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Abstract: In this paper, we investigate the eigenvalue properties of a nonlocal Sturm–Liouville
equation involving fractional integrals and fractional derivatives under different boundary
conditions. Based on these properties, we obtained the geometric multiplicity of eigenval-
ues for the nonlocal Sturm–Liouville problem with a non-Dirichlet boundary condition.
Furthermore, we discussed the continuous dependence of the eigenvalues on the potential
function for a nonlocal Sturm–Liouville equation under a Dirichlet boundary condition.
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1. Introduction
This paper discuss the nonlocal Sturm–Liouville problem

−y′′ + q(x)y + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y = λy (1)

subject to
y(0) = 0 = y(1) + dy′(1), (2)

where Dα
0+ (Dα

1−) denotes the left-sided (right-sided) Riemann–Liouville fractional deriva-
tives of order α, and Iα

0+(Iα
1−) represents the left-sided (right-sided) Riemann–Liouville

fractional integrals of order α, whose definitions are given later. Here, 0 < α < 1,
q(x) ∈ L2(0, 1) is a real-valued potential function, µ and d are real constants, and λ is the
spectral parameter.

From the eigenvalue properties of a class of nonlocal Sturm–Liouville problems in [1],
it is known that for 0 < α < 1/2{

−y′′(x) + q(x)y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x) on (0, 1),
y(0) = 0 = y(1).

(3)

has real algebraic simple and discrete eigenvalues under certain conditions. These eigen-
values satisfy

−∞ < λ1(µ) < λ2(µ) < · · · < λn(µ) < · · · , λn(µ) ∼ π2n2, n → ∞, (4)

where λn(µ) is the n-th eigenvalue of (3). Additionally, the associated eigenfunctions form
a complete orthogonal basis. Furthermore, [1] discusses the number of zeros present in the
eigenfunctions, as well as the characteristics of solutions to the nonlocal Sturm–Liouville
equation under specific initial conditions.
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Nonlocal Sturm–Liouville problems, which incorporate both left-sided and right-sided
fractional derivatives, arise from the field of nonlocal continuum mechanics (please refer
to [2–5] for more details). In reference [4], the equilibrium equation governing an elastic bar
of finite length, L, which includes long-range interactions among non-adjacent particles,
can be expressed as

d2u(x)
dx

− η

E
Dαu(x) = − f (x)

E
.

Here, u(x) denotes the axial displacement of the bar at position x, while f (x) represents
the longitudinal force per unit volume and η is an opportune constant of proportionality. E
signifies the longitudinal modulus, and Dα = Dα

0+ + Dα
1−, where Dα

0+ and Dα
1− correspond

to the left and right Riemann–Liouville fractional derivatives of order α, respectively.
Generally, a nonlocal Sturm–Liouville problem is characterized as a Sturm–Liouville-

type problem that contains both integer and fractional derivatives, a topic that was the
subject of extensive investigation in [6–10]. The form explored in [6–10] can be summarized
as follows:

−y′′ + q(x)y + µTαy = λy,

where Tα is a self-adjoint fractional differential operator with both left-sided and right-sided
fractional derivatives, such as Tα = Dα

0+ + Dα
1−, or Tα = Dα

0+
cDα

1−.
Additionally, the fractional Sturm–Liouville problem, which is closely related to the

nonlocal Sturm–Liouville problem, is often obtained by replacing the integer derivative
operators in a classical Sturm–Liouville problem, −(p(x)y′)′ + q(x)y = λω(x)y, by the
fractional derivative operators, such as

Lαy + q(x)y = λω(x)y,

where Lα = cDα
b−(p(x)Dα

a+), or Lα = Dα
a+(p(x)cDα

b−). For more details, please refer
to [11–23] and reference therein. In [23] the authors employ a change of variables to
transform cDα

b−(p(x)Dα
a+) + q(x)y = λω(x)y into a modified version of a differential

equation with a principal term structured in the classical form −(p(x)z′)′ + D1−α
b− ((q(x)−

