1, i =

1, 2, · · · , N, l = 1, 2, · · · , m, p, q = 1, 2, · · · , n.

Proof.

1⃝ ∣∣ãpq(zip(t)) fq(ziq(t))− ãpq(slp(t)) fq(slq(t))
∣∣
1

=
∣∣ãpq(zip(t)) fq(ziq(t))− ãpq(zip(t)) fq(slq(t)) + ãpq(zip(t)) fq(slq(t))− ãpq(slp(t)) fq(slq(t))

∣∣
1

=

∣∣∣∣ãpq(zip(t))
(

fq(ziq(t))− fq(slq(t))
)
+
(
ãpq(zip(t))− ãpq(slp(t))

)
fq(slq(t))

∣∣∣∣
1

≤apqL|eiq(t)|1 + ǎpqF;

2⃝ ∣∣b̃pq(zip(t)) fq(ziq(t − τ))− b̃pq(slp(t)) fq(slq(t − τ))
∣∣
1

≤
∣∣b̃pq(zip(t))

∣∣
1

∣∣ fq(ziq(t − τ))
∣∣
1 +

∣∣b̃pq(slp(t))
∣∣
1

∣∣ fq(slq(t − τ))
∣∣
1

≤2bpqF.

Define the synchronization error: ei(t) = zi(t)− sl(t), i ∈ ∀Λl , l = 1, 2, · · · , m. Based
on Assumption 1 that G is a zero row-sum matrix, controlled error network can be described
as follows:

Dα
t0,tei(t) =− Cei(t) + Ã(ei(t)) f̃ (ei(t)) + B̃(ei(t)) f̃ (ei(t − τ)) + σ

N

∑
j=1

gijΓej(t) + ui(t),

(13)
where Ã(ei(t)) f̃ (ei(t)) = Ã(zi(t)) f (zi(t))− Ã(sl(t)) f (sl(t)), B̃(ei(t)) f̃ (ei(t − τ)) =

B̃(zi(t)) f (zi(t − τ))− B̃(sl(t)) f (sl(t − τ)).

Definition 4 ([31]). The networks (6) and (8) achieve the FTCS, if there exists the settling time
t∗ > t0 and satisfies:
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1⃝ limt→∞ |sk(t)− sl(t)|1 > 0, k ̸= l, k, l = 1, 2, · · · , m;

2⃝ limt→t∗ |xi(t)− sl(t)|1 = 0, i ∈ Λl , l = 1, 2, · · · , m;

3⃝ |xi(t)− sl(t)|1 ≡ 0, t ≥ t∗, i ∈ Λl , l = 1, 2, · · · , m.

3. Main Results
To achieve the FTCS of the networks (6) and (8), a novel controller with CVSF is

designed.
ui(t) = −k1

i ei(t)− k2[ei(t)], (14)

where k1
i > 0, k2 = diag(k2

1, k2
2, · · · , k2

n) ∈ Rn×n > 0 is a diagonal matrix. Based on
Equation (14), the error network (13) can be written to

Dα
t0,tei(t) =− Cei(t) + Ã(ei(t)) f̃ (ei(t)) + B̃(ei(t)) f̃ (ei(t − τ)) + σ

N

∑
j=1

gijΓej(t)− k1
i ei(t)

− k2µi(t),
(15)

where µi(t) ∈ c̄o([ei(t)]).

Theorem 1. Assuming the validity of Assumptions 1 and 2. Under the designed controller (14),
the networks (6) and (8) achieve the FTCS, if

λ1 = λmin

(
IN ⊗ (Ĉ − LA)− σG ⊗ Γ + K1 ⊗ In

)
> 0, (16)

λ2 = λmin

(
k2 − F(Ǎ + 2B)

)
> 0. (17)

The settling time t∗ = t0 +
(
− ϖ

λ1

) 1
α , ϖ = max

{
y
∣∣∣∣Eα(y) =

λ2

λ1|e(t0)|1 + λ2

}
, where Ĉ =

diag
(
cR

1 − |cI
1|, · · · , cR

n − |cI
n|
)
, A = (apq)n×n, B = (bpq)n×n, Ǎ = (ǎpq)n×n, G = (gij)N×N ,

if i = j, gii = gii, otherwise, gij = |gij|. K1 = diag(k1
1, k1

2, · · · , k1
N).

