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Abstract: This study presents an innovative iterative method designed to approximate
common fixed points of generalized contractive mappings. We provide theorems that
confirm the convergence and stability of the proposed iteration scheme, further illustrated
through examples and visual demonstrations. Moreover, we apply s-convexity to the itera-
tion procedure to construct orbits under convexity conditions, and we present a theorem
that determines the condition when a sequence diverges to infinity, known as the escape cri-
terion, for the transcendental sine function sin(um)− αu + β, where u, α,β ∈ C and m ≥ 2.
Additionally, we generate chaotic fractals for this orbit, governed by escape criteria, with
numerical examples implemented using MATHEMATICA software. Visual representations
are included to demonstrate how various parameters influence the coloration and dynam-
ics of the fractals. Furthermore, we observe that enlarging the Mandelbrot set near its
petal edges reveals the Julia set, indicating that every point in the Mandelbrot set contains
substantial data corresponding to the Julia set’s structure.

Keywords: efficiency; stability; escape criterion; fractals; Julia set; Mandelbrot set;
s-convexity

MSC: 28A10; 31E05; 37C25; 37F46; 47H10; 47J25

1. Introduction
Fixed point theory, a growing branch of mathematics, combines functional analysis

and topology (see [1,2]). Specific iterative methods, such as those by Picard [3], Mann [4],
Ishikawa [5], and Noor [6], are commonly employed to approximate fixed points of con-
tractive mappings. Recent advancements include the application of Fibonacci–Ishikawa
iteration for solving Caputo-type nonlinear fractional differential equations involving
monotone asymptotically non-expansive mappings by Alam et al. [7] and their study [8]
addressing nonlinear integral equations with two delays in hyperbolic spaces. Further-
more, Alam [9] introduced an efficient iterative approach for fractional Volterra–Fredholm
integro-differential equations. Ofem et al. [10] proposed the AI iteration method, which
improves the speed of fixed-point approximations.
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Furthermore, numerous researchers have proposed the use of s-convexity in their
studies (see, [11–15]). These diverse iteration processes can be examined from two perspec-
tives. Firstly, they generally achieve faster convergence compared to traditional iterative
methods. Secondly, each iteration method displays distinct dynamics and behaviors, which
are valuable from both application and graphical viewpoints.

Fractals, characterized by their self-similar structures across scales, have had a pro-
found impact on fields like art, physics, biology, and finance [16–19]. The advent of
computational graphics during the “Fractals Era” at the end of the 20th century brought
fractals, such as the Mandelbrot set [20,21] and the Julia set [22,23], into prominence. These
sets are generated using iterative processes on complex numbers, revealing intricate visual
patterns. The applications of fractals extend to image compression [24], signal process-
ing [25], data compression [26], and human body organs [27], and their aesthetic appeal
has inspired the field of fractal art [28]. Theoretical studies of fractals continue in geometry,
dynamical systems, and topology [14].

The Mandelbrot set has been generalized using functions like um + β instead of
quadratic polynomials [29,30] and further expanded to include elliptic, transcendental,
and rational functions, as well as extensions to systems like octonions [31], bicomplex
numbers, and quaternions. Cyclical techniques, such as superfractals [32], inversion
fractals, v-variable fractals, and biomorphs [33], have been used to identify fixed points and
construct fractals via fixed-point theory. Iterative methods, such as Mann [34], Ishikawa [35],
and Jungck–Mann [36], have been applied to visualize Julia and Mandelbrot sets, often
incorporating s-convexity to enhance these techniques [12,37]. Recently, Alam et al. [38]
investigated the escape criterion for generating fractals as Julia and Mandelbrot sets via
s-convex AI iteration for functions of the type cos(um)− αu + β.

Building on this foundation, we introduce the Jungck–AI iteration process, demon-
strating its convergence and stability through examples and visualizations. We incorporate
s-convexity into this process to generate fractals based on the transcendental sine function
sin(um)− αu + β, establishing an escape criterion for this function and the associated orbit
under convexity conditions. Using MATHEMATICA, we analyze the chaotic properties
of these fractals and illustrate the effects of various parameters on their dynamics. The
ability of fractal geometry to capture intricate real-world structures has transformative
potential in fields like textile design (e.g., Batik and Kalamkari). Fractal-based design
automation supports scalability, reduces errors, promotes global collaboration, and lowers
costs, driving industry growth and sustainability.

Section 2 outlines key definitions and concepts essential for the analysis. Section 3
proves that iterative methods Jungck–S, Jungck–CR, and Jungck–DK converge slower than
the proposed Jungck–AI iteration. A numerical example validates this and shows that the
weak compatibility condition ensures a unique common fixed point for both contractions,
where our iteration converges. Section 4 explores the escape criterion of the Jungck–AI
orbit using s-convex combinations for transcendental sine functions in the complex plane.
Using MATHEMATICA 12.3, we generate chaotic fractals, including Julia and Mandelbrot
sets, on a system with an 11th Gen Intel i3-1115G4 processor, 8 GB RAM, and Windows 11.
Section 5 concludes the study.
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2. Preliminaries
This section provides key definitions and discusses related concepts that will be useful

in our analysis. Let T : A −→ A be a self-mapping within a Banach space A. The AI
iteration process, as outlined in [10], is described as

un+1 = Tvn

vn = Twn

wn = Txn

xn = anTun + (1 − an)un, n ∈ N,

for random choice, u1 ∈ A, where {an} ⊂ [0, 1].
For two non-self mappings S, T : B −→ A , defined on a nonempty subset B of a

Banach space A, where T(A) ⊆ S(A), Jungck [39] introduced an iterative process satisfying
the contraction condition:

d(Tu, Tv) ≤ λd(Su, Sv), λ ∈ [0, 1).