λω(x))D1−α
a+ z) = 0. Thereafter, the resulting equation is similar to the one considered in

this manuscript.
In this study, we present novel findings on the eigenvalue properties of (1)–(2). We

first consider the eigenvalue problem of (1)–(2) with d ̸= 0 in Section 3. We obtained results
showing that the eigenvalues of (1)–(2) with d ̸= 0 are real values, and the corresponding
eigenfunctions are orthogonal. Moreover the geometric multiplicity of the eigenvalues is
simple. Then we discuss the eigenvalue problem of (1)–(2) with d = 0 in Section 4. We
introduced an auxiliary two-parameter nonlocal Sturm–Liouville problem in Section 4.1.
With the aid of the eigenvalue properties of this two-parameter nonlocal Sturm–Liouville
problem, we obtained the continuous dependence of eigenvalues on the potential function
in Section 4.2.

2. Preliminaries
In this section, we give some preliminary knowledge from such topics as fractional

calculus and the spectral theory of nonlocal Sturm–Liouville problems, which will be used
later. More detailed information can be found in [1,24].

We denote by AC[0, 1] the set of all the absolutely continuous, complex-valued func-
tions on [0,1]. Let L2 = L2(0, 1) be the Hilbert space, with the usual inner product ⟨ f , g⟩
and the norm || f || = ⟨ f , f ⟩1/2.
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Definition 1. (c f . [24] p. 69) The Riemann–Liouville fractional integrals Iα
0+ f and Iα

1− f of order
α ∈ C (R(α) > 0) are defined by

(Iα
0+ f )(x) =

1
Γ(α)

∫ x

0

f (t)
(x − t)1−α

dt, x ∈ (0, 1]; (Iα
1− f )(x) =

1
Γ(α)

∫ 1

x

f (t)
(t − x)1−α

dt, x ∈ [0, 1),

where Γ(α) is the Gamma function. These integrals are called the left-sided and the right-sided
fractional integrals.

Definition 2. (c f . [24] p. 70) Let 0 < α < 1, D = d/dx. The left-sided and right-sided
Riemann–Liouville derivatives of order α are defined by (when they exist)

(Dα
0+ f )(x) = D(I1−α

0+ f )(x) =
d

dx

(∫ x
0

f (t)
(x−t)α dt

)
Γ(1 − α)

, x ∈ (0, 1];

(Dα
1− f )(x) = (−D)(I1−α

1− f )(x) =
− d

dx

(∫ 1
x

f (t)
(t−x)α dt

)
Γ(1 − α)

, x ∈ [0, 1).

Proposition 1. (c f . [1] Theorem 4.1) If |µ| < Γ(2−α)Γ(1+α)

e
∫ 1

0 |q(t)|dt(1+6e
∫ 1

0 |q(t)|dt)
, then the nonlocal initial

value problem{
−y′′(x) + (q(x)− λ)y(x) + µ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y(x) = 0, y ∈ D,

y(0) = k1, y′(0) = k2,
(5)

has, at most, one solution, where µ, k1, k2, and λ > 0 are real constants, and D = {y ∈ L2 :
y, y′ ∈ AC[0, 1]}.

Proposition 2. (c f . [1] Theorem 3.11) There exists µ0 > 0, such that for |µ| < µ0, all the
eigenvalues of −y′′ + q(x)y + µ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y = λy subject to y(0) = 0 = y(1) are

simple and satisfy

−∞ < λ1(µ) < λ2(µ) < · · · < λn(µ) < · · · , λn(µ) ∼ π2n2, n → ∞. (6)

Definition 3. (c f . [25] p.375) Let C(X, Y) denote the set of all closed operators from X to Y. A
family, T(κ) ∈ C(X, Y), defined for κ in a domain D0 of the complex plane, is said to be holomorphic
of type (A) if

(i) D(T(κ)) = D is independent of κ;
(ii) T(κ)u is holomorphic for κ ∈ D0 for every u ∈ D.