Proof. Let Lyapunov function: V(t) = 2 ∑m
l=1 ∑i∈Λl

|ei(t)|1 = ∑m
l=1 ∑i∈Λl

(
[eH

i (t)]ei(t) +
eH

i (t)[ei(t)]
)
. Along with the error network (7) and Lemma 2, it can be concluded that

Dα
t0,tV(t) ≤

m

∑
l=1

∑
i∈Λl

{
[eH

i (t)]Dα
t0,tei(t) + Dα

t0,te
H
i (t)[ei(t)]

}

=
m

∑
l=1

∑
i∈Λl

{
− [eH

i (t)]Cei(t)− eH
i (t)CH [ei(t)] + [eH

i (t)]
(

Ã(ei(t)) f̃ (ei(t))
)

+
(

Ã(ei(t)) f̃ (ei(t))
)H

[ei(t)] + [eH
i (t)]

(
B̃(ei(t)) f̃ (ei(t − τ))

)
+
(

B̃(ei(t)) f̃ (ei(t − τ))
)H

[ei(t)] + σ
N

∑
j=1

gij
(
[eH

i (t)]Γej(t) + eH
j (t)Γ[ei(t)]

)
− k1

i
(
[eH

i (t)]ei(t) + eH
i (t)[ei(t)]

)
−
(
[eH

i (t)]k2µi(t) + µH
i (t)k2[ei(t)]

)}
.

(18)

Calculate each term separately,
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−
m

∑
l=1

∑
i∈Λl

(
[eH

i (t)]Cei(t) + eH
i (t)CH [ei(t)]

)

=−
m

∑
l=1

∑
i∈Λl

n

∑
q=1

(
cq[eH

iq (t)]eiq(t) + cH
q eH

iq (t)[eiq(t)]
)

=2
m

∑
l=1

∑
i∈Λl

n

∑
q=1

(
− cR

q |eiq(t)|1 + cI
q
(
[eR

iq(t)]e
I
iq(t)− [eI

iq(t)]e
R
iq(t)

))

≤− 2
m

∑
l=1

∑
i∈Λl

n

∑
q=1

(
cR

q |eiq(t)|1 − |cI
q||eiq(t)|1

)
= −21T

Nn(IN ⊗ Ĉ)ê(t),

(19)

where ê(t) =
(
|e11|1, · · · , |e1n|1, · · · , |en11|1, · · · , |en1n|1, · · · , |eN1|1, · · · , |eNn|1

)T ∈ RNn.
Based on Lemma 1 and Proposition 1, it is straightforward to derive

m

∑
l=1

∑
i∈Λl

(
[eH

i (t)]
(

Ã(ei(t)) f̃ (ei(t))
)
+
(

Ã(ei(t)) f̃ (ei(t))
)H

[ei(t)]
)

=
m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{
[eH

iq (t)]
(
ãpq(zip(t)) fq(ziq(t))− ãpq(slp(t)) fq(slq(t))

)
+
(
ãpq(zip(t)) fq(ziq(t))− ãpq(slp(t)) fq(slq(t))

)H
[eiq(t)]

}
≤

m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{
[eH

iq (t)]
(
apqL|eiq(t)|1 + ǎpqF

)
+ [eiq(t)]

(
apqL|eiq(t)|1 + ǎpqF

)}

=
m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{(
apqL|eiq(t)|1 + ǎpqF

)
× ([eH

iq (t)] + [eiq(t)])
}

≤
m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{
2[eiq(t)]R

(
apqL|eiq(t)|1

)
+ 2|[eiq(t)]|1 ǎpqF

}
≤2L1T

Nn(IN ⊗ A)ê(t) + 2F[eH(t)](IN ⊗ Ǎ)[e(t)],

(20)

where e(t) = (eT
1 (t), eT

2 (t), · · · , eT
N(t))

T .
Similarly, it can be shown that

m

∑
l=1

∑
i∈Λl

(
[eH

i (t)]
(

B̃(ei(t)) f̃ (ei(t − τ))
)
+
(

B̃(ei(t)) f̃ (ei(t − τ))
)H

[ei(t)]
)

