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Abstract: This article investigates the continuity of derivatives of real-valued functions
from a topological perspective. This is achieved by the characterization of their sets of
discontinuity. The same principle is applied to Gateaux derivatives and gradients in
Euclidean spaces. This article also introduces a generalization of the derivatives from the
perspective of the modulus of continuity and characterizes their sets of discontinuities.
There is a need for such generalizations when dealing with physical phenomena, such as
fractures, shock waves, turbulence, Brownian motion, etc.
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1. Introduction
Physically, a derivative can be interpreted as the rate of change in one continuous

quantity compared to another, measured at space–time scale, which can be considered as
“infinitesimal”. On the other hand, scientific developments in the last 100 years indicate
that the use of functions, non-differentiable in this classical sense, cannot be avoided when
modeling natural phenomena. For instance, the idealized process of diffusing particles, the
Wiener process, has non-differentiable paths. The Ornstein–Uhlenbeck process, used in the
kinetic theory of gasses, assumes non-differentiable velocity fields [1]. Turbulence can also
exhibit a non-differentiable acceleration field [2]. In a closely related manner, the paths in
Feynman’s path-integral approach to quantum mechanics are non-differentiable [3]. The
deterministic approach of scale relativity theory, introduced by Nottale [4], also assumes
non-differentiability of the fundamental space–time manifold. Such and other models can
be viewed as an idealization indicating that the actual dynamics play out at time-scales
that are incommensurable with the scale of observation of the process.

Discontinuities in spatial gradients are essential elements of the models of certain
physical phenomena. Shock waves in fluid dynamics represent abrupt changes in pressure,
density, and velocity. These changes lead to discontinuities in the derivatives of the flow
variables [5]. The behavior of gases in phase transitions, such as the transition from gas
to liquid state, can exhibit discontinuous derivatives in thermodynamic quantities like
pressure and volume.

Fractals are geometrical objects featuring both self-similarity and non-differentiability.
Fractal shapes are ubiquitous in nature [6]. Fractals are closely related to mathematical
“monsters”, such as the non-differentiable functions of Weierstrass, Takagi, Bolzano, etc.
More “well-behaving” but still surprising are the singular functions of Cantor–Lebesgue [7],
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Minkowski, and the Smith–Cantor–Volterra function [8], which grow only on disconnected
“Cantor dust”-types of sets. Such functions arise in a variety of problems—ranging from
number theory [9,10] to probability [11]. Such concepts have been used, for example, in
modeling fractures and their mechanics [12]. With the rising awareness about fractals, some
extensions of calculus, e.g., of derivatives, have been put forward in order to describe such
phenomena. All these objects present challenges for their description by the differential
calculus apparatus—that is, by derivatives and integrals of functions.

Purely mathematically, the derivatives can be generalized in several ways. For exam-
ple, a derivative can be defined as the limit of difference quotients on the accumulation
sets of points ([13], ch 3, p. 105). This is a profound definition, which can be immediately
applied to derivatives on Cantor sets in the scope of fractal calculus [14,15]. On the other
hand, the question of the continuity on compact intervals of so-defined functions requires
further clarification.

From a different perspective, assuming the usual topology of the real line, the
derivatives can be generalized also by a fractionalization using the formal substitution
∆x → (∆x)β in the difference quotient. This leads to the concept of fractional velocity
as defined by Cherbit [16]. This “quasi-differential” operator was introduced by analogy
with the Hausdorff dimension as a tool to study the fractal phenomena and physical
processes for which instantaneous velocity was not well defined It should be noted that
a more suitable term would be a pseudo-differential operator; however, the latter has
been loaded with a different meaning in the literature of Fourier analysis. Several works
have demonstrated that the resulting image functions are only trivially continuous in the
usual topology of the real line—that is, they vanish [17,18]. On the other hand, interesting
applications to singular functions have been also demonstrated [19]. It is customary in the
contemporary literature to formally substitute derivatives with non-local fractional-order
operators, such as the Riemann–Liouville differ-integral. In the present contribution, I do
not argue in favor of the formal fractionalization approach. Hristov convincingly argues
that the appropriate fractionalization approach should start from the fractionalization of
constitutive relations [20].

The definition of a local fractional derivative introduced by Kolwankar and Gangal [21]
is based on the localization of Riemann–Liouville fractional derivatives toward a particular
point of interest. This was a parallel development bridging the theory of fractional calculus.
The intended use of this operator is for describing temporal evolution. Later studies
demonstrate that whenever the fractional velocity exists point-wise for a given exponent,
its value is equal to the local fractional derivative for the same exponent [17]. An interesting
new development is the concept of fractional derivatives on fractal sets [22], which can
be viewed also as fractional derivatives on Banach spaces. The triviality result discussed
above limits the potential applications of the fractional velocity. A way to overcome this
obstacle is to broaden the definition to Cantor-dust-type fractal sets. However, this limits
the application to a particular type of fractal.

From a purely mathematical perspective, there is no reason to limit the choice of the
function in the denominator of the difference quotient only to a power function. Such is
the perspective of the present contribution: the form of the function is only constrained by
some reasonable, from an approximation perspective, choices. Notably, it is required that
a generalized Taylor–Lagrange property holds. The concept has been introduced as the
modular derivative [23]. The present work studies the properties of this quasi-differential
operator from a topological perspective.

This paper is organized as follows. Section 2 introduces general conventions. Section 3
introduces topological spaces. Section 4 characterizes the oscillation and discontinuity
sets of the functions. Section 5 demonstrates applications for fractional gradients in Eu-
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clidean spaces. Section 6 studies the modular derivatives on the real line and Banach
spaces, respectively. Section 7 discusses the obtained results from the perspective of the
available literature.

The main contributions of this paper can be stated as follows. The discontinuity set
of a given function is “small” in a precise technical sense—i.e., it is a meager set. This has
implications for various applied branches of calculus—such as the vector analysis and the
fractional calculus. Furthermore, the g-derivatives can induce a topology defined on their
sets of change under which such g-derivatives remain continuous in the sense of Theorem 3.
This is coherent with the results obtained for the calculus defined on Cantor sets.

2. Preliminaries
Definitions and Conventions

The term variable denotes a symbol that represents an unspecified real number. Sets are
denoted by capital letters, while variables taking values in sets are denoted by lowercase.
The set of real numbers is denoted by R . The term function denotes a mapping from one
number to another, and the action of the function is denoted as f (x) = y. Implicitly, the
mapping acts on the real numbers: f : R 7→ R. The co-domain of the function f : X 7→ Y
is denoted as f [X] = Y. Everywhere, ϵ will be considered as a small positive variable or a
sequence of such, depending on the context. C[A] denotes the space of continuous functions
on the given base set A. The symbol C n denotes an n-times differentiable function in an
unspecified open interval.