Proposition 3. (c f . [25] Theorem 2.6) Let T be a closable operator from X to Y, with D(T) = D.
Let T(n), n = 1, 2, · · · be operators from X to Y with domains containing D, and let there be
constants a, b, c ≥ 0 such that

∥T(n)u∥ ≤ cn−1(a∥u∥+ b∥Tu∥), u ∈ D, n = 1, 2, · · · (7)

Then the series
T(κ)u = Tu + κT(1)u + κ2T(2)u + · · · , u ∈ D

defines an operator, T(κ), with domain D for | κ |< 1/c. If | κ |< 1
b+c , T(κ) is closable and the

closures T̃(κ) for such κ form a holomorphic family of type (A).
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3. Eigenvalue Problem with Non-Dirichlet Boundary Condition and
0 < α < 1

In this section, we consider the eigenvalue problem{
−y′′(x) + q(x)y(x) + µ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y(x) = λy(x) on (0, 1),

y(0) = 0 = y(1) + dy′(1),
(8)

where d ̸= 0 is a real constant, and 0 < α < 1.
The fractional operator T̃, associated with (8), is defined by

T̃y = −y′′ + qy + µTαy, Tαy := (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, y ∈ D(T̃),

D(T̃) := {y ∈ L2 : y, y′ ∈ AC[0, 1], y(0) = 0 = y(1) + dy′(1)}. (9)

Proposition 4. For y1, y2 ∈ D(T̃), it holds that

∫ 1

0
y1(x) · T̃y2(x)dx =

∫ 1

0
y2(x) · T̃y1(x)dx. (10)

Proof. If y1, y2 ∈ D(T̃), by the definition of operator T̃, we have y1(0) = 0 = dy′1(1)+ y1(1)∫ 1

0
y1(x) · T̃y2(x)dx =

∫ 1

0
y1(x) · [−y′′2 (x) + q(x)y2(x) + µTαy2(x)]dx

= y1(0)y′2(0)− y1(1)y′2(1) +
∫ 1

0
y′1(x)y′2(x)dx +

∫ 1

0
q(x)y1(x)y2(x)dx + µ

∫ 1

0
y1(x)Tαy2(x)dx

= dy′1(1)y
′
2(1) +

∫ 1

0
y′1(x)y′2(x)dx +

∫ 1

0
q(x)y1(x)y2(x)dx + µ

∫ 1

0
y1(x)Tαy2(x)dx

and ∫ 1

0
y2(x) · T̃y1(x)dx =

∫ 1

0
y2(x) · [−y′′1 (x) + q(x)y1(x) + µTαy1(x)]dx

= dy′2(1)y
′
1(1) +

∫ 1

0
y′2(x)y′1(x)dx +

∫ 1

0
q(x)y2(x)y1(x)dx + µ

∫ 1

0
y2(x)Tαy1(x)dx.

It follows from y1, y2 ∈ D(L) that y1(0) = 0 = y2(0). By integrating by parts and
exchanging the order of integration, we get∫ 1

0
y1(x)Tαy2(x)dx = − 1

Γ(α)Γ(1 − α)

∫ 1

0
y1(x)

d
dx

(∫ 1

x
(t − x)−α

∫ t

0

y2(s)
(t − s)1−α

dsdt
)

dx

+
1

Γ(α)Γ(1 − α)

∫ 1

0
y1(x)

(∫ 1

x
(t − x)α−1 d

dt

∫ t

0

y2(s)
(t − s)α

dsdt
)

dx

=
1

Γ(α)Γ(1 − α)

∫ 1

0

(∫ t

0
(t − s)α−1y2(s)ds

)(∫ t

0
(t − x)−αy′1(x)dx

)
dt

+
1

Γ(α)Γ(1 − α)

∫ 1

0

(∫ t

0
(t − x)α−1y1(x)dx

)(∫ t

0
(t − s)−αy′2(s)ds

)
dt

=
∫ 1

0
y2(x)Tαy1(x)dx,

for y1, y2 ∈ D(T̃), which proves (10).

Theorem 1. The eigenvalues of the nonlocal Sturm–Liouville eigenvalue problem (8) are
real numbers.
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Proof. Let λ be an eigenvalue for (8) corresponding to eigenfunction y. Then for y and its
complex conjugate y, we obtain

T̃y = λy, y(0) = 0 = y(1) + dy′(1), (11)

and

T̃y = λy, y(0) = 0 = y(1) + dy′(1). (12)

Multiplying two sides of (11) by y and integrating on the interval [0, 1], we get

∫ 1

0
y(x)T̃y(x)dx = λ

∫ 1

0
y(x)y(x)dx. (13)

A similar method for (12) leads to the relation

∫ 1

0
y(x)T̃y(x)dx = λ

∫ 1

0
y(x)y(x)dx. (14)

Using Proposition 4, the following identity is worked out using (13) and (14),

(λ − λ)
∫ 1

0
y(x)y(x)dx = (λ − λ)

∫ 1

0
|y(x)|2dx = 0.