=
m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{
[eH

iq (t)]
(
b̃pq(zip(t)) fq(ziq(t − τ))− b̃pq(slp(t)) fq(slp(t − τ))

)
+
(
b̃pq(zip(t)) fq(ziq(t − τ))− b̃pq(slp(t)) fq(slp(t − τ))

)H
[eiq(t)]

}
≤

m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

{
[eH

iq (t)]
(
2bpqF

)
+ [eiq(t)]

(
2bpqF

)}

≤
m

∑
l=1

∑
i∈Λl

n

∑
p=1

n

∑
q=1

4bpqF|[eiq(t)]|1 = 4F[eH(t)](IN ⊗ B)[e(t)].

(21)
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According to Lemma 1, it follows that

σ
m

∑
l=1

∑
i∈Λl

N

∑
j=1

gij
(
[eH

i (t)]Γej(t) + eH
j (t)Γ[ei(t)]

)
=σ

m

∑
l=1

∑
i∈Λl

gii
(
[eH

i (t)]Γei(t) + eH
i (t)Γ[ei(t)]

)
+ σ

m

∑
l=1

∑
i∈Λl

∑
j∈Λl ,i ̸=j

gij
(
[eH

i (t)]Γej(t) + eH
j (t)Γ[ei(t)]

)
≤2σ

m

∑
l=1

∑
i∈Λl

n

∑
q=1

giiγq|eiq(t)|1 + 2σ
m

∑
l=1

∑
i∈Λl

∑
j∈Λl ,i ̸=j

n

∑
q=1

|gij|γq|ejq(t)|1

=2σ
m

∑
l=1

∑
i∈Λl

n

∑
q=1

giiγq|eiq(t)|1 + 2σ
m

∑
l=1

∑
j∈Λl ,i ̸=j

∑
i∈Λl

n

∑
q=1

|gji|γq|eiq(t)|1

=2σ
m

∑
l=1

∑
i∈Λl

∑
j∈Λl

n

∑
q=1

gijγq|eiq(t)|1 = 2σ1T
Nn(G ⊗ Γ)ê(t).

(22)

Based on Lemma 1, it can also be derived that

−
m

∑
l=1

∑
i∈Λl

k1
i
(
[eH

i (t)]ei(t) + eH
i (t)[ei(t)]

)
=−

m

∑
l=1

∑
i∈Λl

n

∑
q=1

k1
i
(
[eH

iq (t)]eiq(t) + eH
iq (t)[eiq(t)]

)
=− 2

m

∑
l=1

∑
i∈Λl

n

∑
q=1

k1
i |eiq(t)|1

=− 21T
Nn(K

1 ⊗ In)ê(t).

(23)

It is easy to obtain

−
m

∑
l=1

∑
i∈Λl

(
[eH

i (t)]k2µi(t) + µH
i (t)k2[ei(t)]

)
=−

m

∑
l=1

∑
i∈Λl

n

∑
q=1

k2
q
(
[eH

iq (t)]µiq(t) + µH
iq (t)[eiq(t)]

)
=− 2

m

∑
l=1

∑
i∈Λl

n

∑
q=1

k2
q|[eiq(t)]|1

=− 2[eH(t)](IN ⊗ k2)[e(t)].

(24)

Then, it is straightforward to derive

Dα
t0,tV(t) ≤− 21T

Nn
(

IN ⊗ (Ĉ − LA)− σ(G ⊗ Γ) + K1 ⊗ In
)
ê(t)

− 2[eH(t)]
(

IN ⊗ (k2 − F(Ǎ + 2B))
)
[e(t)]

≤− λ1V(t)− λ2,

(25)

where e(t) ∈ CNn \ {0}. Based on Lemma 3, one can obtain

|e(t)|1 ≤
(
|e(t0)|1 +

λ2

λ1

)
Eα

(
− λ1(t − t0)

α
)
− λ2

λ1
. (26)
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Therefore, the networks (6) and (8) will realize the FTCS with settling time t∗ =

t0 +
(
− ϖ

λ1

) 1
α , and ϖ = max

{
y
∣∣∣∣Eα(y) =

λ2

λ1|e(t0)|1 + λ2

}
.