Definition 1 (Asymptotic small O notation). The notation O(xα) is interpreted as the convention

lim
x→0

O(xα)

xα
= 0

for α > 0. Or, in general terms,

O(g(x))⇒ lim
x→0

O(g(x))
g(x)

= 0

for a decreasing function g on a right-open interval containing 0. The notation Ox will be interpreted
to indicate a Cauchy-null sequence possibly indexed by the variable x.

The complement of the set A is denoted as Ac.

Definition 2 (Opening and closure). A closed set A is denoted by an over bar: Ā. The closure
operation of a certain set A is denoted as cl A. The set A is closed whenever cl A = A.

An opening of the set A is denoted by an open circle: A◦. The interior of a set A is denoted as
int A. The set A is open whenever int A = A.

From the above, it is also clear that cl A = Ā and int A = A◦. Furthermore, int
and cl will be used in an operational sense, which allows for defining algebraic rules for
computations over sets. The interior and closure are dual in the sense that one can be
defined from the other:

int A := X \ cl Ac (1)

The notations for closed ,̄ open ◦, and complement c take precedence over the operator
notations.

3. Topological Spaces
A topological space is most often defined by its family of open sets T .
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Definition 3. Denote by (X, T ) a topological space over the set X generated by the open set
collection T . Furthermore,

• The set E ⊆ X is denoted as Gδ if it is a countable intersection of open sets.
• The set E ⊆ X is denoted as Fσ if it is a countable union of closed sets.
• The set E ⊆ X is meager if it can be expressed as the union of countably many nowhere dense

subsets of X.
• By duality, a co-meager set is one whose complement is meager, or, equivalently, the intersection

of countably many sets with dense interiors.

An example of a meager set are the dyadic rationals Q2 in R .

Definition 4 (Topological basis). A collection τ of open sets in a topological space X is called a
basis for the topology if every open set in X is a union of sets in τ.

Definition 5 (T1 space). A T1 topological space (also called a Fréchet space) is a type of topological
space that satisfies the following condition: For every pair of distinct points x and y in the space,
there exist open sets Ux and Uy such that x ∈ Ux and y /∈ Ux, and y ∈ Uy and x /∈ Uy.

In other words, in a T1 space, each point is closed (i.e., the singleton set containing
that point is a closed set). Some properties of T1 spaces are the following:

• Every finite set is closed.
• The intersection of all open neighborhoods of a point is just that point.

Definition 6. The boundary ∂ operator is defined as follows. Consider the set A; then,

∂A := (cl A) \ (int A)

A set is both open and closed if it has an empty boundary: ∂A = ∅.

From the definition, it is apparent that the boundary set is closed as it is a meeting of
two closed sets

∂A = (cl A) ∩ (cl Ac) (2)

The boundary operator distributes partially over unions and intersections in the
sense that

∂(A ∪ B) ⊆ ∂A ∪ ∂B (3)

∂(A ∩ B) ⊆ ∂A ∩ ∂B (4)

Definition 7 (Dense set). Suppose that D ⊂ (X, T ). D is called dense in X if cl D = X. The
space (X, T ) is called separable if there exists a countable, dense set in D ⊂ X.

The above definition is given in Encyclopedia of Mathematics [24].

Definition 8 (Nowhere dense set). A subset A of a topological space (X, T ) is called nowhere
dense in X if cl A contains no nonempty open subset, that is, if the interior of its closure is empty:
int(cl A) = ∅

Definition 9 (Topological Continuity). Let X,Y be topological spaces. A function f : X 7→ Y is
(topologically) continuous if and only if, for every open set U ⊆ Y, the pre-image set f−1(U) is also
open; that is,

U◦ = U =⇒ f−1(U) = f−1(U)◦
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Kuratowski Closure Axioms

Topological spaces can be characterized alternatively in terms of closed sets. In order
for this to be achieved it is instrumental to use the closure operator cl, which satisfies the
Kuratowski closure axioms [25]:

Definition 10. Consider the topological space (X, cl), generated by the set X. For any sets
A, B ⊆ Pow(X), the closure operator cl : Pow(X) 7→ Pow(X) has the following properties:

cl ∅ = ∅ (K1)

A ⊆ cl A (K2)

cl cl A = cl A (K3)

cl(A ∪ B) = cl A ∪ cl B (K4)

A different way of writing property (K3) is

cl Ā = Ā

T1-spaces have an additional axiom that the singleton sets are closed:

cl {a} = {a} (K5)

Remark 1. Note that axiom K4 implies that closure operators are order preserving, since if A ⊆ B,
then A ∪ B = B, so cl B = cl (A ∪ B) = cl A ∪ cl B, which implies that cl A ⊆ cl B.

4. Oscillation and Discontinuity Sets of a Function
In several prior publications, the framework of oscillation operators has been em-

ployed to characterize various extensions of derivatives, consistently assuming the topol-
ogy of the real line [17,23,26]. This section recasts the same concept in the most general
topological sense.

Definition 11 (Oscillation set). Consider two topological spaces A and X and the function
f : A 7→ X, and define the set of oscillations on the preimage A as

ω f [A] := f [ cl A] \ cl f [A] (5)

Using the above definition, the following proposition holds:

Proposition 1. If f ∼= C[A]⇐⇒ ω f [A] = ∅.

Proof. The proof is immediate and follows from Hausdorff’s theorem (Theorem A1,
Appendix A) as the negation of its statement.

In words, the proposition states that the oscillation set of a continuous function is
empty. Based on this result, it is convenient to define the set of discontinuities of a function
as follows.

Definition 12 (Discontinuity set). Define the discontinuity set as the inverse image of the
oscillation set:

∆ f [A] := f−1 ◦ω f [A]

We need a technical result before establishing the following theorem:
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Lemma 1. The boundary ∂A of a set A has an empty interior; hence, it is nowhere dense:

∂A◦ = ∅⇐⇒ ∂Ac = X

Proof. By definition,
∂A◦ = X \ cl (∂A)c

On the other hand,

(∂A)c = X \ (Ā \ A◦) = (A◦ ∩ X) ∪ (X \ cl A) = A◦ ∪ (X \ cl A)

Therefore, the closure is

cl (∂A)c = cl A◦ ∪ cl (X \ Ā) = cl (Ā ∪ (X \ Ā)) = cl (X ∪ Ā) = cl X = X

Therefore, ∂A◦ = ∅.

Lemma 2. Let C =
⋃

α∈A
Cα for an index set A. Then, the union can be written as

C =
∞⋃

i=1

Ci ∪
∞⋃

α∈Ai

Cα

Proof. Let C =
⋃

α∈A
Cα. By the axiom of choice, one can choose a countable subset a1 ⊂ A

and write
C =

⋃
i=1

Ca1
i
∪

⋃
α∈A\a1

Cα︸ ︷︷ ︸
B1

where we defined A1 := A \ a1. By the same argument, one can write

B1 :=
⋃

α∈A1

Cα =
⋃
i=1

Ca2
i
∪

⋃
α∈A1\a2

Cα︸ ︷︷ ︸
B2

= . . .

and so on. Hence, the claim follows by induction.

