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Abstract: This study investigates the multifractal properties of daily returns of the Standard
and Poor’s 500 Index (SPX), the Dow Jones Industrial Average (DJI), and the Nasdaq
Composite Index (IXIC), the three main indices representing the U.S. stock market, from
1 January 2005 to 1 November 2024. The multifractal detrended fluctuation analysis
(MF-DFA) method is applied in this study. The origins of the multifractal properties of
these returns are both long-range correlation and fat-tail distribution properties. Our
findings show that the SPX exhibits the highest multifractal degree, and the DJI exhibits
the lowest for the whole sample. This study also examines the multifractal behaviors
of cross-correlations among the three major indices through the multifractal detrended
cross-correlation analysis (MF-DCCA) method. It is concluded that the indices are cross-
correlated and the cross-correlations also exhibit multifractal properties. Meanwhile, these
returns exhibit different multifractal properties in different stages of the market, which
shows some asymmetrical dynamics of the multifractal properties. These empirical results
may have some important managerial and academic implications for investors, policy
makers, and other market participants.
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1. Introduction
Mandelbrot (1999) [1] introduced the concept of multifractality, which was viewed as

great challenges to the efficient market hypothesis (EMH). According to Peters (1994) [2],
financial market behaviors can be more accurately predicted by the fractional Brownian
motion. It can well explain the market irregularities, including nonlinearity, self-similarity,
asymmetry, long-dependence, fat tails, etc.

As the main source of capital for U.S. companies, the U.S. stock market can regulate
the flow of capital and the direction of investments, causing a direct or indirect impact on
the adjustment and optimization of the U.S. economic structure. The U.S. stock market
is one of the most developed stock markets in the world. It is a mature market with
large-scale and standardized operations. The three most significant indices among the
major stock price indices in the market are the Standard and Poor’s 500 Index (SPX), the
Dow Jones Industrial Average (DJI), and the Nasdaq Composite Index (IXIC), which are
representative of the changing trends in the U.S. stock market and can be considered as
effective indicators of the U.S. economy to a certain extent. Different from previous studies,
this study systematically examines the SPX, the DJI, and the IXIC returns from multifractal,
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cross-correlation, and dynamic perspectives. This study mainly investigates the multifractal
properties and cross-correlations in the U.S. stock market from 2005 to 2024. First, this study
applies the multifractal detrended fluctuation analysis (MF-DFA) method to quantitatively
analyze the multifractal properties of the SPX, the DJI, and the IXIC returns. We empirically
study the market risk and efficiency level based on the main multifractal parameters. The
findings of this study confirm that the returns in the U.S. stock market exhibit multifractal
properties. Second, this study attempts to empirically investigate the multifractal properties
of the cross-correlations among the SPX, the DJI, and the IXIC returns by the multifractal
detrended cross-correlation analysis (MF-DCCA) method, which shows that the three
indices in the U.S. stock market are cross-correlated and the cross-correlations also exhibit
significant multifractal properties. The properties of the cross-correlations among these
returns may help study the U.S. stock market from a systematic perspective. Third, we
compare the differences between the multifractal properties during different periods by
dividing the sample into two different stages. This may be helpful in understanding the
dynamics of the multifractal properties. Specifically, we select two stages representative
of price changes in the U.S. market: one represents a long-term trend of steady growth in
stock prices, and the other represents the opposite trend of stock prices. Empirical results
on the multifractal properties of the U.S. stock market indicate that the U.S. stock market
is a complex, nonlinear, and dynamic system. Accordingly, this requires investors and
regulators to make decisions in a more systematic and comprehensive way. This study
provides certain theoretical and practical values for producing evidence relating to financial
risk contagions in the U.S. stock market.

The rest of the paper is organized as follows. Section 2 provides a brief literature
review. Section 3 introduces the research methodology. Section 4 describes the data and
presents preliminary statistics. Section 5 shows empirical results. Section 6 concludes
this paper.

2. Literature Review
Recent studies on the volatility and efficiency in the U.S. stock market show that the

stock market is a complex system with nonlinear structural properties and encounters
extreme event shocks. Seth and Sharma (2015) [3] examined the efficiency and integration
of Asian and U.S. stock markets and tested the effects of financial crisis, finding that the U.S.
stock markets is inefficient in weak form. Ito et al. (2016) [4] studied the efficiency of the U.S.
stock market by a time-varying autoregressive model and found that the U.S. stock market
efficiency has evolved over time with a considerably long periodicity. Benkraiem et al.
(2018) [5] examined the effects of the energy price fluctuations on the S&P 500 prices by the
quantile autoregressive distributed lags (QARDL) model and showed an asymmetric and
nonlinear impact transmitting from the energy price shocks to the U.S. stock market prices.
Kyle et al. (2020) [6] studied the invariance relationships in tick-by-tick transaction data in
the U.S. stock market and concluded that changes in monthly regression coefficients are
outcomes of rising significance of minimum lot size where algorithmic traders split orders
into tiny pieces. Oleg et al. (2022) [7] investigated the networks of causal relationships in the
U.S. stock market and suggested that the considered network properties may remarkably
change when some significant global-scale events happen. Moreover, Beckmann et al.
(2024) [8] suggested that stock market reactions of the U.S. banks to speeches by the U.S.
Federal Reserve (FED) executives indicating that they intend to introduce a CBDC (Central
Bank Digital Currency) are more negative when these banks depend more on deposits.