Corollary 1. When α = 1, assuming the validity of Assumptions 1 and 2. Under the designed
controller (14), the networks (6) and (8) achieve the FTCS, if

λ1 = λmin

(
IN ⊗ (Ĉ − LA)− σG ⊗ Γ + K1 ⊗ In

)
> 0, (27)

λ2 = λmin

(
k2 − F(Ǎ + 2B)

)
> 0. (28)

The settling time t∗ = t0 +
1

λ1
ln
(

λ1|e(t0)|1 + λ2

λ2

)
.

Remark 1. When α = 1, the FCCMNN (6) degenerates into a first-order complex-valued neural
network model. Thus, the FTCS of an integer-order neural network can be regarded as a special case
of Theorem 1.

If networks (6) and (8) exclude the time delay τ, they should be modified to

Dα
t0,tzi(t) =− Czi(t) + A(zi(t)) f (zi(t)) + B(zi(t)) f (zi(t)) + σ

N

∑
j=1

gijΓzj(t) + I(t) + ui(t), (29)

Dα
t0,tsl(t) =− Csl(t) + A(sl(t)) f (sl(t)) + B(sl(t)) f (sl(t)) + I(t). (30)

Then, the error network becomes

Dα
t0,tei(t) =− Cei(t) + Ã(ei(t)) f̃ (ei(t)) + B̃(ei(t)) f̃ (ei(t)) + σ

N

∑
j=1

gijΓej(t) + ui(t), (31)

where B̃(ei(t)) f̃ (ei(t)) = B̃(zi(t)) f (zi(t))− B̃(sl(t)) f (sl(t)). Other parameters are same with
Equations (6), (8), and (13).

Corollary 2. Assuming the validity of Assumptions 1 and 2. Under the designed controller (14),
the networks (29) and (30) achieve the FTCS, if

λ1 = λmin

(
IN ⊗ (Ĉ − LA − LB)− σG ⊗ Γ + K1 ⊗ In

)
> 0, (32)

λ2 = λmin

(
k2 − F(Ǎ + B̌)

)
> 0. (33)

The settling time t∗ = t0 +
(
− ϖ

λ1

) 1
α , ϖ = max

{
x
∣∣∣∣Eα(x) =

λ2

λ1|e(t0)|1 + λ2

}
, where B̌ =

(b̌pq)n×n, b̌pq = |b́pq − b̀pq|1.

Remark 2. Corollary 2 encompasses Theorem 1 in [31] as a particular case since the memristive
items are not considered in [31].

If there is no memristor in the coupled networks (6) and (8), then the networks should be
changed to

Dα
t0,tzi(t) =− Czi(t) + A f (zi(t)) + B f (zi(t − τ)) + σ

N

∑
j=1

gijΓzj(t) + I(t) + ui(t), (34)
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Dα
t0,tsl(t) = −Csl(t) + A f (sl(t)) + B f (sl(t − τ)) + I(t). (35)

Then, the error network is

Dα
t0,tei(t) =− Cei(t) + A f̃ (ei(t)) + B f̃ (ei(t − τ)) + σ

N

∑
j=1

gijΓej(t) + ui(t), (36)

where A, B ∈ Cn×n, f̃ (ei(t)) = f (zi(t))− f (sl(t)), f̃ (ei(t − τ)) = f (zi(t))− f (sl(t − τ)).
Other parameters are same with Equations (6), (8), and (13).

Corollary 3. Assuming the validity of Assumptions 1 and 2. Under the designed controller (14),
the networks (34) and (35) achieve the FTCS, if

λ1 = λmin

(
IN ⊗ (Ĉ − LA)− σG ⊗ Γ + K1 ⊗ In

)
> 0, (37)

λ2 = λmin

(
k2 − 2FB

)
> 0. (38)

The settling time t∗ = t0 +
(
− ϖ

λ1

) 1
α , where ϖ = max

{
x
∣∣∣∣Eα(x) =

λ2

λ1|e(t0)|1 + λ2

}
.

Remark 3. Corollary 3 is similar to Theorem 2 in [32], with the key difference being that the
controller in [32] included a time delay, which can be challenging to implement in practice. The three
corollaries demonstrate that Theorem 1 proposed in this paper is more comprehensive and capable of
addressing more complex problems.