The main result of the section comprises the following theorem.

Theorem 1 (Discontinuity set characterization). Suppose that f is discontinuous somewhere on
the set A ⊆ X. Then, the discontinuity set is written as

∆ f [A] = cl A \ ( f−1 ◦ cl f [A]) (6)

Furthermore, the following decomposition holds:

∆ f [A] =
⋃
α∈I

∂Aα

for some indexing set I, where the sets ∂Aα are nowhere dense and disconnected. Therefore, ∆ f [A]

is a meager set.
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Proof. Observe that, by hypothesis, ∆ f [A] is not empty. The first part of the claim follows
from the properties of the inverse image. Suppose that f is discontinuous on some set
A ⊂ X. Then, cl f [A] ⊃ f [cl A]. Therefore, by the properties of the inverse image,

f−1 ◦ cl f [A] ⊃ cl A

On the other hand, cl A = A ∪ ∂A. Let B = f−1 ◦ cl f [A]. Then,

∆ f [A] = cl A \ B = (A ∪ ∂A) \ B = (A \ B︸ ︷︷ ︸
∅

) ∪ (∂A \ B) = ∂A \ B

since A ⊂ B. Therefore, the discontinuity set is part of the boundary of A:

∆ f [A] ⊆ ∂A

Further, by Lemma 1, the boundary ∂A is nowhere dense. On the other hand, ∂A ⊆ A.
Therefore, A = ∂A. Since A is arbitrary, then

∆ f [A] =
⋃
α∈I

∂Aα

for some indexing set I. Hence, ∆ f [A] is a union of nowhere dense sets and hence is meager.
By construction, the boundary sets are disjoint; that is, ∂Aα ∩ ∂Aβ = ∅ for distinct

indices α ̸= β; hence, we can take the restriction

∆ f [A] \ ∂Aβ =
⋃

α∈I\β
∂Aα

Therefore, for the closure, it holds that

cl ∆ f [A] \ ∂Aβ = cl
⋃

α∈I\β
∂Aα =

⋃
α∈I\β

∂Aα

since the boundary sets are closed. Let p ∈ cl ∂Aβ = ∂Aβ, and we take the meeting as

cl ∆ f [A] \ ∂Aβ ∩ p = p ∩
⋃

α∈I\β
∂Aα =

⋃
α∈I\β

(p ∩ ∂Aα) = ∅

Therefore, the set is disconnected. By Lemma 2, the set can be written as a countable
collection of nowhere dense sets as

∆ f [A] =
⋃
α∈I

∂Aα (7)

for some indexing set I, where the sets ∂Aα are nowhere dense and disconnected. Finally,
∆ f [A] is a union of meager sets and hence is meager.

Corollary 1. Under the same notation, suppose that A ⊂ R . Then, ∆ f [A] is totally disconnected
on R , equipped with the usual topology.

Proof. Boundary points of closed intervals in R are disconnected points. An arbitrary
union of disconnected points is also disconnected.

The results proven in this section have broad applications. In the next sections, we
discuss two, but they are by no means exhaustive.
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5. Applications to Euclidean Spaces E n

5.1. Gradients of Scalar Functions

Definition 13 (Gradient). Suppose that U is an open subset of the Euclidean space En, x ∈ U,
and f : U → E is a function. Then, f is differentiable at x if there exists a linear operator denoted as
∇ f (x) such that

lim
||h||→0

| f (x + h)− f (x)− h · ∇ f (x)|
||h|| = 0

The dot denotes the scalar product on En and ||.|| denotes the norm. The operator ∇ f (x) is
called the gradient of f at x.

Proposition 2. Suppose that the set of discontinuity of ∇ f (x) is the set ∆ f ⊂ En. Then, ∆ f is a
union of meager sets of maximal topological dimension n− 1. Furthermore, it can be written as

∆ f =
n−1⋃
k=0

∆k, ∆k ∈ Ek (8)

Proof. The Euclidean space E n equipped with the standard scalar product (·) has a norm
||h|| =

√
h · h. The norm generates a metric topology; hence, Theorem 1 applies. The

boundary set of ∂A of A ∈ E n is of dimension n − 1. Therefore, the result follows
by reduction.

The above result implies that the gradient of a function ∇ f can be discontinuous on
different combinations of “Cantor dust” point sets, curves, and hyper-surfaces up to the
n− 1 dimensional subspace of E n. This observation qualitatively agrees with the results
obtained for the velocity gradient and vorticity in [5,27], which describe such hyper-surfaces
for the homogeneous Euler equations in fluid dynamics. Note that we have not discussed
the curl of a vector-valued function since it is limited to only three dimensions. On the
other hand, an application to the curl’s proper generalization—i.e., the outer derivative
in geometric calculus ∇∧—is straightforward; however, including it here will dilute the
scope of this paper.

Remark 2. Fractal sets have fractal dimensions, which are real numbers different from their
topological dimensions. The above result concerns only the topological dimensions and cannot be
applied to fractal dimensions. For example, the topological dimension of the Cantor set is 0 (isolated
points), while the Hausdorff dimension is log 2/ log 3 ≈ 0.63093.

5.2. Non-Local, Space-Fractional Derivatives

The so-developed theory is equally applicable to the continuity sets of the Riesz
fractional Laplacian operator and the associated fractional gradient operator. The fractional
Laplacian theory is an active area of research. The fractional Laplacian has been used to
model reaction–diffusion systems, porous media, and ultrasound among others. Readers
are directed to the work of Lischke et al. for a comprehensive overview [28].

Suppose that we have a scalar function f : E d 7→ R . The Fourier transform will be
defined under the physics convention

F [ f ](x) :=
∫
R d

f (x)eik·xdxd = f̂ (k)

with an inverse
f (x) = F−1[ f̂ ](k) :=

1
(2π)d

∫
R d

f̂ (k)e−ik·xdkd

where x denotes a d-dimensional vector and k denotes the wave vector.
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The Riesz fractional Laplacian operator can be defined in the Fourier domain by [29]:

(−∆)α f (k) := −||k||2α f (k) (9)

where the ||k|| =
√

k · k is the modulus of the d-dimensional wave vector k and the
dot denotes the usual scalar product; that is, in the Fourier space, we can identify the
algebraic substitution

(−∆)α 7→ −||k||2α

From this perspective, the fractional Laplacian can be considered as the gradient of another
operator in the algebraic equation

−||k||2α = ik · ik0||k||2α−1

where k0 is a unit vector k0 = k/||k|| in the Fourier space. The Riesz Laplacian can be
re-expressed under a slightly different parametrization as

−(−∆)α 7→ −||k||2α = ik · ik0||k||2α−1, 2α− 1 = β

Therefore, a Riesz-type gradient can be defined algebraically by the expression

∇β 7→ ik0||k||β = ik/||k||1−β

for a suitable function space. This corresponds to a convolution in the spatial domain:

∇β f (x) = ∇I1−β f (x)

and it has a physical interpretation in the scope of continuum mechanics [30].