Chugh et al. [40] proposed the Jungck–SP iterative scheme, which is described as follows:
Sun+1 = anTvn + (1 − an)Svn

Svn = bnTwn + (1 − an)Swn

Swn = cnTun + (1 − cn)Sun, n ∈ N,
(1)

for random choice, u1 ∈ B, where {an}, {bn}, {cn} ⊂ [0, 1].

Definition 1 ([41]). Two non-self mappings S, T : A −→ A on a nonempty Banach space A, with
T(A) ⊆ S(A), are said to satisfy a general contractive condition if

||Tu − Tv||≤ φ(||Su − Tu||) + λ||Su − Sv||, ∀ u, v ∈ A

where λ ∈ [0, 1) and φ : (0,+∞) → (0,+∞) is a monotonic function with φ(0) = 0.

Building on the general contractive condition outlined in [41], Hussain et al. [42]
developed the Jungck–CR iteration process for sequences {an}, {bn}, {cn} ⊂ [0, 1] as

Sun+1 = anTvn + (1 − an)Svn

Svn = bnTwn + (1 − an)Tun

Swn = cnTun + (1 − cn)Sun, n ∈ N,
(2)

for random choice, u1 ∈ B.
In recent work, Guran et al. [43] introduced the Jungck–DK iterative method for

sequences {an}, {bn} ⊂ [0, 1] as
Sun+1 = anTvn + (1 − an)Swn

Svn = bnTwn + (1 − bn)Sun

Swn = Tun, n ∈ N,
(3)

for random choice, u1 ∈ B, and analyzed its efficiency compared to the iterative methods
proposed by Chugh et al. [40] and Hussain et al. [42], as well as its stability and the escape
criterion used for generating Mandelbrot and Julia sets.

Motivated by these considerations, we propose a new iteration procedure, referred to
as the Jungck–AI, which demonstrates a faster convergence rate compared to the iterations
introduced by Chugh et al. [40], Hussain et al. [42], and Guran et al. [43].
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Our Jungck–AI iteration procedure is given by

u1 ∈ B
Sun+1 = Tvn

Svn = Twn

Swn = Txn

Sxn = anTun + (1 − an)Sun, ∀n ∈ N,

(4)

for sequence {an} ⊆ (0, 1).

Definition 2 ([44]). Let S, T : A −→ A be two mappings such that Su = Tu for some u ∈ A. In
this case, u is referred to as a coincidence point, and Su = Tu = v is called a point of coincidence. If
Su = Tu = u, then u is termed a common fixed point. Additionally, if TSu = STu at a coincidence
point u, the pair (S, T) is said to be weakly compatible.

Definition 3 ([45]). In any nonempty convex Banach space A, given a function F, a converging iter-
ation procedure Sun+1 = F(un, T) with T(A) ⊆ S(A), which converges to a point of coincidence
u, is said to be stable with respect to S and T or (S, T)¯stable if

lim
n→+∞

||S γn − F(γn, T)|| = 0 ⇔ lim
n→+∞

Sγn = u,

for a chosen sequence {Sγn} in A.

Lemma 1 ([46]). If for two real non-negative sequences {γn} and {δn}, we have γn+1 ≤(1 − ηn)γn +

δn, where 0 < ηn < 1, for all n ∈ N, with
∞
∑

n=0
ηn = ∞ and lim

n→+∞
δn
ηn

= 0, then lim
n→+∞

γn = 0.

Definition 4 ([22,23]). A collection of complex numbers such that an orbit does not converge to
an infinite point is a filled Julia set. If T : C −→ C is a polynomial of degree m(≥ 2), then the
boundary set ∂FT of the set FT = {u ∈ C : {|T un|} is bounded} is known as the Julia set.

Definition 5 ([20,21]). All of the parameter values β for which the filled-in Julia set of T(u) =
u2 + β is connected to comprise the Mandelbrot set M. That is, M = {u ∈ C : ∂FT is connected}
or M = {u ∈ C : {|T un|}↛ +∞ whenever n → +∞}.

There are several generalizations of the convex combination in the literature; the
s-convex combination is one example of such generalizations.

Definition 6 ([47]). For a finite set of complex numbers u1, u2, . . . , un ∈ C, the s-convex combi-
nation is presented as as

1u1 + as
2u2 + · · ·+ as

nun, where 0 ≤ ai ≤ 1 and i ∈ {1, 2, . . . , n} so that
n
∑

i=1
ai = 1.

Let us observe that, for s = 1, the s-convex combination simplifies to the conventional
convex combination.

3. Efficiency, Stability, and Convergence in an Arbitrary Banach Space
This section provides an analytical proof showing that the iterative sequences gener-

ated by Equations (1)–(3) converge at a slower rate compared to our Jungck–AI iteration
procedure (4). We also include a numerical example to support our theoretical results. First,
we demonstrate that the weak compatibility condition ensures the existence of a unique
common fixed point for both contractions, to which our iteration (4) converges.
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Theorem 1. Let A be a Banach space, and S, T : B −→ A be two non-self mappings that satisfy
the general contractive condition, defined on a non-empty subset B such that T(B) ⊆ S(B) and
S(B) is complete in A. Then, the Jungck–AI iteration procedure {Sun} defined in (4) converges
strongly to the unique common fixed point Sv = Tv = u (denoted as u) if S and T are weakly
compatible and A = B.

Proof. Initially, we show that the Jungck–AI iterative procedure (4) converges to u. Based
on the definition of the Jungck–AI iteration procedure in (4), we derive four inequalities:

||S un+1 − u|| = ||T vn − u||
= ||T vn − Tv||
≤ φ(||Sv − Tv||) + λ||S vn − Sv||
≤ λ||S vn − Sv||
= λ||S vn − u||,

||S vn − u|| = ||T wn − u||
= ||T wn − Tv||
≤ φ(||Sv − Tv||) + λ||S wn − Sv||
≤ λ||S wn − Sv||
= λ||S wn − u||,

||S wn − u|| = ||T xn − u||
= ||T xn − Tv||
≤ φ(||Sv − Tv||) + λ||S xn − Sv||
≤ λ||S xn − Sv||
= λ||S xn − u||

and

||S xn − u|| = ||anTun + (1 − an)Sun − u||
≤ an||T un − u||+ (1 − an)||S un − u||
= an||T un − Tv||+ (1 − an)||S un − u||
≤ an(φ(||Sv − Tv||) + λ||S un − Sv||) + (1 − an)||S un − u||
≤ an λ||S un − Sv||+ (1 − an)||S un − u||
= an λ||S un − u||+ (1 − an)||S un − u||
= (1 − an(1 − λ))||S un − u||.