Since y is a nontrivial solution, ||y||2 > 0. Then λ = λ implies that the eigenvalue of (8) is a
real number.

Theorem 2. The eigenfunctions of the nonlocal Sturm–Liouville eigenvalue problem (8) corre-
sponding to the distinct eigenvalues are orthogonal on the interval [0, 1].

Proof. Let λ1 and λ2 be two distinct eigenvalues and y1 and y2 be the corresponding
eigenfunctions. Then we obtain

T̃y1 = λ1y1, (15)

and

T̃y2 = λ2y2. (16)

Multiplying both sides of (15) by y2 and (16) by y1 implies the identity

y2(x)T̃y1(x)− y1(x)T̃y2(x) = (λ1 − λ2)y1(x)y2(x). (17)

Integrating (17) on the interval [0, 1], we obtain the relationship

∫ 1

0
(y2(x)T̃y1(x)− y1(x)T̃y2(x))dx = (λ1 − λ2)

∫ 1

0
y1(x)y2(x)dx.

According to Proposition 4, the Formula (10) leads to the equation

(λ1 − λ2)
∫ 1

0
y1(x)y2(x)dx = 0,

which implies that
∫ 1

0 y1(x)y2(x)dx = 0 as λ1 ̸= λ2. This is exactly what we want
to prove.
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The following theorem obtained the geometric multiplicity of the eigenvalues for the
nonlocal Sturm–Liouville problem (8).

Theorem 3. The eigenvalues of the nonlocal Sturm–Liouville eigenvalue problem (8) are simple for
|µ| < 1

7 Γ(2 − α)(1 + α) and λ > 0.

Proof. Let ψ1(x) and ψ2(x) be the two eigenfunctions of the eigenvalue problem (8), with
the corresponding eigenvalue being λ0.

Denote
ψ(x) = ψ1(x)− cψ2(x),

where c is an arbitrary constant.
It follows from (8) that ψ(0) = 0. One can check that ψ′(x) = ψ′

1(x)− cψ′
2(x).

Now we need to show that ψ′
2(0) ̸= 0. If not, then ψ2(x) is a solution of the initial

value problem (5), with k1 = k2 = 0. Hence, through Proposition 1, we conclude that
ψ2 ≡ 0, which is a contradiction.

Choose c =
ψ′

1(0)
ψ′

2(0)
. It follows that ψ′(0) = 0. That is, ψ satisfies the fractional initial

value problem (5) with k1 = k2 = 0.
According to Proposition 1, if |µ| < Γ(2−α)Γ(1+α)

e
∫ 1

0 |q(t)|dt(1+6e
∫ 1

0 |q(t)|dt)
< 1

7 Γ(2 − α)(1 + α), one sees

that ψ(x) ≡ 0 on (0, 1), which implies that ψ1(x) and ψ2(x) are linearly dependent on (0, 1),
which completes the proof.

4. Eigenvalue Problem with Dirichlet Boundary Condition and
0 < α < 1/2

Due to the limited results of the initial value theory for nonlocal Sturm–Liouville
problems (1), it is not possible to study the continuous dependence of eigenvalues on
potential functions using the initial value theory, as in references [26–28]. We will use the
two-parameter method to conduct research below.

4.1. Eigenvalue Properties of a Two-Parameter Nonlocal Sturm–Liouville Problem

In this section, we discuss the properties of the eigenvalues of the following two-
parameter nonlocal Sturm–Liouville problem{

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x),
y(0) = 0 = y(1),

(18)

where 0 < α < 1/2, q1, q ∈ L2(0, 1), γ ∈ [0, 1], λ is the spectral parameter, µ ∈ (−µ0, µ0)

is fixed, and µ0 is defined as in Proposition 2. These properties are important to get the
continuous dependence of the eigenvalues on the potential function.