Definition 14 (Riesz gradient). Define the Riesz gradient by the convolution

∇β f (x) := ∇I1−β f (x), β > 0

where Iβ f (x) := F−1
[
||k||β f̂ (k)

]
is the fractional convolution integral.

Therefore, we can reformulate Proposition 2 as

Proposition 3. Suppose that the set of discontinuity of ∇β f (x) is ∆ f . Then, ∆ f can be written as

∆ f =
n−1⋃
k=0

∆k, ∆k ∈ Ek

Using the above definition, the fractional Laplacian of a scalar function can be refor-
mulated as

∇ · ∇β f (x) = −(−∆)(β+1)/2 f (x)

which is consistent with the formulation of the second Fick’s law and hence can be inter-
preted on conventional physical grounds.

Remark 3. The above definition of a fractional gradient is based on the Riesz fractional Laplacian
definition, which is one of several possible choices [29]. From the discussion above, it is apparent
that a fractional Laplacian can be discontinuous on different combinations of “Cantor dust” point
sets, curves, and hyper-surfaces up to the n− 1 dimensional subspace of E n.
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6. Applications to Modular Derivatives
Definition 15 (Topological limit). Let X, Y be topological spaces and a ∈ X, b ∈ Y. Suppose
that f is a function such that f : X \ {a} 7→ Y. Then, we write lim

x→a
f (x) = b if the auxiliary

function g : X → Y such that

g(x) :=

 f (x), x ̸= a,

b, x = a

is topologically continuous at x = a in the sense of Definition 9.

6.1. Modular Derivatives on the Real Line

As indicated in Section 1, the derivatives can be generalized in different directions.
If locality is the leading requirement, then the most natural way for such generalization
is to replace the assumption of local Lipschitz growth with the more general modular-
bound growth.

Definition 16 (Modulus of continuity). A point-wise modulus of continuity gx : R 7→ R of a
function f : R 7→ J ⊆ R is a

1. Non-decreasing, non-constant continuous function;
2. gx(0) = 0;
3. |∆±ϵ [ f ](x)| ≤ K gx(ϵ) holds in the interval I = [x, x± ϵ] ⊂ J for some constant K.

A regular modulus is such that gx(1) = 1.

In the subsequent sections, we will assume that all considered moduli are regular. The
following definition of a modular function is adopted to avoid singular moduli.

Definition 17. A modular function g is a regular modulus of continuity, which is also differentiable
everywhere in I = (0, L] for certain L > 0.

Note that the dependence on the point x of the modulus of continuity is suppressed in
the above definition. By duality, one can denote the set X±g ( f ) as the set of points where g
is the modulus of continuity of f . A trivial example for a modulus function is the linear
modulus, which gives rise to the Lipschitz condition. This is a standard condition in the
theory of ordinary and partial differential equations.

Example 1 (Hölder modulus). g(x) = xβ for 0 < β < 1 is a modular function, which is not
differentiable at x = 0. This modulus determines the Hölder growth class H β.

Example 2 (log-modulus). Another non-trivial example is the function g(x) = xβ log 1
x , which,

for 0 ≤ β < 1, is a modular function.

Example 3 (singular modulus). A third non-trivial example is the Cantor function (see below),
which is its own modulus of continuity [7]. However, it is not a modular function in view of
Definition 17.

From a computational point of view, only regular, modular functions can be of practical
interest. These are the elementary power functions and their products with logarithms.
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Definition 18. Define the parameterized difference operators as

∆+
ϵ [ f ](x) := f (x + ϵ)− f (x),

∆−ϵ [ f ](x) := f (x)− f (x− ϵ)

for the variable ϵ > 0 and the function f (x). The two operators are referred to as forward difference
and backward difference operators, respectively.

Definition 19. Define g-variation operators as

υϵ±
g [ f ](x) :=

∆±ϵ [ f ](x)
g(ϵ)

(10)

for a positive ϵ and a regular modular function g.

Define the modular derivative as follows:

Definition 20 (Modular derivative, g-derivative). Consider an interval I = [x, x ± ϵ] and
define the limit if it exists:

D±g f (x) := lim
ϵ→0

∆±ϵ [ f ](x)
g(ϵ)

= lim
ϵ→0

υϵ±
g [ f ](x) (11)

for a modulus of continuity g(ϵ). The limit will be understood in a topological sense (e.g.,
Definition 15). The last limit will be called a modular derivative with regard to the function g
or g-derivative.

NB! The equality of D+
g f (x) and D−g f (x) is not required.

At this point, it can be observed that the above definition is not vacuous since, for a
non-singular function of the bounded variation on an interval I = [x, x + ϵ] ⊂ R ,

D±g f (x) = lim
ϵ→0

f ′(x± ϵ)

g′(ϵ)
(12)

by L’Hôpital’s rule. In this regard, it is useful to consider the following result:

Proposition 4. Suppose that f ∈ C 1 at x and |g′(0)| = ∞, where g is a modular function. Then,
D±g f (x)=0.

Proof. By L’Hôpital’s rule,

D±g f (x) = lim
ϵ→0

f ′(x± ϵ)

g′(ϵ)
= lim

ϵ→0
f ′(x± ϵ) lim

ϵ→0

1
g′(ϵ)

= 0

since the differentiability of f implies the continuity of the derivative at x.

From the above definition, it is clear that the modular function provides an optimal
growth estimate for the function of interest. Moreover, the non-linear modulus is sensitive
only to the singularities of the derivative.

Definition 21. Consider a function f continuous on the closed interval I. The set

χ±g ( f ) := {x : υϵ±
g [ f ](x) ̸= 0, ∀ϵ > 0} ∩ I

is called the set of change.
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By this definition, the geometrical meaning of the sets χ±g ( f ) becomes clear as the sets
of points where the function f can be optimally approximated by a right and left modular
function g, respectively.

Remark 4. Together with L’Hôpital’s rule, this proposition can be used in practice for computations
of g-derivatives. For suitable types of functions, the process can be automated and implemented in
computer algebra systems.

6.2. Topology Induced by the Set of Change

This section characterizes the topology induced by a modular function g. To this end,
we use the notion of the set of change χg( f ).

Definition 22. Consider the infinite bounded sequence A = {ak}∞
k=1 ∈ R . Let ā := sup{ai},

a := inf{ai}, where ā and/or a are not necessarily in {ak}. Define the Cauchy operator

Q : A 7→ A ∪ {a, ā}, {a, ā} =: δA (13)

The sequences, for which QA = A, will be called Cauchy-complete.