4. Optimization of Control Parameters
In the previous section, the FTCS conditions for networks (6) and (8) were established.

Then, one can choose control parameters based on Equations (16) and (17) in Theorem 1.
However, these equations only specify the range of the control parameters, which could
lead to inefficient use of control resources if the parameters are chosen arbitrarily. To
address this issue, an optimization model is developed and solved by PSO.

4.1. The Optimization Model

The optimization model of control parameters is structured as follows:

min J =
1
2

∫ t∗

t0

(eH(t)e(t) + uH(t)u(t))dt, (39)

s.t. λ1 >0, (40)

λ2 >0, (41)

k1
i ≥0, i = 1, 2, · · · , N, (42)

k2
j ≥0, j = 1, 2, · · · , n, (43)

t∗ =t0 +
(
− ϖ

λ1

) 1
α , (44)

ϖ =max
{

y
∣∣∣∣Eα(y) =

λ2

λ1|e(t0)|1 + λ2

}
, (45)

where u(t) = (uT
1 (t), uT

2 (t), · · · , uT
N(t))

T , e(t), λ1, λ2, k1
i , k2

j are same with Theorem 1.

Equation (39) is the optimized target function [15], in which 1
2

∫ t∗
t0
(eH(t)e(t))dt is the inte-

gral square error index, and 1
2

∫ t∗
t0
(uH(t)u(t))dt represents the control energy. The target

is to minimize the sum of these two terms. Equations (40)–(45) serve as the constraint
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conditions, with Equations (40) and (41) corresponding to the FTCS conditions outlined in
Theorem 1. An algorithm based on the PSO method is designed to solve this complicated
optimization model.

4.2. An Algorithm with PSO

The PSO algorithm is a classical intelligent optimization technique that leverages the
collective intelligence of a group to find the optimal solution. In this algorithm, a large
number of particles are iteratively updated. Each particle has its own velocity and position,
where the position represents the value of a potential solution, and the velocity updates
the position in each iteration. The velocity update is guided by the particle’s historical
best position Pbest and the global best position Gbest. The following outlines the rules for
updating position and velocity:

Xi(t + 1) =Xi(t) + Vi(t + 1),

Vi(t + 1) =w(t)Vi(t) + c1rand1(Pbesti(t)−Xi(t)) + c2rand2(Gbestj(t)−Xi(t)),
(46)

where Vi(t) = (Vi1(t),Vi2(t), · · · ,Vi(N+n)(t))T ∈ RN+n is the velocity vector of the ith
particle, Xi(t) = (Xi1(t),Xi2(t), · · · ,Xi(N+n)(t))T ∈ RN+n is the position vector of the ith
particle at the tth iteration. N + n represents the size of the solution space. i = 1, 2, · · · ,M,
M denotes particle size. w(t) represents the inertia weight, which is randomly chosen from
(0.4, 0.9). c1, c2, rand1 and rand2 are constants. Pbesti(t) = (pbesti1, pbesti2, · · · , pbesti(N+n))

T

is the historical optimal position vector of ith particle. Gbestj(t) = (gbestj1, gbestj2, · · · ,
gbestj(N+n))

T is the global optimal position vector of the jth iteration, j = 1, 2, · · · , Nm, Nm

is the maximum iterations.
To address the optimization model presented in Section 4.1, a novel algorithm is

developed based on PSO. The flow chart of the algorithm is outlined in Figure 1.

Figure 1. The flow chart of control parameters selection algorithm based on PSO.
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Remark 4. There is a negative feedback control with CVSF in [31,32]. However, these papers
only provide a range for the control parameters, such as k1

i , k2
i ≥ X, where X is a non-negative

constant, leaving the selection of specific control parameters within this range up to the user. The
method outlined in this paper facilitates the calculation of control parameters aimed at minimizing
the combined costs of control energy and dynamic errors, providing a more economical strategy for
selecting control parameters in FCCMNN. This algorithm is based on PSO algorithm and combined
the Theorem 1’s conditions. It is not a global optimal algorithm and still has some limitations, but it
can give a method to select the optimized control parameters.