Hence,
||S un+1 − u|| ≤ λ||S vn − u||

≤ λ2||S wn − u||
≤ λ3||S xn − u||
≤ λ3(1 − an(1 − λ))||S un − u||.

Since 1 − an(1 − λ) < 1, we obtain

||S un+1 − u|| ≤ λ3||S un − u||
≤ λ6||S un−1 − u||
≤ λ3n||S u1 − u||.

Again, 0 < λ < 1 implies lim
n→+∞

||S un+1 − u|| = 0; that is, the iteration procedure {Sun}
defined in (4) converges to Sv = Tv = u.
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We now prove that u is the unique common fixed point of S and T. Let u∗ also be
considered a point of coincidence. Consequently, v∗ satisfies Sv∗ = Tv∗ = u∗. However,
from the general contractive condition of S and T, we obtain the following

0 ≤ ||u − u∗|| = ||Tv − Tv∗||
≤ φ(||Sv − Tv||) + λ||Sv − Sv∗||
≤ λ||Sv − Sv∗||
= λ||u − u∗||.

This implies that u = u∗ as λ ∈ [0, 1). Again, by the weak compatibility condition of
S, T, from Tu = TSv = TTv, we obtain Tu as a point of coincidence of S and T. By the
uniqueness of the point of coincidence, we have u = Tu. Consequently, Su = u = Tu; that
is, S and T have a unique common fixed point, at which our Jungck–AI iterative procedure
(4) converges. □

We provide the following theorem to demonstrate our iterative process (4) is stable.

Theorem 2. Let A be a Banach space, and S, T : B −→ A be two non-self mappings that satisfy the
general contractive condition, defined on a non-empty subset B such that T(B) ⊆ S(B) and S(B)
is complete in A. Then, the Jungck–AI iteration procedure {Sun} defined in (4) is (S, T)¯stable if
{an} is bounded away from 0.

Proof. Suppose the iteration procedure {Sun} defined in (4) is given by Sun+1 = F(un, T),
for some function F and converges to a point of coincidence Sv = Tv = u, for some v ∈ B.

Now, let the sequence {Szn} be arbitrary; then,

||S zn+1 − u|| ≤ ||S zn+1 − F(zn, T)||+ ||F (zn, T)− u||,

where 
F(zn, T) = Tvn

Svn = Twn

Swn = Txn

Sxn = anTzn + (1 − an)Szn, n ∈ N.

Proceeding similar to Theorem 1, we have

||S zn+1 − u|| ≤ ||S zn+1 − F(zn, T)||+ λ3(1 − an(1 − λ))||S zn − u||.

On setting δn = ||S zn+1 − F(zn, T)||, ηn = an(1 − λ) and γn = ||S zn − u||, we see,
if lim

n→+∞
||S zn+1 − F(zn, T)|| = 0 and as {an} is a bounded away sequence from 0, i.e., a

non-negative sequence, then, by Lemma 1, lim
n→+∞

γn = 0, i.e., lim
n→+∞

||S zn − u|| = 0, i.e.,

lim
n→+∞

Szn = u.

Conversely, let lim
n→+∞

Szn = u, i.e., lim
n→+∞

||S zn − u|| = 0 and lim
n→+∞

||S zn+1 − u|| = 0.

Then, ||S zn+1 − F(zn, T)||

≤ ||S zn+1 − u||+ ||F (zn, T)− u||
≤ ||S zn+1 − u||+ λ3(1 − an(1 − λ))||S zn − u||.

which implies lim
n→+∞

||S zn+1 − F(zn, T)|| = 0. That is, the iteration procedure {Sun} defined

in (4) is stable with respect to S, T or (S, T)-stable. □
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Remark 1. In the following numerical calculations for the iterative procedure {Sun} defined in (4),
we utilize the sequence outlined below:

• Start with an initial point u1 ∈ B.
• Compute a value Sv2 = F(u1, T), which is approximately equal to Su2 (Sv2 ≈ Su2) rather

than an exact representation of Su2 due to computational limitations.
• Next, compute Sv3 = F(u2, T) ≈ Su3 using the next term in the sequence, Su3 = F(u2, T).

Ultimately, we obtain a numerically approximated sequence {Svn} corresponding to the
conceptual sequence {Sun}. At each iteration, if Svn remains sufficiently close to Sun and continues
to converge to the common fixed point u of S and T, the fixed point reached by the iterations will be
considered numerically stable or stable.

We now demonstrate numerically that our Jungck–AI iterative method (4) converges
faster than the three previous iteration methods introduced by Chugh et al. [40], Hussain
et al. [42], and Guran et al. [43].

Example 1. Let S, T : [1, 3] −→ [1, 27] be two mappings defined as Su = u3, Tu = 3u + 2. Then,
from Figure 1 below and for λ = 3

4 , φ(t) = 2t, S, T satisfies the general contractive condition.

Now, for sequences
{

an = 1
n2

}
,
{

bn = 1
2

}
,
{

cn = 1
n+1

}
⊆ (0, 1) and the initial guess u1 = 1,

Table 1 and Figure 2 below represent the iterations of Chugh et al. [40], Hussain et al. [42] and
Guran et al. [43] and our Jungck–AI iteration (4) converging to the point of coincidence 8 of S, T
with the stop criterion ||un − u|| < 10−5.
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to converge to the common fixed point u of S and T, the fixed point reached by the iterations will be
considered numerically stable or stable.