Define the fractional operator, T, by

Ty = −y′′ + qy + µTαy, Tαy := (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, y ∈ D, (19)

where

D := {y ∈ L2(0, 1) : y, y′ ∈ AC[0, 1],−y′′ + qy ∈ L2(0, 1), y(0) = 0 = y(1)}. (20)

For fixed µ ∈ (−µ0, µ0), assume that λn(0) and n ≥ 1 are the eigenvalues of the
nonlocal Sturm–Liouville problem, Ty = −y′′ + q(x)y + µTαy = λy, y(0) = 0 = y(1), y ∈
D, which satisfies (6):

−∞ < λ1(0) < λ2(0) < · · · < λn(0) < · · · , λn(0) ∼ π2n2, n → ∞.
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Denote by T(γ) the operator given in (18) as

T(γ)y := Ty + γT1y = Ty + γ(q1(x)− q(x))y, y ∈ D, γ > 0.

Let λn(γ) and n ≥ 1 be the eigenvalues of the two-parameter nonlocal Sturm–
Liouville problem

T(γ)y = Ty + γT1y = λy, y(0) = 0 = y(1). (21)

Theorem 4. Let µ ∈ (−µ0, µ0) be fixed. There exists γ0 > 0, such that for 0 < γ < γ0, all the
eigenvalues of (21) are simple and satisfy

−∞ < λ1(γ) < λ2(γ) < · · · < λn(γ) < · · · , λn(γ) ∼ π2n2, n → ∞. (22)

Proof. By virtue of Definition 3, Proposition 3, and discussions similar to Theorem 3.8
in [1], we can prove that {T(γ), γ ∈ R} is a self-adjoint holomorphic family of type (A).
Then for fixed µ ∈ (−µ0, µ0), there exists exactly one simple eigenvalue λn(γ) of T(γ) near
each unperturbed eigenvalue λn(0) for suitably small γ, since λn(0) is simple. Moreover,

||T1y|| ≤ ∥q1 − q∥∥y∥.

Therefore, the perturbation expansion near each λn(0) has a positive convergence
radius, ρn.

According to (4.74) in ([25], p. 406), the following inequality holds

ρn ≥
(

2(a + b|λn|)
dn

+ 2b
)−1

. (23)

Then we obtain
ρn ≥ dn

2∥q1 − q∥ . (24)

Here a = ∥q1 − q∥, b = 0, and dn is the isolation distance of the eigenvalue λn(0), defined as

dn = min{|λn(0)− λn−1(0)|, |λn+1(0)− λn(0)|}. (25)

Then, if γ < ρn, there exists exactly one eigenvalue λn(γ) of T(γ), such that

|λn(γ)− λn(0)| < dn/2.

Now we will prove that there exists γ0 > 0, such that ρn ≥ γ0 for all n ≥ 1. According
to Proposition 2, we have λn(0) ∼ n2π2 as n → ∞. Hence,

dn ∼ (2n − 1)π2, n → ∞, (26)

ρn ≥ cn :=
dn

2∥q1 − q∥ ∼
(n − 1

2 )

∥q1 − q∥π2.

Let γ < δ1, where δ1 = π2

4∥q1−q∥ . Then there exists N, such that for n > N,

ρn ≥ cn > δ1 > γ.

Therefore, there exists exactly one simple eigenvalue λn(γ) of T(γ), such that

|λn(γ)− λn(0)| < dn/2, n > N.
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For 1 ≤ n ≤ N, we choose

dn = min{|λj(0)− λk(0)| : 1 ≤ j ̸= k ≤ N} := d. (27)

By (24), we have

ρn ≥ d
2∥q1 − q∥ := δ2, 1 ≤ n ≤ N.

Set γ0 = min{δ1, δ2}. Then
ρn ≥ γ0 for all n ≥ 1.

Denote by On the disc|λ − λn(0)| < dn/2, n ≥ 1. If γ < γ0, then each On contains
exactly one simple eigenvalue of T(γ) for n ≥ 1.

Let A = ∪∞
n=1On. We need to prove that A contains all the eigenvalues of T(γ).