5. Simulation
5.1. Example 1

There is an example to demonstrate the feasibility of the main result and the optimiza-
tion method. The leader’s dynamical network (8) is that:

Dα
t0,tsl(t) =− Csl(t) + A(sl(t)) f (sl(t)) + B(sl(t)) f (sl(t − τ)) + I(t). (47)

Let fractional-order α = 0.97, the dimension of neuronal states n = 2, the number of clusters
m = 2. The initial values are s1 = (−1.05 − i, 0.8 − 2i)T , s2 = (2.74 + 1.05i,−1.75 + 1.31i)T .
C = diag(0.4 − 3.07i, 0.2 − 1.43i), f (s(t)) = tanh(sR(t)) + tanh(sI(t))i, then L = 1 and
F = 2. Let τ = 0.1, I(t) = 0.1 sin(t) + 0.3 cos(t)i.

a11(y1) =

{
−1.24 − 1.75i, |y1|1 ≤ 3,

−1.3 − 1.13i, |y1|1 > 3,
a12(y1) =

{
−2.17 − 1.89i, |y1|1 ≤ 3,

−2.22 − 1.99i, |y1|1 > 3,

a21(y2) =

{
−1.56 + 1.69i, |y2|1 ≤ 3,

−1.62 + 1.87i, |y2|1 > 3,
a22(y2) =

{
1.43 − 0.44i, |y2|1 ≤ 3,

1.3 − 0.06i, |y2|1 > 3,

b11(y1) =

{
0.06 + 0.31i, |y1|1 ≤ 3,

−0.03 + 0.25i, |y1|1 > 3,
b12(y1) =

{
−0.31 + 0.09i, |y1|1 ≤ 3,

0.22 − 0.07i, |y1|1 > 3,

b21(y2) =

{
0.03 + 0.44i, |y2|1 ≤ 3,

0.09 + 0.07i, |y2|1 > 3,
b22(y2) =

{
−0.1 + 0.08i, |y2|1 ≤ 3,

−2.21 − 0.07i, |y2|1 > 3.

The two-dimensional (2D) state curves of s(t) are shown in Figure 2. The network (6) with
the controller (14) is that:

Dα
t0,tzi(t) =− Czi(t) + A(zi(t)) f (zi(t)) + B(zi(t)) f (zi(t − τ)) + σ

N

∑
j=1

gijΓzj(t) + I(t)

− k1
i ei(t)− k2

i [ei(t)],

(48)

where the strength of coupling σ = 1.5, Γ = diag(0.2, 0.2). The topology of the net-
work (6) is in Figure 3. The solid line represents a connection weight of 1, while the
dashed line denotes −1. The nine neurons are divided into two clusters. Λ1 = {1, 2, 3, 4},
Λ2 = {5, 6, 7, 8, 9}. By calculation, one can have Ĉ = diag(−2.67,−1.23). Select K1 =

diag(9.87, 10.17, 10.47, 9.87, 9.87, 9.87, 10.47, 9.87, 10.17) and K2 = diag(4.84, 4.6). Then,
λ1 = 1.4807 > 0, λ2 = 0.1 > 0. Let t0 = 0, the initial value of zip(i = 1, 2, · · · , 9, p = 1, 2)
is selected randomly from [−2, 2] + [−2, 2]i. Based on Theorem 1, one can calculate that
|e(t0)|1 = 67.5107, ϖ = −32.47, t∗ = 24.1267.

A =

(
2.99 4.21
3.49 1.87

)
, B =

(
0.37 0.4
0.47 0.28

)
, Ã =

(
0.68 0.15
0.24 0.51

)
.
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Figure 2. The 2D state curves of the leaders s1(t) and s2(t) of 2 clusters in Example 1.

The states of sl(t)(l = 1, 2) and zi(t)(i = 1, 2, · · · , 9) are shown in Figures 4 and 5
under the controller (14). The red circle represents s1(t), the blue square is s2(t). The
magenta double lines indicate neurons 1-4 belonging to the first cluster and all the dot
dash lines in cyan indicate neurons 5-9 belonging to the second cluster. Obviously, they
can achieve the FTCS, and the settling time is less than t∗ in practice. The error systems are
shown in Figure 6. In this figure, all magenta double lines represent the neurons belonging
to the first cluster, and blue dotted lines represent the neurons belonging to the second
cluster. As time goes by, the systematic errors tend to 0.