We now demonstrate numerically that our Jungck–AI iterative method (4) converges
faster than the three previous iteration methods introduced by Chugh et al. [40], Hus-
sain et al. [42], and Guran et al. [43].

Example 1. Let S, T : [1, 3] −→ [1, 27] be two mappings defined as Su = u3, Tu = 3u + 2. Then,
from Figure 1 below and for λ = 3

4 , φ(t) = 2t, S, T satisfies the general contractive condition.
Now, for sequences {an = 1

n2 }, {bn = 1
2}, {cn = 1

n+1} ⊆ (0, 1) and the initial guess u1 = 1,
Table 1 and Figure 2 below represent the iterations of Chugh et al. [40], Hussain et al. [42] and
Guran et al. [43] and our Jungck–AI iteration (4) converging to the point of coincidence 8 of S, T
with the stop criterion ||un − u|| < 10−5.

Figure 1. The surface above illustrates the right-hand-side term, while the surface below represents
the left-hand-side term of the inequality in the general contractive condition.

Figure 1. The surface above illustrates the right-hand-side term, while the surface below represents
the left-hand-side term of the inequality in the general contractive condition.

Remark 2. It is important to note that in Example 1, the mappings S and T are not weakly
compatible. As a result, the iteration converges to a point of coincidence rather than a common
fixed point.

In the following example, we not only showcase the faster convergence of our iteration
to a unique common fixed point but also explore and compare the effect of different
parameters on the initial points.
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Example 2. In the Banach space ([3,+∞), du), let S, T : [3,+∞) −→ [3,+∞) be two mappings
described as Su = u4

16 − 75, Tu = u2 − 6u + 6, where du is the usual metric of R. Then for λ = 1
5

and φ(t) = 3t, Figure 3 below shows that S, T satisfies the general contractive condition.
Now, for sequences

{
an = 1+n

2+n2

}
,
{

bn = 1
1+n

}
,
{

cn = i
2n+3

}
⊆ (0, 1), the initial value

u1 = 4, and the stop criterion ||un − u|| < 10−5, Table 2 and Figure 4 below show the iterations
of Chugh et al. [40], Hussain et al. [42], and Guran et al. [43] and our Jungck–AI iteration (4)
converging to a unique common fixed point S6 = T6 = 6.

Table 1. Comparison of iterations.

Steps Jungck–SP (1) Jungck–CR (2) Jungck–DK (3) Jungck–AI (4)

0 1 1 1 1
1 7.0121 7.3474 6.7878 7.9430
2 7.6188 7.8809 7.7186 7.9993
3 7.8218 7.9751 7.9325 8
4 7.9096 7.9945 7.9836 8
5 7.9520 7.9988 7.9960 8
6 7.9738 7.9997 7.9990 8
7 7.9854 7.9999 7.9998 8
8 7.9917 8 7.9999 8
9 7.9953 8 8 8
...

...
...

...
...

17 7.9999 8 8 8
18 8 8 8 8
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Table 3 below shows the effect of the initial value and parameters in comparison to
the other methods. Numerically, we observe that the sequence generated by (4) converges
more rapidly to a unique common fixed point of S and T when compared to the other
iterations given by (1)–(3).

Table 3. Impact of parameters on the initial points for different iteration procedures.

Initial Points 0 5 11 265 688 1721 3264

an = 4n
n2+5 , bn = n

2n+7 , cn = n+3
(7n+1)3

Jungck–SP (1) 14 13 17 33 39 44 47
Jungck–CR (2) 5 6 7 9 10 10 10
Jungck–DK (3) 6 6 7 9 9 10 10
Jungck–AI (4) 2 2 3 3 3 3 3

an = n+2
4n+1 , bn = 3n

(3n+8)2 , cn = 1
n2+1

Jungck–SP (1) 42 40 50 93 106 119 127
Jungck–CR (2) 5 7 8 10 10 10 10
Jungck–DK (3) 7 7 8 10 10 10 10
Jungck–AI (4) 2 2 3 3 4 4 4

an = 5
7 , bn = 3

4 , cn = 89
90

Jungck–SP (1) 3 4 4 6 7 7 8
Jungck–CR (2) 3 4 4 6 6 6 6
Jungck–DK (3) 5 5 6 8 8 8 8
Jungck–AI (4) 2 2 3 3 3 4 4

an = 13
14 , bn = n+1

n+4 , cn = n+2
n+9

Jungck–SP (1) 5 5 6 9 10 10 11
Jungck–CR (2) 4 4 4 6 6 6 6
Jungck–DK (3) 5 5 6 8 8 8 8
Jungck–AI (4) 2 2 2 3 3 3 3

4. Generation of Fractals as Julia and Mandelbrot Sets
The general escape criterion of the Jungck–AI orbit with an s-convex combination

connected to transcendental sine functions in the complex plane is examined in this section.
Using MATHEMATICA 12.3, we generate non-traditional chaotic fractals, specifically Julia
and Mandelbrot sets, within the Jungck–AI orbit, incorporating s-convexity. The range of
the area extends from [−0.3, 0.3]× [−0.3, 0.3] to [−7, 7]× [−7, 7]. The computations were
conducted on a system with an 11th Gen Intel(R) Core(TM) i3-1115G4 (Realme Book, DLF
Cyber City, Gurgaon, India) processor operating at 3.00 GHz, equipped with 8 GB of DDR3
RAM, running Microsoft Windows 11 Home Single Language (64-bit), Version 24H2, OS
build 26063.1, and Feature Experience Pack 1000.26063.1.0.

In the Jungck–AI iteration, we now substitute the concept of s-convex combination to
obtain the Jungck–AI orbit with s-convexity.