Set Ã = C \ A. We will prove that for γ < γ0, Ã ⊂ P(T(γ)), where P(T(γ)) is the
resolvent of T(γ).

Suppose λ ∈ Ã. If λ /∈ R, it follows from Theorem 3.8 in [1] that

λ ∈ P(T(γ)).

If λ ∈ R, then for some n ≥ 1, the following inequality holds

λ < λ1(0)− d1/2, or λn(0) + dn/2 < λ < λn+1(0)− dn+1/2,

where dn is defined as in (25) for n > N, and as in (27) for 1 ≤ n ≤ N.
We now prove λ ∈ P(T(γ)).
Suppose, to the contrary, that λ is an eigenvalue of T(γ). By Theorem 4.21 ([25], p. 408),

there exist 0 < δ < γ0 and k ∈ N, such that if γ < δ, the inequality |λ − λk(0)| < dk/2
holds, which implies that there exists k ∈ N such that λ ∈ Ok.

Each Ok contains exactly one simple eigenvalue of T(γ) for k ≥ 1. Therefore, we obtain
a contradiction. Hence, λ ∈ P(T(γ)).

For γ < γ0, we obtain

−∞ < λn(γ) < λn+1(γ), n ≥ 1.

By (25) and (27), we have
λn(γ) ∼ n2π2.

4.2. The Continuous Dependence of the Eigenvalues on the Potential Function

In this section, by the aid of the two-parameter method, we investigate the continuous
dependence of the eigenvalues of{

−y′′(x) + q(x)y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x) on (0, 1),
y(0) = 0 = y(1).

(28)

where 0 < α < 1/2, q ∈ L2(0, 1), λ is the spectral parameter, µ ∈ (−µ0, µ0) is fixed, and µ0

is defined as in Proposition 2.
When γ = 0, equation

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x)
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degenerates into equation

−y′′(x) + q(x)y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x),

and when γ = 1, equation

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x)

can be transformed into

−y′′(x) + q1(x)y(x) + µ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x).

Therefore, the continuous dependence of the eigenvalue of −y′′(x)+ q(x)y(x)+µ(Dα
1− Iα

0++

Iα
1−Dα

0+)y(x) on the potential function q(x) can be transformed into the continuous de-
pendence of the eigenvalue of −y′′(x) + q(x)y(x) + γ(q1(x) − q(x))y(x) + µ(Dα

1− Iα
0+ +

Iα
1−Dα

0+)y(x) = λy(x) on the parameter γ.

Theorem 5. Let µ ∈ (−µ0, µ0), n ≥ 1, and q0 ∈ L2(0, 1) be fixed. For any ε > 0, there exists
δn > 0, such that if ||q1 − q0|| ≤ δn for any q1 ∈ L2(0, 1), then |λn,q1 − λn,q0 | < ε, where λn,qi

(i = 0, 1) are the n-th eigenvalue of −y′′ + qiy + µTαy = λy subject to y(0) = 0 = y(1).

Proof. For two-parameter nonlocal Sturm–Liouville problem

−y′′(x) + q0(x)y(x) + γ(q1(x)− q0(x))y(x) + µTαy(x) = λy(x), y(0) = 0 = y(1), (29)

λn(γ)(n ≥ 1) are corresponding eigenvalues.
It suffices to show that for any ε > 0, there exists δn > 0, such that for any q1 ∈ L2(0, 1),

if γ < δn, then |λn(γ)− λn(0)| < ε.
For the sake of simplicity in writing, we dropped the variable x and the subscript

n. By Theorem 4, each eigenvalue λ(γ) is simple on (0, γ0). Choose 0 < |∆| ≪ 1, such
that 0 < γ + ∆ < γ0. Assume λ(γ) and λ(γ + ∆) are different eigenvalues of (29). Let
eigenfunctions φ(γ) and φ(γ + ∆) denote the corresponding normalized eigenfunctions of
λ(γ) and λ(γ + ∆), respectively. Then we obtain{

−φ′′(γ) + q0(x)φ(γ) + γ(q1(x)− q0(x))φ(γ) + µTα φ(γ) = λ(γ)φ(γ),
φ(0, γ) = 0 = φ(1, γ)

(30)

and

−φ′′(γ + ∆) + q0(x)φ(γ + ∆) + (γ + ∆)(q1(x)− q0(x))φ(γ + ∆) + µTα φ(γ + ∆)
= λ(γ + ∆)φ(γ + ∆), φ(0, γ + ∆) = 0 = φ(1, γ + ∆).