1 2

3 4

5 6

7 8

9

Figure 3. The topology of 9 neurons of the network (6) in Example 1.

The following is the optimization part of the control parameters. There are some
parameters for the PSO algorithm. Let M = 50, Nm = 200, c1 = c2 = 2. Figure 7 describes
the value of the fitness function (target function) J corresponding to the global optimal
solution Gbest during each iteration. Along with the increasing iteration times, the value
of J becomes lower and lower. One can obtain the optimized control parameters, and the
relevant J is 573.7228 in this simulation.
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Figure 4. The stable evolution of the first dimensional state of the leaders sl1(t) and follower-neurons
zi1(t) in Example 1, l = 1, 2, i = 1, 2, · · · , 9.
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Figure 5. The stable evolution of the second dimensional state of the leaders sl2(t) and follower-
neurons zi2(t) in Example 1, l = 1, 2, i = 1, 2, · · · , 9.

There is a comparison experiment. The control parameters with and without the
provided optimization algorithm are stated in Table 2. Most papers only give the range
of control parameters, that is to say, the control parameters need to satisfy the conditions
of Theorem 1. This method is expressed by the Normal method. The control gains is
selected as k1

1 = 9.87, k1
2 = 10.17, k1

3 = 10.47, k1
4 = 9.87, k1

5 = 9.87, k1
6 = 9.87, k1

7 = 10.47,
k1

8 = 9.87, k1
9 = 10.17, k2

1 = 4.84, k2
2 = 4.6,in this method, which satisfy the Theorem 1,

and the sum of ISE and control energy is 691.2507. This paper proposes an optimization
method of control parameters, which is called the optimization method. The control
parameters obtained according to the algorithm proposed in this paper is k1

1 = 10.6886,
k1

2 = 1.3105 × 10−4, k1
3 = 8.6932, k1

4 = 8.2978, k1
5 = 9.6064, k1

6 = 8.4519, k1
7 = 0.0408,

k1
8 = 10.643, k1

9 = 10.355, k2
1 = 5.6879, k2

2 = 3.7145 and the optimization objective is
573.7228. The control parameters and the provided optimization algorithm can obtain a
lower sum of control energy and ISE index. Therefore, this optimization method can guide
the selection of the control parameters.



Fractal Fract. 2025, 9, 39 17 of 21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-6

-4

-2

0

2

4

e
iR

(t
)

Evolutions of e
i

R
(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

e
iI (t

)

Evolutions of e
i

I
(t)

e
1
(t)

e
2
(t)

e
3
(t)

e
4
(t)

e
5
(t)

e
6
(t)

e
7
(t)

e
8
(t)

e
9
(t)

Figure 6. The stable evolutions of 9 neurons’ errors ei(t) in Example 1, i = 1, 2, · · · , 9.

Figure 7. The evolution of optimization target function J in Example 1.

Remark 5. The control matrix K1 can let the matrix Ξ1 = IN ⊗ (Ĉ − LA)− σG ⊗ Γ + K1 ⊗ In

in Equation (16) is a diagonally-dominant matrix. At the same time, K1 has the minimum norm
in the normal method of the comparison experiment. The selection of control matrices in [32] is
similar to the normal method in this paper. Since the optimization of the controller is not considered
in [32], the controller is not the minimum norm matrix that can make the matrix of synchronization
condition is a diagonally dominant matrix in the simulation. However, the proposed optimization
method can give better control parameters than the parameters via the normal method. That is to
say, the proposed optimization method is better than an arbitrary selection within a certain range.

Remark 6. In this example, the “tanh” function is used as an activation function. In fact, all
functions which satisfy Assumption 2 can be used as the activation function.
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Table 2. Results with different control parameters in Example 1.