Ammy-Driss and Garcin (2023) [9] put forward a dynamic estimation method for
efficiency indicators and focused on the impacts of the COVID-19 pandemic on financial
markets and the efficiency of these markets. They found that the U.S. financial markets are
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less efficient during the COVID-19 pandemic. Conversely, Asian and Australian markets
are less affected. Belhoula et al. (2024) [10] focused on the efficiency in European natural gas
markets during the COVID-19 and Russia–Ukraine crises. They found higher multifractal
properties under different trends during the COVID-19 pandemic and the Russia–Ukraine
conflict. The market inefficiencies during these crises can be attributed to speculative
strategies. Sharif et al. (2024) [11] investigated the influence of COVID-19 on the returns
of energy indices in the U.S. with daily time series data of WTI and Brent markets. They
suggested that the COVID-19 pandemic had significant effects on the volatility of the
U.S. energy commodity indices. Choi et al. (2024) [12] studied the impact of the COVID-
19 pandemic on the Korean and U.S. labor markets. They found that the COVID-19
pandemic had the most considerable effects on the Korean not-at-work rate and the U.S.
unemployment rate.

Benjamin et al. (2022) [13] focused on the impacts of high-frequency trading on
securities markets and suggested that the effects on liquidity and, to a lesser extent, on price
volatility are substantial when high-frequency trading is interrupted. Inés et al. (2023) [14]
examined high-order moment transmission between emerging and developed and digital
asset markets through a flexible semi-nonparametric approach. They found a positive
transmission of volatility from emerging and developed markets to digital asset markets.
Kocaarslan (2024) [15] investigated the dynamic network connectedness among the U.S. oil
market, monetary policy, and exchange rate dynamics. It is found that the strongest source
of risk transmission is oil market uncertainty and that the cross-market spillovers are more
prominent than within-market spillovers.

The MF-DFA method is frequently applied to investigate the multifractal properties of
various markets. Shaw et al. (2017) [16] found the multifractal properties of fluctuations
caused by the existence of significant long-term correlation through the study of the floating
potential fluctuations by the MF-DFA method. Al-Yahyaee et al. (2018) [17] compared the
efficiency of the Bitcoin market with gold, stock, and foreign exchange markets based on
the MF-DFA method. They found that the long-memory and multifractal properties of
the Bitcoin market are stronger, and the Bitcoin market exhibits higher inefficiency than
the other three markets. Stosic et al. (2019) [18] studied the daily price returns for seven
Brazilian market (Bovespa) sectors by the MF-DFA method and suggested that multifractal
behaviors for different market sectors are rather distinct and that individual sectors exhibit
different dynamics from the entire market. It was implicated that the selected stock markets,
including eight developed and two emerging countries, display multifractal and long-term
persistent properties with relatively higher efficiency in the long run than in the short
run via long spans of data (Tiwari et al. (2019) [19]). Wang et al. (2019) [20] studied the
Chinese crude oil market officially listed in the Shanghai International Energy Exchange
Center (INE) by the MF-DFA method and multifractal spectrum analysis. They found
that the returns of the INE crude oil exhibit significant multifractal properties, and the
risk of the INE crude oil futures market is less than that of the mature crude oil futures
markets. The asymmetric multifractality and efficiency in four DeFi assets (BAT-Basic
Attention Token, LINK-Chainlink, MKR-Maker, and SNX-Synthetix) were also examined
by the asymmetric MF-DFA approach and Hurst exponents. The results suggested that
the multifractal properties are different during downward and upward trends (Mensi et al.
(2023) [21]). de Salis and dos Santos Maciel (2023) [22] measured the efficiency degrees of the
price returns in the cryptocurrency market through the MF-DFA method. They suggested
that cryptocurrency price returns exhibit multifractality and left-sided asymmetry and that
their inefficiency levels change over time, leading substantially to the multifractal spectrum.
These studies employed the MF-DFA method to explore the structural properties of various
markets. They suggested that the markets exhibit multifractal properties. Although the



Fractal Fract. 2025, 9, 73 4 of 19

MF-DFA method is widely applied to study the multifractal properties through the Hurst
exponent and multifractal spectrum, this method is mainly used to analyze the multifractal
properties of a single market.