Definition 23 (Closure twist map). Define the closure defect map as the set-valued map

q(A, B) := {min
(
ā, b̄
)
, max (a, b)}

Lemma 3. The operator Q satisfies axioms K1–K3 for any sequence A = {ak}∞
k=1 ∈ R . If

q(A, B) ⊆ Q(A, B), then Q also satisfies K4 for the sequences A and B.

Proof. Axiom K1 is satisfied vacuously since sup ∅ = inf ∅ = ∅.
Axiom K2 is satisfied since {ak} ⊆ {ak} ∪ {a, ā} = Q{ak}.
Q(Q{ak}) = Q({ak} ∪ {a, ā}). However, sup({ak} ∪ {a, ā}) = ā and

inf({ak} ∪ {a, ā}) = a. Therefore, Q(Q {ak}) = Q{ak} so that axiom K3 is satisfied.
Axiom K4 is satisfied only for a certain type of sequence. Let C = A ∪ B = {ak} ∪

{bk} = {ck}. Observe that c̄ = sup {ā, c̄} and c = inf {a, b}. Then,

Q C = {ck} ∪ {c, c̄} = {ak} ∪ {inf {a, b}, sup {ā, b̄}}

On the other hand,

QA ∪QB = {ak} ∪ {a, ā} ∪ {bk} ∪ {b, b̄}

Therefore,

QC ∪ {inf
(
ā, b̄
)
, sup (a, b)} = Q(A ∪ B) ∪ q(A, B) = QA ∪QB

since, for finite sets, min coincides with inf and max coincides with sup, respectively.
Therefore, if q(A, B) ⊆ Q(A, B), K4 holds.

From the above, we can see that the Q is a closure operator for a fixed sequence.

Proposition 5. Suppose that A ⊆ B; then, the axiom K4 holds for QA and QB.

Proof. We need to demonstrate that

Q(A ∪ B) = QA ∪QB
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Observe that
A ⊆ B =⇒ A ∪ B = B =⇒ Q(A ∪ B) = QB

Also,
A ⊆ B =⇒ inf A ≥ inf B, sup A ≤ sup B

Therefore, q(A, B) = {min
(
ā, b̄
)
, max (a, b)} = {ā, a}.

On the other hand, {ā, a} ⊆ B.
Therefore,

Q(A ∪ B) = QA ∪QB

Theorem 2 (Induced topology). Let A be a bounded sequence. Then, (A,Q) and (QA,Q) are
T1 topological spaces and Q is a closure operator for them. Every set S ∈ Pow(QA) is closed. This
topology is denoted by TQ.

Proof. By Lemma 3 and Proposition 5, K1–K4 are satisfied. K5 is satisfied since Q {a} =
{a}. Therefore, (A,Q) is a T1 space. Furthermore, by idempotence, (QA,Q) is a T1 space.

For the second part, let X = QA; then, the boundary is ∂X = (QX) \ X. By idempo-
tence, ∂X = (QX) \ X = (Q A) \ (Q A) = ∅. Therefore, the set X is closed.

Remark 5. The term Cauchy-complete is justified by the observation that, for a Cauchy sequence
A, the set QA \ A can have only three values—{ā}, {a} or ∅—depending on whether A has a
minimum, a maximum, or both.

In the next paragraphs, we give a more conventional treatment of the so-identified
topology. In the conventional approach, the topology TQ, induced by Q, can be character-
ized by the open sets

τk := A \ {a}i=k
i=1 = {t : ai ∈ A, i ≥ k}, k > 0

The points in the topological space TQ are then the singletons {ai}. Therefore, this
topology can be recognized as the co-finite topology of the infinite (!) set A. Furthermore,
one can claim the following.

Proposition 6. The sets τk form a basis in the topology TQ.

Proof. To prove the statement, we need to verify two properties:
(1) Every point x ∈ X lies in some set t ∈ τ.
(2) For each pair of sets tp, tq ∈ τ and each point x ∈ tp ∩ tq, there exists a set tr ∈ τ

such that x ∈ tr ⊂ tp ∩ tq. Property 1 holds as {ai} = τi ∩ τi+1. Property 2 holds for
τp, τq, τr, such that p < q < r. Under this hypothesis, tp ∩ tq = tq and tr ⊂ tq for q < r.

Having established the appropriate topological background, we are ready to relax the
definition of D±g f (x) by requiring only that at least one of the limits

lim
ϵ→0

υϵ±
g [ f ](x), x± ϵ ∈ TQ

exists in the topological sense of Definition 15. If said limit exists, we write as above
D±g f (x) = lim

ϵ→0
υϵ±

g [ f ](x).

The main result of this section comprises the following theorem.
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Theorem 3 (Topological continuity of g-derivatives). Suppose that χg( f ) is an infinite set
inducing a topology TQ. Suppose that S is dense in χg( f ). Then, the imagesD±g f (x) are continuous
on S under TQ.

Proof. Suppose that the set S is dense in χg( f ). Since S is dense in χg( f ), it is Cauchy-
complete, which implies that Q S = S.

Let further define B := {y : D±g f (x), x ∈ S}, where D±g f (x) exists finitely. Since
D±g f (x) is finite, the action of Q is defined. Therefore, we can write Q B = B ∪ ∂B.
D±g [Q S] = D±g [S] = B. Therefore, D±g [S] = B ⊆ Q B and, by the Hausdorff Theorem,
D±g f (x) is continuous on S.

Note that the last result does not imply the continuity of D±g f in the usual topology
of R . In contrast, strictly sub-additive modules give rise to g-derivatives, which are
discontinuous in the usual topology [23]. We further specialize the argument to Hölder-
continuous functions, where g(x) = xβ, β < 1. The g-derivative in this case specializes
to fractional velocity denoted by υ

β
±F(x) = D±g f (x). There are two composition formulas

that are useful for the subsequent discussion and examples:

υ
β
±[ f ◦ h](x) = υ

β
± f (y)

∣∣∣∣∣
y=h(x)

.[h′(x)]β (14)

and

υ
β
±[h ◦ f ](x) = h′(y)

∣∣∣∣∣
y= f (x)

.υβ
±h(x) (15)

for a composition of the H β function f with a differentiable function h evaluated at the
argument x, depending on the order of the functions in the composition. We give some
examples of singular functions that have, for sets of change, a countable subset of the
Cantor set and the dyadic rationals Q2.

The Cantor set is the prototypical example of a totally disconnected, uncountable,
perfect set. The set gives rise to the eponymous singular function.