Definition 7. In the complex plane C, let S, T : C −→ C be two self-mappings. Then, the
Jungck–AI orbit with s-convexity is described as

Sun+1 = Tvn

Svn = Twn

Swn = Txn

Sxn = asTun + (1 − a)sSun, ∀n ∈ N∪ {0},

(5)
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for random choice u0 ∈ C, where a, s ∈ (0, 1].

Remark 3. The reason for selecting the Jungck–AI iteration with s-convexity in generating Julia
and Mandelbrot fractals lies in the property that all iterations—Chugh et al. [40], Hussain et al. [42],
Guran et al. [43] and all Jungck-type iterative procedures (including Singh et al. [45], Olatinwo
et al. [41], Kang et al. [11], Antal et al. [37], and many more)—converge to a coincidence point.
But the Jungck–AI iteration with s-convexity demonstrates faster convergence compared to Chugh
et al. [40], Hussain et al. [42], Guran et al. [43] and all Jungck-type iterative procedures (including
Singh et al. [45], Olatinwo et al. [41], Kang et al. [11], Antal et al. [37], and many more).

Since the Jungck–AI iteration involves two mappings, the number of mappings em-
ployed in the iteration should be considered when substituting the Jungck–AI orbit for
other well-known orbits. We employ a certain process to deal with this.

Here, we consider transcendental sine functions of the type sin(um) − αu + β, for
u, α, β ∈ C, m ≥ 2, which can be written as Tu − Su, where Su = αu and Tu = sin(um) + β.
Apart from the reconstruction, where S is one-to-one, it is also necessary to create a new
escape criterion and the iteration procedure (5).

For the function sin(um), we know that

|sin (um)|=
∣∣∣∣um − u3m

3!
+

u5m

5!
− · · ·

∣∣∣∣= |um|
∣∣∣∣1 − u2m

3!
+

u4m

5!
− · · ·

∣∣∣∣,
for all u ∈ C.

Now consider A as the set of all u ∈ C so that sin(um) ̸= 0. Then, we can write

|sin(um)|
|um| =

∣∣∣∣1 − u2m

3!
+

u4m

5!
− · · ·

∣∣∣∣, for all u ∈ A.

For fixed u ∈ A, let γu = min
{

1, |sin(um)|
|um |

}
, then 0 <|γu|≤ 1 and |sin (um)|≥|γu||um|.

Again, let u0 ∈ A and Au0 = {u ∈ A :|u|>|u0|}; then, we can define a number
γ = inf{γu : u ∈ A} so that 0 <|γ|≤ 1 and |sin (um)|≥|γ||um|, for all u ∈ Au0 .

For the defined orbit, the following is an escape criterion.

Theorem 3. The Jungck–AI orbit {un} with s-convexity defined in (5) is so that |un|→ +∞
whenever n → +∞ , if

|u| ≥ |β| ≥
(

2|α|
|γ1|

) 1
m−1

, |u| ≥ |β| ≥
(

2|α|
|γ2|

) 1
m−1

,

|u| ≥ |β| ≥
(

2|α|
|γ3|

) 1
m−1

and |u| ≥ |β| ≥
(

2(|α|+1)
as|γ4|

) 1
m−1

.

Proof. For n = 0, let u0 = u. Then, from the Jungck–AI iteration procedure with s-convexity,
we have

|S x0| = |asTu0 + (1 − a)sSu0|
= |asTu + (1 − a)s Su|
= |as[sin(um) + β] + (1 − a)s αu|
≥ |as|[|sin (um)|−|β|]−|(1 − a)s αu|.
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Now, there exists γ4 ∈ C with |γ4| ∈ (0, 1] so that | sin(um)| ≥ |γ4||um|, for all u ∈ C but
for which |γ4| = 0. Also, a, s ∈ (0, 1] implies as ≥ as, and from the binomial expansion of
(1 − a)s, we have (1 − a)s ≤ 1 − as < 1. Hence, utilizing |u| ≥ |β|, we obtain

|α||x0| ≥ as[|γ4||um| − |u|]− |α||u|
≥ as|γ4||um| − |u| − |α||u|, sin ce as < 1

= |u|(|α|+ 1)
(

as|γ4||um−1|
|α|+1 − 1

)
.

Since |α|+ 1 > α and |u| ≥
(

2(|α|+1)
as|γ4|

) 1
m−1 , we have |x0| ≥ |u| ≥ |β|.

This brings us to the next iteration of the Jungck–AI procedure for x0 = x:

|Sw0| = |Tx0|
= |Tx|
= | sin(xm) + β|
≥ | sin(xm)| − |β|.

Now, there exists γ3 ∈ C with |γ3| ∈ (0, 1] so that | sin(xm)| ≥ |γ3||xm|, for all x ∈ C
but for which |γ3| = 0. Hence, utilizing |x| ≥ |u| ≥ |β|, we obtain

|α||w0| ≥ |γ3||xm| − |x|
= |x|

(
|γ3||xm−1| − 1

)
⇒ |w0| ≥ |x|

( |γ3||xm−1|
|α| − 1

)
.

Since |x| ≥
(

2|α|
|γ3|

) 1
m−1 , we have |w0| ≥ |x| ≥ |u| ≥ |β|.

This brings us to the next iteration of the Jungck–AI procedure for w0 = w:

|Sv0| = |Tw0|
= |Tw|
= | sin(wm) + β|
≥ | sin(wm)| − |β|.

Now, there exists γ2 ∈ C with |γ2| ∈ (0, 1] so that | sin(wm)| ≥ |γ2||wm|, for all w ∈ C
but for which |γ2| = 0. Hence, utilizing |w| ≥ |x| ≥ |u| ≥ |β|, we obtain

|α||v0| ≥ |γ2||wm| − |w|
= |w|

(
|γ3||wm−1| − 1

)
⇒ |v0| ≥ |w|

( |γ3||wm−1|
|α| − 1

)
.