(31)

(31)×φ(γ)−(30)×φ(γ + ∆), and integrating on [0, 1], we have

(λ(γ + ∆)− λ(γ))
∫ 1

0
φ(γ)φ(γ + ∆) (32)

= ∆
∫ 1

0
(q1(x)− q0(x))φ(γ)φ(γ + ∆) + µ

∫ 1

0
(φ(γ)(Tα φ(γ + ∆))− φ(γ + ∆)(Tα φ(γ))).

Moreover, we obtain∫ 1

0
φ(γ)(Tα φ(γ + ∆)) =

∫ 1

0
φ(γ + ∆)(Tα φ(γ)).
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Therefore,

λ′(γ) = lim
∆→0

λ(γ + ∆)− λ(γ)

∆
=

∫ 1

0
q̃φ2(γ), (33)

where q̃(x) := q1(x)− q0(x).
Define

Q̃(x) =
∫ x

0
q̃(t)dt, x ∈ [0, 1], Q̃0 = max

x∈[0,1]
{|Q̃(x)|},

Q(x) =
∫ x

0
q0(t)dt, x ∈ [0, 1], Q0 = max

x∈[0,1]
{|Q(x)|}.

Since ||φ(γ)|| = 1, φ(1, γ) = φ(0, γ) = 0, then we obtain

|
∫ 1

0
q̃φ(γ)|2 ≤ ||φ′(γ)||2

4γ
+ 4Q̃2

0γ, |
∫ 1

0
q0 φ(γ)|2 ≤ ||φ′(γ)||2

4
+ 4Q2

0, (34)

and

|
∫ 1

0
q̃φ(γ)|2 ≤ ||φ′(γ)||2

4
+ 4Q̃2

0, (35)

Because Tαy = (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, by Definitions 1 and 2, we get the relationship

Tαy = Mα


∫ 1

0
y(s)

(1−s)1−α ds

(1 − x)α
−

∫ 1

x

∫ t
0

d
ds y(s)

(t−s)1−α ds

(t − x)α
dt +

∫ 1

x

∫ t
0

d
ds y(s)
(t−s)α ds

(t − x)1−α
dt

,

where Mα = 1
Γ(α)Γ(1−α)

. Therefore,

∥ Tαy ∥ ≤ Mα

∥
∫ 1

x

∫ t
0

d
ds y(s)

(t−s)1−α ds

(t − x)α
dt ∥ + ∥

∫ 1

x

∫ t
0

d
ds y(s)
(t−s)α ds

(t − x)1−α
dt ∥ + ∥

∫ 1
0

y(s)
(1−s)1−α ds

(1 − x)α
∥



= Mα

∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)1−α ds

(t − x)α
dt

∣∣∣∣∣∣
2

dx


1/2

+ Mα

∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)α ds

(t − x)1−α
dt

∣∣∣∣∣∣
2

dx


1/2

+Mα

∫ 1

0

∣∣∣∣∣∣
∫ 1

0
y(s)

(1−s)1−α ds

(1 − x)α

∣∣∣∣∣∣
2

dx


1/2

.

Denoted by

C1 =

∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)1−α ds

(t − x)α
dt

∣∣∣∣∣∣
2

dx


1/2

, C2 =

∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)α ds

(t − x)1−α
dt

∣∣∣∣∣∣
2

dx


1/2

,

C3 =

∫ 1

0

∣∣∣∣∣∣
∫ 1

0
y(s)

(1−s)1−α ds

(1 − x)α

∣∣∣∣∣∣
2

dx


1/2

.