Example 4 (Cantor singular function). On I = [0, 1], Cantor’s singular function is the unique
solution of the functional equation

F(x) =
1
2


F(3x), 0 ≤ x ≤ 1/3
1 1/3 < x < 2/3
F(3x− 2) + 1, 2/3 ≤ x ≤ 1

(16)

with fixed points F(0) = 0, F(1) = 1.
Cantor’s function can be approximated by a possibly non-terminating iterative algorithm from

the discrete floor map as follows:

FN(x) =


1
2

N−1
∑

k=1

⌊3kx⌋
2k + ⌊3N x⌋

2N = 1
2 FN−1(x) + ⌊3N x⌋

2N , ⌊3N x⌋ ∈ {0, 2}

1
2

N−1
∑

k=1

⌊3kx⌋
2k + 1

2N = 1
2 FN−1(x) + 1

2N , ⌊3N x⌋ = 1
(17)

From the above system, it is apparent that the set of increase in the Cantor’s function is a
countable subset of Cantor’s ternary set (and hence of measure zero); that is, ∀x ∈ C, we have

χα =

{
x : x =

N

∑
k=1

ak

3k , ak ∈ {0, 2}
}

(18)
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∀N natural numbers. To calculate the fractional velocity on the co-finite topology of the Cantor set,

we select a sequence such that ∀k 0 + ϵk ∈ C. Such a sequence is ϵ =
{

3−k
}∞

k=1
. Let

α := log 2/ log 3 (19)

By the functional Equation (16), the following identity holds: F(1/3n) = 1/2n, so that
∆+

ϵ [F](0) = 1/2n. Therefore,

υα
ϵ+[F](0) =

1
2n

/(
1

3nα

)
=

(
3α

2

)n
= 1.

Therefore, υα
+F(0) = 1. By the functional Equation (16), F(2/3) = F(0)/2 + 1/2; therefore,

F
(

2
3
+

1
3n

)
=

1
2

F
(

1
3n−1

)
+

1
2

Then,

∆+
ϵ [F]

(
2
3

)
= F

(
2
3
+

1
3n

)
− F

(
2
3

)
=

1
2

F
(

1
3n−1

)
=

1
2n

/(
1

3nα

)
=

(
3α

2

)n
= 1

so that υα
ϵ+[F](2/3) = 1

On the other hand, υα
ϵ+[F](1/3) = 0.

We can formally adjoin υα
ϵ+[F](1) = 0 to respect the functional equation. Therefore, we obtain

the functional equation system

υα
+F(x) =


υα
+F(3x), 0 ≤ x ≤ 1/3

0 1/3 < x < 2/3
υα
+F(3x− 2), 2/3 ≤ x ≤ 1

(20)

as prescribed by the formal g-differentiation of the functional equations.

Another interesting example is De Rham’s singular function, which was also rediscov-
ered by Takacs in a different context [31]. The function depends on a real-valued parameter
a ∈ (0, 1) and has, for a set of change, the dyadic rationals Q2, and is constant almost
everywhere in [0, 1].

Example 5 (De Rham–Takacs singular function). In 1978, Takacs [31] introduced a new singular
function defined in the unit interval, such that, for a number,

x =
∞

∑
r=0

1
2ar

Where the sequence {ar}∞
r=1 comprising integers is increasing, the function is defined as

Fρ(x) :=
∞

∑
r=0

ρr

(1 + ρ)ar
,

where Fρ(0) = 0, Fρ(1) = 1.
If we consider the usual binary representation

x =
∞

∑
r=1

br

2r , br ∈ {0, 1}
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for x ∈ [0, 1] and restrict the discussion of the dyadic rationals Q2, which are dense in Q , we can
establish the following. Suppose that 0 ≤ x ≤ 1/2. Then,

Fρ(x) =
∞

∑
r=1

br
ρr

(1 + ρ)r =
ρ

1 + ρ
Fρ(2x)

On the other hand,

Fρ(1) =
∞

∑
r=0

br
ρr

(1 + ρ)(r+1)
=

1
ρ + 1

∞

∑
r=0

ρr

(1 + ρ)r =
1

1 + ρ

(
1

1− ρ
ρ+1

)
= 1

Therefore, Fρ(1/2) = ρ/(1 + ρ).
For 1/2 < x < 1, let

x =
1
2
+

∞

∑
r=1

br

2r+1

as above. By a simple re-indexing of the number,

y =
∞

∑
k=1

1
2ak

observe that

Fρ(y) =
∞

∑
k=1

ρk−1

(1 + ρ)ak

Therefore,

Fρ(x) =
ρ

1 + ρ
+

∞

∑
r=1

br
ρr−1

(1 + ρ)r+1

if we set x = y. On the other hand, for

2x− 1 =
∞

∑
r=1

br

2r

the function evaluates to

Fρ(2x− 1) =
∞

∑
r=1

brρr−1

(1 + ρ)r

Therefore,

Fρ(y) =
ρ

ρ + 1
+

1
ρ + 1

Fρ(2y− 1)

To summarize,

Fρ(x) =

{
ρ

1+ρ Fρ(2x), 0 ≤ x ≤ 1
2

ρ
1+ρ + 1

1+ρ Fρ(2x− 1), 1
2 < x ≤ 1

This corresponds to the functional equation of De Rham’s function Ra(x) since one can identify
a = ρ/(1+ ρ) < 1 [32]. Since De Rham’s function is the unique solution of its functional equation,
we have established that both functions are in fact identical.

To compute the fractional velocity on the dyadic rationals Q2, we can formally g-differentiate
the system as

υ
β
±Fρ(x) =


ρ2β

1+ρ υ
β
±Fρ(2x), 0 ≤ x ≤ 1/2

2β

1+ρ υ
β
±Fρ(2x− 1), 1/2 < x ≤ 1
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Therefore, for the fractional velocity to be finite, either

ρ2β

1 + ρ
≤ 1

or
2β

1 + ρ
≤ 1

should hold. Suppose that ρ < 1; then, the maximal Hölder exponent is

β = log2(1 + ρ)

At this point, the direction of differentiation should be fixed in a way that is consistent with a
direct calculation. We calculate υ

β
−Fρ(1). Suppose that ϵ < 1/2

υ
β
ϵ−[F](1) =

1− Fρ(1− ϵ)

ϵβ
=

1
(1 + ρ)ϵβ

(1− Fρ(1− 2ϵ)) =
1

(1 + ρ)kϵβ
(1− Fρ(1− 2kϵ))

by induction for k > 1. Therefore, for ϵ = 1/2k,

υ
β
ϵ−[F](1) =

2kβ

(1 + ρ)k = 1

Therefore,

υ
β
−Fρ(x) =

{
ρ υ

β
−Fρ(2x), 0 ≤ x ≤ 1

2

υ
β
−Fρ(2x− 1), 1

2 < x ≤ 1

where also υβFρ(0) = 0.
Conversely, if ρ > 1, then the maximal Hölder exponent is

β = log2

(
1 + ρ

ρ

)

We calculate υ
β
+Fρ(0) as

Fρ(ϵ)

ϵβ
=

(
ρ

1 + ρ

)n
2nβ =

(
ρ

1 + ρ

)n(1 + ρ

ρ

)n
= 1

Therefore, υ
β
+Fρ(0) = 1 and

υ
β
+Fρ(x) =

{
υ

β
+Fρ(2x), 0 ≤ x ≤ 1

2
1
ρ υ

β
+Fρ(2x− 1), 1

2 < x ≤ 1

where now υ
β
+Fρ(1) = 0 holds.