Since |w| ≥
(

2|α|
|γ2|

) 1
m−1 , we have |v0| ≥ |w| ≥ |x| ≥ |u| ≥ |β|.

This brings us to the next iteration of the Jungck–AI procedure for v0 = v

|Su1| = |Tv0|
= |Tv|
= | sin(vm) + β|
≥ | sin(vm)| − |β|.
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Now, there exists γ1 ∈ C with |γ1| ∈ (0, 1] so that | cos(vm)| ≥ |γ1||vm|, for all v ∈ C
but for which |γ1| = 0. Hence, utilizing |v| ≥ |w| ≥ |x| ≥ |u| ≥ |β|, we obtain

|α||u1| ≥ |γ1||vm| − |v|
= |v|

(
|γ1||vm−1| − 1

)
⇒ |u1| ≥ |u|

( |γ1||vm−1|
α − 1

)
.

Consequently, for n = 1, we have

|u2| ≥ |u1|
( |γ1||vm−1|

α − 1
)

≥ |u|
( |γ1||vm−1|

α − 1
)2

.

Continuing the iteration, we have

|u3| ≥ |u|
( |γ1||vm−1|

α − 1
)3

,

|u4| ≥ |u|
( |γ1||vm−1|

α − 1
)4

,
...

|un| ≥ |u|
( |γ1||vm−1|

α − 1
)n

.

Since |u| ≥
(

2|α|
|γ1|

) 1
m−1 , we have |un | → +∞ as n → +∞ . □

Now we present subsequent corollaries that offer exploration methods for Julia and
Mandelbrot sets.

Corollary 1. The Jungck–AI orbit {un} with s-convexity defined in (5) escapes to infinity if

|u| ≥ |β| ≥ max

{(
2|α|
|γ1|

) 1
m−1

,
(

2|α|
|γ2|

) 1
m−1

,
(

2|α|
|γ3|

) 1
m−1

,
(

2(|α|+ 1)
as|γ4|

) 1
m−1

}
.

Corollary 2. The Jungck–AI orbit {un} with s-convexity defined in (5) escapes to infinity if

|u| ≥ max

{
|β|,

(
2|α|
|γ1|

) 1
m−1

,
(

2|α|
|γ2|

) 1
m−1

,
(

2|α|
|γ3|

) 1
m−1

,
(

2(|α|+ 1)
as|γ4|

) 1
m−1

}
.

While fractal geometry and complex numbers are foundational to both Julia sets
and Mandelbrot sets, these are distinct mathematical constructs with key differences,
as illustrated by the algorithms in Tables 4 and 5. For the Julia set algorithm, typically
presented in Table 4, various initial values of u0 are used with a fixed parameter β to observe
which points remain bounded and which diverge to infinity. In contrast, the Mandelbrot
set algorithm in Table 5 consistently starts with u0 = 0 for each iteration.
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Table 4. Algorithm for the generation of fractals as Julia sets.

1. Setup:

(i) Define the functions Su = αu and Tu = sin(um) + β.
(ii) Consider a complex number β = p + iq

(iii) Set the variables α, a, γ1, γ2, , γ3, γ4, m, n, s, p, q to their initial values
(iv) Take into account the initial iteration u0 = x + iy

2. Iterate:

Sun+1 = Tvn
Svn = Twn
Swn = Txn
Sxn = asTun + (1 − a)sSun

3. Stop:

|u| ≥ max
{
|β|,

(
2|α|
|γ1|

) 1
m−1 ,

(
2|α|
|γ2|

) 1
m−1 ,

(
2|α|
|γ3|

) 1
m−1 ,

(
2(|α|+1)

as|γ4|
) 1

m−1
}

4. Count:

The number of attempts made to escape.

5. Colour:

In accordance with the number of escape repetitions required.

Table 5. Algorithm for the generation of fractals as Mandelbrot sets.

1. Setup:

(i) Define the functions Su = αu and Tu = sin(um) + β.
(ii) Consider a complex number β = x + iy

(iii) Set the variables α, a, γ1, γ2, , γ3, γ4, m, n, s to their initial values
(iv) Take into account u = β

2. Iterate:

Sun+1 = Tvn
Svn = Twn
Swn = Txn
Sxn = asTun + (1 − a)sSun

3. Stop:

|u| ≥ max
{
|β|,

(
2|α|
|γ1|

) 1
m−1 ,

(
2|α|
|γ2|

) 1
m−1 ,

(
2|α|
|γ3|

) 1
m−1 ,

(
2(|α|+1)

as|γ4|
) 1

m−1
}

4. Count:

The number of attempts made to escape.

5. Colour:

In accordance with the number of escape repetitions required.

4.1. Fractals as Julia Sets

This subsection demonstrates the behavior changes in Julia set fractals generated by
the transcendental sine function within the Jungck–AI orbit, incorporating s-convexity.
Notably, even slight adjustments to any parameter lead to substantial changes in the fractals’
structure. Therefore, we systematically vary almost every parameter to produce fractals for
our orbit, as illustrated in the images below.

The primary fractals created by adjusting the parameter m (as detailed in Table 6),
while keeping other parameters constant, are shown in Figure 5. As m increases, the number
of chaotic attractors in the fractals grows, and the fractals become increasingly circular.
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Each Julia set contains 2m spokes. An interesting color shift is observed, with a grey tone at
m = 3 and a yellow tone at m = 7, forming a visually appealing pattern. Additionally, the
Julia fractal shape becomes progressively circular as m increases.

Table 6. Changes in parameter m for generating fractals as a Julia set.

m α β a s γ1 γ2 γ3 γ4

(i) 2 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006
(ii) 3 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006

(iii) 4 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006
(iv) 5 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006
(v) 6 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006

(vi) 7 −2 −1.4i 0.936 0.928 0.056 0.012 0.003 0.006
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Parameter α adds visual appeal to the fractals. A segment of the Julia set begins to
separate as α changes from −1 to 0.8 (Figure 6i–iv). Distinct purple chaotic fractals emerge
when the parameter α has a negative complex component (Table 7), as shown in Figure 6ii–v.
Higher modulus values of α cause the fractal to distort.