It follows that
∥ Tαy ∥≤ Mα(C1 + C2 + C3).
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Utilizing the Cauchy–Schwarz inequality in conjunction with the integration by parts
formula many times yields the following results

C2
1 ≤

∫ 1

0

(∫ 1

x
(t − x)−αdt

)∫ 1

x

∣∣∣∫ t
0

y′(s)ds
(t−s)1−α

∣∣∣2
(t − x)α

dt

dx,

≤ 1
1 − α

∫ 1

0

(∫ t

0
(t − x)−αdx

)∣∣∣∣∫ t

0

y′(s)
(t − s)1−α

ds
∣∣∣∣2dt

≤ 1
α(1 − α)2

∫ 1

0

∫ t

0

|y′(s)|2
(t − s)1−α

dsdt ≤ 1
α2(1 − α)2 ∥ y′ ∥2

C2
2 ≤

∫ 1

0

(∫ 1

x
(t − x)α−1dt

)∫ 1

x

∣∣∣∫ t
0

y′(s)ds
(t−s)α

∣∣∣2
(t − x)1−α

dt

dx


1/2

≤ 1
α2(1 − α)

∫ 1

0

∫ t

0

|y′(s)|2
(t − s)α

dsdt ≤ 1
α2(1 − α)2 ∥ y′ ∥2

C3 =

(∫ 1

0
(1 − x)−2αdx

)1/2∣∣∣∣∫ 1

0

y(s)
(1 − s)1−α

ds
∣∣∣∣

=
1√

1 − 2α

∣∣∣∣∫ 1

0

y(s)
(1 − s)1−α

ds
∣∣∣∣

≤ ∥ y′ ∥
α
√

1 − 2α
.

Hence,
∥ Tαy ∥≤ Mα(C1 + C2 + C3) ≤ Cα ∥ y′ ∥,

where Cα = 1−α+2
√

1−4α2

Γ(1+α)Γ(2−α)
√

1−4α2 .

By calculation, we find that

| ⟨Tα φ(γ), φ(γ)⟩ |≤ Cα ∥ φ′(γ) ∥∥ φ(γ) ∥≤ 1
4|µ| ∥ φ′(γ) ∥2 +|µ|C2

α ∥ φ(γ) ∥2 . (36)

By (30), we have

||φ′(γ)||2 +
∫ 1

0
q|φ(γ)|2 + γ

∫ 1

0
q̃|φ(γ)|2 + µ⟨Tα φ(γ), φ(γ)⟩ = λ(γ). (37)

By means of (34), (36), and (37), we obtain

||φ′(γ)||2 ≤ 4(λ(γ) + 4Q2
0 + 4Q̃2

0γ2 + |µ|2C2
α). (38)

A combination of (33), (35), and (38) gives that

|λ′(γ)| = |
∫ 1

0
q̃φ(γ)|2 ≤ ||φ′(γ)||2

4
+ 4Q̃2

0 ≤ λ(γ) + c, (39)

where c = 4Q2
0 + 4Q̃2

0γ2 + |µ|2C2
α + 4Q̃2

0. Solving the differential inequality (39), we have

λ(γ) + c ≤ eγ(λ(0) + c).
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Therefore,
|λ′(γ)| ≤ eγ(λ(0) + c).

Hence, for any ε > 0, and for any q1 ∈ L2(0, 1), if |γ| < δn = min{γ0, ε
eγ(λ(0)+c)}, we have

|λ(γ)− λ(0)| = |
∫ γ

0
λ′(t)dt| ≤ |γ|eγ(λ(0) + c) < ε,

which completes the proof.

5. Conclusions
In this paper, we considered a nonlocal Sturm–Liouville problem (1)–(2) with fractional

integrals and fractional derivatives. We obtained that the eigenvalues of (1)–(2) with d ̸= 0
are real values, and the corresponding eigenfunctions are orthogonal; see Theorems 1 and 2.
In Theorem 3, based on these properties, we obtained results that show the geometric
multiplicity of the eigenvalues is simple. Thereafter, we discussed the eigenvalue problem
of (1)–(2) with d = 0. We led into an auxiliary two-parameter nonlocal Sturm–Liouville
problem (18). In Theorem 4, we derived that the corresponding eigenvalue problem consists
of a countable number of real eigenvalues, and the algebraic multiplicity of each eigenvalue
is simple. With the aid of the eigenvalue properties of this nonlocal problem, we came to
the conclusion that the eigenvalues are continuous with respect to the potential function;
see Theorem 5.
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