A third interesting example is the Neidinger function, called also the fair-bold gambling
function [33]. The function is based on De Rham’s construction and is also constant almost
everywhere in [0, 1].

Example 6 (Neidinger singular function). Consider the iterated function system (IFS) for
a ∈ (0, 1), which swaps the value of the parameter at every step of the iteration:

Nn(x, a) :=

aNn−1(2x, a), a← 1− a, n even, 0 ≤ x < 1
2

(1− a) Nn−1(2x− 1, a) + a, a← 1− a, n even, 1
2 ≤ x ≤ 1
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starting from N0(x, a) = x. Define Neidinger’s function N(x, a) as the limit

N(x, a) := lim
n→∞

Nn(x, a)

The fractional velocity of the function has been exhibited in [19]. Here, we work on the dyadic
rationals Q2. Formal g-differentiation of the defining IFS without regard to the parameter swapping
rule results in

υ
β
+N(x, a) :=

{
a2βυ

β
+N(2 x, a), 0 ≤ x < 1

2

(1− a)2βυ
β
+N(2 x− 1, a), 1

2 ≤ x ≤ 1

The actual computation can be carried out in the following way. Starting from A0(x, a) = 1,
define recursively the auxiliary IFS

An(x, a) :=

{
(1− a)2β An−1(2 x, 1− a), 0 ≤ x < 1

2
a2β An−1(2 x− 1, 1− a), 1

2 ≤ x ≤ 1

Therefore, either a = 1/2β or 1− a = 1/2β must hold for the IFS to converge. The maximal
Hölder exponent is then

β = min (− log2 a,− log2(1− a)) = − log2 max(a, 1− a)

Consider the case where a = 1− 1/2β. Then,

An(x, a) =

{
An−1(2 x, 1− a), 0 ≤ x < 1

2
a/(1− a) An−1(2 x− 1, 1− a), 1

2 ≤ x ≤ 1

In a similar way, whenever a = 1/2β, we have

An(x, a) =

{
(1− a)/a An−1(2 x, 1− a), 0 ≤ x < 1

2
An−1(2 x− 1, 1− a), 1

2 ≤ x ≤ 1

Therefore, in the general case, we have

An(x, a) =

{ 1−a
max(a,1−a) An−1(2 x, 1− a), ≤ x < 1

2
a

max(a,1−a) An−1(2 x− 1, 1− a), 1
2 ≤ x ≤ 1

and
υ

β
+N(x, a) = lim

n→∞
An(x, a)

From the presented calculation, we see that the sets of change in the Neidinger function are the
dyadic rationals.

The plotting of the graph of the fractional velocity is challenging due to the fact that
it does not vanish only on a null set in any given interval. Therefore, one could only plot
the covering graph approximating the fractional velocity at a certain iteration order. This
can be performed by defining recursively an IFS that, in limit, converges point-wise to the
fractional velocity of the given singular function.

The construction of the Neidinger function can be generalized using the Bernoulli map.
The result is another singular function, which we can call tentatively the De Rham–Bernoulli
function. The construction can be carried out as follows.
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Example 7 (De Rham–Bernoulli singular function). Suppose that ξ ∈ (0, 1). Starting from
ξ[0] := ξ, define ξ[n] := 2ξ[n− 1]− z[n− 1], where z[k] := ⌊2ξ[k]⌋ evaluates to either 0 or 1.
Define the auxiliary function

b(ξ) := z(1− a) + (1− z)a

where z is computed as above.
Finally, starting from M0(x, a, ξ) = x, define the IFS:

Mn(x, a, ξ[n]) :=

b(ξ[n])Mn−1(2x, a, ξ[n− 1]), 0 ≤ x < 1
2

(1− b(ξ[n])) Mn−1(2x− 1, a, ξ[n− 1]) + b(ξ[n]), 1
2 ≤ x ≤ 1

Then,
Mξ(x, a) := lim

n→∞
Mn(x, a, ξ[n])

Observe that the limit exists since b(ξ) < 1.
Indeed, suppose that a < 1/2. Then,

b(ξ) = z(1− a) + (1− z)a < 1− a < 1

By symmetry, the same estimate holds also whenever a > 1/2. Therefore, the IFS will converge
point-wise to a limit.

The fractional velocity of the above function can be computed in a similar way as above, setting
a = 1/2β. The IFS in this case is

An(x, a, ξ[n]) :=

b(ξ[n])2β An−1(2x, a, ξ[n− 1]), 0 ≤ x < 1
2

(1− b(ξ[n]))2β An−1(2x− 1, a, ξ[n− 1]), 1
2 ≤ x ≤ 1

starting from A0(x, a, ξ[0]) = 1. Then, in order for the IFS to converge, the maximal Hölder
exponent is

β = − log2 b(ξ) = − log2 max(a, 1− a)

and the IFS transforms as

An(x, a, ξ[n]) :=


b(ξ[n])

max(a,1−a) An−1(2x, a, ξ[n− 1]), 0 ≤ x < 1
2

1−b(ξ[n])
max(a,1−a) An−1(2x− 1, a, ξ[n− 1]), 1

2 ≤ x ≤ 1

Note that the form of the IFS is identical to the one in the previous example. Finally,

υ
β
+M(x, a, ξ) = lim

n→∞
An(x, a, ξ[n])

A plot of the Neidinger–Bernoulli function and its fractional variation at iteration level
n = 8 is presented in Figure 1.
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A

B

Figure 1. Neidinger–Bernouli function and its fractional variation. (A)—Original Neidinger construc-
tion N(x, 1/

√
2) = M1/3(x, 1/

√
2); (B)—modified construction M2/3(x, 1/

√
2).
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6.3. Modular Derivatives on Banach Spaces

Theorem 3 formulated above can be established also in a different, more general way,
and can be strengthened further. It can be used for the characterization of the modular
derivatives in more general spaces. To this end, we use the topological definition of a limit.

Recall the definition of the directional derivatives:

Definition 24 (Gâteaux or directional derivative). Let X and Y be Banach spaces and let
f : X → Y be a function between them; f is said to be Gâteaux differentiable if there exists an
operator Tx : X → Y such that ∀v ∈ X,

lim
h→0

f (x + hv)− f (x)− hTx(v)
h

=
d

dh
f (x + hv)

∣∣∣
h=0
− Tx(v) = 0

The operator Tx ≡ D f (x) is called the Gâteaux derivative of f at x.