Figure 5. (i–vi) Effect of m on fractals as a Julia set.

Parameter α adds visual appeal to the fractals. A segment of the Julia set begins to
separate as α changes from −1 to 0.8 (Figure 6i–iv). Distinct purple chaotic fractals emerge
when the parameter α has a negative complex component (Table 7), as shown in Figure 6ii–v.
Higher modulus values of α cause the fractal to distort.

Table 7. Changes in parameter α for generating fractals as a Julia set.

m α β a s γ1 γ2 γ3 γ4

(i) 4 −1 −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
(ii) 4 −0.4 − 0.7i −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
(iii) 4 1.1i −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
(iv) 4 0.8 −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
(v) 4 0.7 + 0.3i −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
(vi) 4 0.6 − 0.5i −0.6 − 0.01i 0.736 0.928 0.034 0.021 0.002 0.001
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Table 8. Changes in parameter β for generating fractals as Julia sets.

m α β a s γ1 γ2 γ3 γ4

(i) 3 −2 −0.542 + 0.245i 0.963 0.828 0.056 0.012 0.003 0.006
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Changes in the basic shape occur as the convexity parameter increases, though colors
remain the same. Larger values enhance the Julia set’s aesthetic and make it suitable for
textile design. With increasing values of the convex parameter s (Table 9), Figure 8 shows
an increase in symmetrical chaotic forms within the fractals.
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Table 9. Changes in parameter s for generating fractals as Julia sets.

m α β a s γ1 γ2 γ3 γ4

(i) 4 1 − 1.3i −0.4 + 1.5i 0.017 0.26 0.056 0.078 0.095 0.063
(ii) 4 1 − 1.3i −0.4 + 1.5i 0.017 0.56 0.056 0.078 0.095 0.063

(iii) 4 1 − 1.3i −0.4 + 1.5i 0.017 0.96 0.056 0.078 0.095 0.063
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The basic shape also transforms with higher values of the parameter a, while color
saturation increases at higher a values. In Figure 9, more red appears in the center of the
fractals as a increases (Table 10).
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Only minimal changes occur in the fractals shown in Figure 10 as the parameters
γ1, γ2, γ3, and γ4 vary (Table 11).

Table 11. Changes in parameters γ1, γ2, γ3, γ4 for generating fractals as Julia sets.

m α β a s γ1 γ2 γ3 γ4

(i) 2 −2.1 1.7 − 1.6i 0.001 0.99 0.004 0.002 0.001 0.003
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(iii) 2 −2.1 1.7 − 1.6i 0.001 0.99 0.94 0.92 0.91 0.93
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The fractals displayed in Figure 11 are derived from randomly selected parameters
(Table 12).
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m α β a s γ1 γ2 γ3 γ4
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Table 12. Random changes in parameters for generating fractals as Julia sets.

m α β a s γ1 γ2 γ3 γ4

(i) 3 −2.2 1.8 − 1.5i 0.002 0.89 0.034 0.042 0.074 0.98
(ii) 2 −2.2 − 0.8i −1.8 + 2i 0.012 0.49 0.064 0.072 0.094 0.028

(iii) 4 −2.4i 2.8i 0.035 0.872 0.566 0.457 0.873 0.867
(iv) 2 −2.7 1.3 − 1.8i 0.007 0.086 0.435 0.568 0.657 0.874
(v) 7 3.4i −1 + 2.8i 0.061 0.784 0.023 0.065 0.098 0.054

(vi) 3 0.8 + 0.7i 0.9 0.999 0.961 0.263 0.152 0.542 0.123

4.2. Fractals as Mandelbrot Sets

This section also explores behavior shifts in fractals as Mandelbrot sets generated
by the transcendental sine function within the Jungck–AI orbit with s-convexity. Small
parameter modifications cause significant changes in the fractals. Thus, we altered each
parameter to generate the fractals in the images below.
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Adjusting m (Table 13) while keeping other parameters fixed produces the fractals
shown in Figure 12. As m increases, the number of chaotic attractors grows, and each
Mandelbrot set has 2m major blue attractors.

Table 13. Parameters for generating fractals as Mandelbrot sets.

m α a s γ1 γ2 γ3 γ4

(i) 2 2 0.076 0.036 0.035 0.068 0.057 0.056
(ii) 3 2 0.076 0.036 0.035 0.068 0.057 0.056

(iii) 4 2 0.076 0.036 0.035 0.068 0.057 0.056
(iv) 5 2 0.076 0.036 0.035 0.068 0.057 0.056
(v) 6 2 0.076 0.036 0.035 0.068 0.057 0.056

(vi) 7 2 0.076 0.036 0.035 0.068 0.057 0.056
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Parameter α enhances the aesthetic quality of the fractals. Visually appealing fractals
appear in Figure 13, while other parameters are kept constant (Table 14). Complex values
of α emphasize the central region.

Table 14. Changes in parameter α for generating fractals as Mandelbrot sets.
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Figure 13. Effect of α on fractals as Mandelbrot sets.

Figure 14 (Table 15) demonstrates that small changes in the convex parameter s
significantly affect the fractals. Lower s values brighten the Mandelbrot set’s perimeter.

Table 15. Changes in parameter s for generating fractals as Mandelbrot sets.

m α a s γ1 γ2 γ3 γ4

(i) 4 −2 0.534 0.054 0.078 0.075 0.065 0.057
(ii) 4 −2 0.534 0.454 0.078 0.075 0.065 0.057

(iii) 4 −2 0.534 0.954 0.078 0.075 0.065 0.057
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Figure 14. Effect of s on fractals as Mandelbrot set.

The fractals in Figure 15 turn blue with increasing values of parameter a (Table 16),
and the shape transforms as a increases.