Method Control Parameters J

Normal

k1
i , i = 1 → 3 9.87 10.17 10.47 691.2507

k1
i , i = 4 → 6 9.87 9.87 9.87

k1
i , i = 7 → 9 10.47 9.87 10.17
k2

i , i = 1, 2 4.84 4.6

Optimization

k1
i , i = 1 → 3 10.6886 1.3105 × 10−4 8.6932 573.7228

k1
i , i = 4 → 6 8.2978 9.6064 8.4519

k1
i , i = 7 → 9 0.0408 10.643 10.355
k2

i , i = 1, 2 5.6879 3.7145

5.2. Example 2

There is a comparison experiment with [31] to further illustrate the advantage of the
optimization method. The studied model is the same with Example 1 in [31]. The leader’s
state of each cluster is

Dα
0,tsl(t) = −Csl(t) + B f (sl(t)), (49)

where l = 1, 2.
The CNN without memristor is described as follows:

Dα
0,tzi(t) =− Czi(t) + B f (zi(t)) +

N

∑
j=1

gijh(zj(t))− dlei(t)− θl [ei(t)], (50)

where N = 14,Λ1 = {1, 2, · · · , 7},Λ2 = {8, 9, · · · , 14}. When i ∈ Λ1, l = 1, otherwise,

l = 2. f (s(t)) = tanh(sR(t)) + tanh(sI(t))i, h(s(t)) = 0.1 × 1−exp(−s(t)R)
1+exp(−s(t)R)

+ 0.1
1+exp(−s(t)I)

i.
The topology of the network (50) is in Figure 8. If neurons i and j can connect with each

other, gij = 1, otherwise, gij = 0, besides, gii = −∑n
j=1 gij. The parameters are identical to

Case 2 of Example 1 in [31], such as α = 0.7, d1 = 9, d2 = 8, θ1 = θ2 = 5. The matrices C
and B, and the initial value of sl(t) are omitted here, which can be found in [31]. In [31],
the settling time is 7.6398, and by calculation, the value of J in Equation (39) is 3.7505 × 103.
We replaced the synchronization conditions of the optimization model in Section 4.1 with
the synchronization conditions of Theorem 2 in [31]. The parameters of the optimization
algorithm are M = 50, Nm = 100, c1 = c2 = 1, and we solved the optimization model with
the step in Section 4.2. Then we found the optimal control parameters are d1 = 13.8477,
d2 = 13.8515, θ1 = 2.5530, θ2 = 2.5525. Accordingly, the settling time is 7.5698, and the
value of the fitness function J is 2.8144 × 103. The results of the comparison experiment
are shown in Table 3 detailedly. Obviously, the settling times are close, but the values of J
are 2.8144 × 103 < 3.7505 × 103, which substantiate the proposed optimization method can
help to select better control parameters, which can save control resources greatly.

12

3

4 6

5

9

14 13

8 7

12 11

10

Figure 8. The topology of 14 neurons of the network (50) in Example 2.
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Remark 7. A lot of papers [13,14,18,20,21,23,31–33,37] only pay attention to the synchronization
of the networks, they can give the range of control parameters, but our optimization method can
select the optimal control parameters and obtain an energy-efficient controller.

Table 3. Results of comparison experiment in Example 2.

Method d1 d2 θ1 θ2 t∗ J

[31] 9 8 5 5 7.6398 3.7505 × 103

Optimization 13.8477 13.8515 2.5530 2.5525 7.5698 2.8144 × 103

6. Conclusions
This paper investigates a coupled neural network based on a memristor, specifically a

FOCV system with a time delay. The FTCS of these networks is analyzed, with neurons
divided into different clusters, each following distinct leaders. A controller using the CVSF
is designed to achieve FTCS without decomposition. Additionally, an optimization model
solved by PSO is developed, guiding the selection of control parameters. The simulation
results verify the proposed theorem and optimization method. This work successfully
achieves FTCS for fractional-order complex systems. The advantage of the proposed
theorem is that the FTCS of FOCV neural networks can be achieved without dividing the
complex values into real and imaginary parts. Additionally, the model studied in this
paper is more extensive, and the special case of the theorem is the conclusion in other
literature, which is challenging. The advantage of the proposed algorithm is that the
method of selecting control parameters can be given on the basis of the theorem, which
makes up for the lack of research. However, the settling time of FTCS is influenced by
the systems’ initial values, which is difficult to obtain sometimes. Therefore, achieving
fixed-time synchronization, where the settling time is independent of initial values, remains
an area for future research, particularly for FOCV systems, which are not yet well-explored.
That will be our future study.
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