To this end, we replace ϵ by the scalar-valued modulus function g(ϵ). The definition
of a modular function at point 3 is modified as follows:

| f (x + ϵv)− f (x)| ≤ K gx(ϵ), ||v|| = 1

This allows for translating the definition of g-derivatives into directional derivatives in
more general spaces.

Definition 25 (modular Gâteaux derivative). Let X and Y be two Banach spaces and f : X → Y
be a function between them. Denote the auxiliary variation operator by

υϵ±
g [ f ](x) := ± f (x± ϵv)− f (x)

g(ϵ)

Then, f is Gâteaux differentiable with respect to the modulus g if there exists an operator
Tx : X → Y such that ∀v ∈ X,

lim
ϵ→0

f (x + ϵv)− f (x)− g(ϵ)Tx(v)
g(ϵ)

= lim
ϵ→0

(
υϵ±

g [ f ](x)− Tx(v)
)
= 0

We write
d

dg(ϵ)
f (x + ϵv)

∣∣∣
ϵ=0

= Tx(v)

The operator Tx(v) ≡ Dg f (x) is called the g-Gâteaux derivative of f at x in the direction v.

Theorem 4 (Topological continuity of g- Gâteaux derivatives). Suppose that S is dense in
χg( f ). Then, under the topology TQ, the images Dg f (x) are continuous on S.

Proof. Suppose that the set A is dense in χg( f ) and assume the co-finite topology TQ on
χg( f ) ∩ A as identified previously.

Observe that, for the limit operation, lim
x→a

f (x) ⊆ cl f [A] \ f [A]◦ = ∂ f [A] for x, a ∈ A.

Hence, if the limit exists, it is continuous by Theorem A2. Then, we specialize the argument
to the right (or left for the minus sign ) ϵ-neighborhood of 0 and write limϵ for the one-sided
limiting operation. Finally, observe that Dg f (x) = limϵ ◦ υϵ±

g [ f ](x) is a composition of two
topologically continuous maps and hence is continuous.

In this way, one could establish that Theorem 4 implies Theorem 3 if, for the underlying
Banach space, is taken R .
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Moreover, the Gâteaux derivative is a generalization of the directional derivative in a
Euclidean space; therefore, the result also holds for E n.

7. Discussion
The contributions of the present work can be discussed in several directions. In the

first place, Theorem 1 generalizes the result stated in [23], which, in the previous case, was
proven only for the real line.

In the second place, Theorem 3 resolves an apparent contradiction uncovered in
the early literature on local fractional calculus. To illustrate the issue and its resolution,
consider the Cantor function that grows on a subset χα ⊆ C, which is dense in the Cantor
set C. For any s ∈ χα, the fractional velocity of order α = log 2/ log 3 is constant on χα

and, moreover, υα
ϵ+[F](s) = υα

+F(s) =1. Therefore, we can meaningfully discuss the local
fractional differential equation

υα
+F(s)

∣∣∣
s∈χg

= 1

which, otherwise, under the usual topology of the real line, will have no solutions as proved
in [17,34]. Moreover, as expected for the derivative of a constant, it vanishes:

υα
+ ◦ υα

+F(s)
∣∣∣
s∈χg

= 0

In the third place, the present work exhibits a formal methodology for the computation
of fractional velocities on a perfect set S, which can be summarized as follows. Identify a
functional equation of the function of interest. Formally g-differentiate the equation and
introduce an appropriate IFS. Establish the convergence conditions on S. This fixes the
value of the maximal Hölder exponent for which the IFS converges.

As a side note, we have established that the De Rham and Takacs functions are in
fact identical and can be called the De Rham–Takacs singular function. To the best of the
author’s knowledge, this has not been recognized in the literature.

Further directions of study could be applications of the present approach to stochastic
problems, such as the Itô integral calculus, which has no explicit derivative, and comparing
it to the approach identified via derivatives with regard to Brownian motion [35], rough
paths [36], or Itô stochastic differentials [37].

Another area of study could be the development and validation of numerical algo-
rithms for g-derivatives approximation. This could be achieved, for example, starting
from Equation (12) and employing an appropriate convolution kernel in the spirit of [18].
Another approach could be the use of higher-order difference schemes and appropriately
modifying the modular function g.

8. Conclusions
In conclusion, the presented approach enables the study of both local and non-local

derivative operators within a unified topological framework. The g-derivative of a function
can approximate its growth at points where the first derivative is singular. Moreover, the
g-derivatives can induce a topology defined on their sets of change, under which, such
g-derivatives are continuous in the sense of Theorem 3. This allows for applications in
higher-order g-differential equations.
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Appendix A. Topologically Continuous Maps
For the convenience of the reader, we recall the Hausdorff theorem [38]:

Theorem A1 (Hausdorff). Let f : X 7→ Y be a map from the topological space X to the topological
space Y. Then, the following statements are equivalent:

(a) f is continuous;
(b) Dor every subset S ⊆ X, f [cl S] ⊆ cl f [S]; that is, the image of the closure is a subset of

the closure of the image.

The proof is reproduced for completeness of the presentation:

Proof. Suppose that f is continuous. Let S be a subset of X and f [S] ⊆ cl A = A. If x ∈ X
is such that f (x) ∈ Y \ A, then, since f is continuous and Y \ A is open in Y, the preimage
f−1[Y \ A] is an open subset of X containing x and disjoint from S. Therefore, x is not in
the closure of S.

Conversely, if f is not continuous, then there exists some open V ⊂ Y such that the
preimage U := f−1[V] is not open in X. Thus, there exists a point x ∈ U such that every
open set containing x fulfills S := X \U. Thus, x ∈ cl S but f (x) is in V and hence not in
Y \V, which is a closed set containing f (S).

Theorem A2. The closure, interior, and boundary operators are topologically continuous maps.

Proof. Consider A ⊆ X for the topological space X. For the cl operator, we have

cl A ⊆ cl cl A = cl A

which is true. For the boundary operator ∂, we have

int(∂A) = ∅ =⇒ ∂∂A = cl ∂A \ int(∂A) = ∂A

Therefore,
∂Ā = ∂(A ∪ ∂A) ⊆ ∂A ∪ ∂∂A = ∂A ∪ ∂A = ∂A

Hence,
ω∂[A] = ∂ cl A \ cl ∂A = ∂Ā \ ∂A = ∅

For int, we have

int Ā = int(A ∪ ∂A) = int A ∪ int ∂A = int A

Hence,
ωint[A] = A◦ \ (A◦ ∪ ∂A◦) = ∅

Therefore, we can claim the following.
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Corollary A1. For any closure operator cl on X, the set of continuous maps C acting on the
topological space X is non empty; that is, C(X, cl) ̸= ∅.
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