Table 16. Changes in parameter a for generating fractals as Mandelbrot sets.

m α a s γ1 γ2 γ3 γ4

(i) 2 −3i 0.034 0.999 0.021 0.013 0.043 0.023
(ii) 2 −3i 0.634 0.999 0.021 0.013 0.043 0.023

(iii) 2 −3i 0.934 0.999 0.021 0.013 0.043 0.023
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Figure 14 (Table 15) demonstrates that small changes in the convex parameter s
significantly affect the fractals. Lower s values brighten the Mandelbrot set’s perimeter.
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Table 15. Changes in parameter s for generating fractals as Mandelbrot sets.

m α a s γ1 γ2 γ3 γ4
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The fractals in Figure 15 turn blue with increasing values of parameter a (Table 16),
and the shape transforms as a increases.
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Figure 15. Effect of a on fractals as Mandelbrot sets.

As with Julia sets, Mandelbrot fractals show minimal variation with changes to pa-
rameters γ1, γ2, γ3, γ4.

Remark 4. These generated fractals have broad applications in fabric design, such as in Batik,
Kalamkari, Tie and Dye, and other textile prints (e.g., Figures 5, 8−10, 12, 14 and 15). They
revolutionize textile design by providing intricate patterns, streamlining processes to save time
and resources, enabling scalable designs across different fabric types, and allowing digital previews
to minimize waste. This promotes global collaboration, fosters creativity, cuts costs, supports
sustainability, and boosts competitiveness in the textile industry.

5. Conclusions
Our study presented a novel iterative approach, namely the Jungck–AI iteration

procedure, for approximating unique common fixed points of general contractive mappings.
We provided theorems to demonstrate the convergence and stability of this iteration process
with examples and graphs. Additionally, we established that Jungck–AI(4) converges to
the point of coincidence more quickly than Jungck–SP, Jungck–CR, Jungck–DK, and other
similar methods. With s-convexity, and for the subsequent orbit, we generated fractals as
Julia and Mandelbrot sets for the transcendental sine function Tα,β(u) = sin(um)− αu + β,
for u, α, β ∈ C and m ≥ 2. We provided a theorem to demonstrate the escape criterion for
the sine function and the orbit with the convexity condition. Additionally, we explored
the following impacts of the involved parameters on the color deviance, appearance,
and dynamics of generated chaotic fractals.

• It is unexpected to observe that, given the same set of values, even little changes in one
parameter have a significant influence on how the resulting fractal appears during the
generation process. As a result, choosing the right parameters is crucial to obtaining
the desired fractal pattern.

• In both Julia and Mandelbrot fractals, the number of outer spokes is twice the value of
the parameter m.

• The majority of fractals exhibit symmetry about the initial line.
• In the case of both Julia and Mandelbrot fractals, a small change in the convex param-

eter s is highly effective.
• The number of colors is typically limited in almost all fractals, and there exists a hollow

portion in each of them.
• We notice that when we enlarge the Mandelbrot set at its petal edges, we encounter

the Julia set, indicating that every Mandelbrot set point contains a significant amount
of Julia set image data.

Fractal geometry is widely recognized for its ability to depict the intricacy of many
complex forms found in our environment. The chaotic behaviors of fractals, in reality, are
able to depict surfaces and forms that conventional Euclidean geometry is unable to convey.
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As with Julia sets, Mandelbrot fractals show minimal variation with changes to pa-
rameters γ1, γ2, γ3, γ4.

Remark 4. These generated fractals have broad applications in fabric design, such as in Batik,
Kalamkari, Tie and Dye, and other textile prints (e.g., Figures 5, 8, 10, 12, 14 and 15). They
revolutionize textile design by providing intricate patterns, streamlining processes to save time
and resources, enabling scalable designs across different fabric types, and allowing digital previews
to minimize waste. This promotes global collaboration, fosters creativity, cuts costs, supports
sustainability, and boosts competitiveness in the textile industry.

5. Conclusions
Our study presented a novel iterative approach, namely the Jungck–AI iteration

procedure, for approximating unique common fixed points of general contractive mappings.
We provided theorems to demonstrate the convergence and stability of this iteration process
with examples and graphs. Additionally, we established that Jungck–AI(4) converges to
the point of coincidence more quickly than Jungck–SP, Jungck–CR, Jungck–DK, and other
similar methods. With s-convexity, and for the subsequent orbit, we generated fractals as
Julia and Mandelbrot sets for the transcendental sine function Tα,β(u) = sin(um)− αu + β,
for u, α, β ∈ C and m ≥ 2. We provided a theorem to demonstrate the escape criterion for
the sine function and the orbit with the convexity condition. Additionally, we explored
the following impacts of the involved parameters on the color deviance, appearance, and
dynamics of generated chaotic fractals.

• It is unexpected to observe that, given the same set of values, even little changes
in one parameter have a significant influence on how the resulting fractal appears
during the generation process. As a result, choosing the right parameters is crucial to
obtaining the desired fractal pattern.

• In both Julia and Mandelbrot fractals, the number of outer spokes is twice the value
of the parameter m.

• The majority of fractals exhibit symmetry about the initial line.
• In the case of both Julia and Mandelbrot fractals, a small change in the convex param-

eter s is highly effective.



Fractal Fract. 2025, 9, 40 22 of 24

• The number of colors is typically limited in almost all fractals, and there exists a
hollow portion in each of them.

• We notice that when we enlarge the Mandelbrot set at its petal edges, we encounter
the Julia set, indicating that every Mandelbrot set point contains a significant amount
of Julia set image data.

Fractal geometry is widely recognized for its ability to depict the intricacy of many
complex forms found in our environment. The chaotic behaviors of fractals, in reality, are
able to depict surfaces and forms that conventional Euclidean geometry is unable to convey
(Figures 16 and 17).
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Figure 16. The Figure shows a source code for generating Julia set.
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