On the other hand, the MF-DCCA method can be applied to examine the properties
of the cross-correlations of multiple correlated series. This may help understand the com-
plexity of a system. Li et al. (2018) [23] examined the dynamic cross-correlations between
the RMB exchange index and the liquidity of the Shanghai and Shenzhen stock markets
through the MF-DCCA method. They found that the dynamic cross-correlations challenge
the EMH and that the cross-correlations are of multifractal properties. They also showed
that the cross-correlations exhibit positive persistence, which is strengthened under the
condition of a tightening monetary policy. To study the inefficiency of the cryptocurrency
market, Zhang et al. (2018) [24] constructed a value-weighted Cryptocurrency Composite
Index (CCI) and employed the MF-DCCA method to investigate the cross-correlations
between the CCI and the DJI, indicating that the cross-correlations between the two indices
exhibit persistence and multifractal properties. Ruan et al. (2018) [25] studied the cross-
correlations between the Hang Seng China Enterprises Index (HSCE) and RMB exchange
markets by a cross-correlation statistic test and the MF-DCCA method, finding that the
returns of the HSCE and RMB exchange markets exhibit significant cross-correlations and
that the cross-correlations are of strong multifractal properties. By the MF-DCCA method,
Fang et al. (2018) [26] investigated the dynamic cross-correlations between carbon emission
allowance and stock returns for European and Chinese markets, respectively. The find-
ings indicated that the cross-correlations between carbon emission allowance and stock
returns exhibit significant multifractal properties in European and Chinese markets and
that the cross-correlations are caused by both the persistence of fluctuations and fat-tail
distributions of the considered series. Ghosh et al. (2019) [27] studied the evolving be-
haviors of the thoughts over a decade in both versions of the texts using chaos, finding a
nonlinear pattern of correlation with a high degree of complexity. Ahmed et al. (2024) [28]
used the MF-DCCA method to study the nonlinear structure and dynamic changes in
the multifractal behaviors of cross-correlations between the financial stress index (FSI)
and four well-known commodity indices, namely the Commodity Research Bureau Index
(CRBI), Baltic Dry Index (BDI), London Metal Index (LME), and Brent Oil prices (BROIL).
The results showed that the multifractal cross-correlation between FSI and BROIL is the
highest and that between FSI and LME is the lowest. These studies mainly investigate
the cross-correlations among different time series in various markets and find multifractal
behaviors in the cross-correlations.

Generally, most previous literature applied the MF-DFA method to study multifractal
properties of various markets and the MF-DCCA method to study cross-correlations among
various series. Although some previous studies studied the U.S. stock market in terms of
price behaviors and efficiency, they rarely studied the dynamic multifractal properties in
the U.S. stock market, especially the properties under different market trends.

3. Methodology
3.1. MF-DFA

Introduced by Kantelhardt et al. (2002) [29], the MF-DFA method is a powerful tool
for investigating the multifractal properties of series. It has been applied in different
fields, including energy markets [30,31], stock markets [32,33], exchange markets [34], and
international capital flows [35]. Let {xt}, t = 1, 2, . . ., N be a considered time series, where N
is the length of the series. Steps to conduct the MF-DFA method are illustrated as follows.
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Step 1. Define the profile of this series as X(i) and calculate the profile as

X(i) =
i

∑
t=1

[xt − x] (1)

where

x =
1
N

N

∑
t=1

xt (2)

Step 2. Divide the profile {X(i)} into Ns non-overlapping segments of equal length s,
where Ns = int(N/s). If the length N of the profile is not a multiple of the considered time
scale s, a short part at the end of the series will remain. To retain this part of the series, the
same procedure is repeated starting from the opposite end. Thereby, we can obtain 2Ns

segments altogether through twice division for each s value. According to the MF-DFA
method, we set 10 < s < N/4.

Step 3. We use the OLS (optimal least square) method to fit the series and obtain the
local trend for each segment. Here, ŷv(i) is the fitting polynomial with order m in segment
v, and it can be calculated by

yv(i) = α0 + α1i + · · ·+ αkik (3)

where i = 1, 2, . . ., s, k = 1, 2, . . ..
For each segment v, the variance for the segments can be calculated by:

F2(s, v) =


1
s

s
∑

i=1

{
y[(v − 1)s + i]− ŷv(i)

}2
, f or v = 1, . . . , Ns

1
s

s
∑

i=1

{
y[N − (v − Ns)s + i]− ŷv(i)

}2
, f or v = Ns + 1, . . . , 2Ns

(4)

Now, we define m as the order of the fitting polynomial, and it should be appropriately
set to avoid overfitting the series.

Step 4. For the whole sample, the qth order fluctuation function Fq(s) can be calculated
by averaging over all the segments

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[
F2(s, v)

] q
2

} 1
q

(5)

for any q ̸= 0, and

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

[
F2(s, v)

]}
(6)

for q = 0.
Step 5. We repeat steps 2 to 4 for several scales s. The scaling behaviors of the

fluctuation functions are determined by analyzing log–log plots of Fq(s) versus s for
different order q. If the series exhibits long-range power-law correlations, Fq(s) will increase
for large values of s as a power-law expression and the generalized Hurst exponent H(q)
for s can be defined by:

Fq(s) ≈ sh(q) (7)

Known as the generalized Hurst exponent, the scaling exponent H(q) represents the
power-law auto-correlation of the series. The significant dependence of H(q) on q shows the
multifractality of the series, whereas it is monofractal if h(q) is independent of q. For positive
or negative q values, H(q) describes the scaling behaviors of the segments with large or
small fluctuations, respectively. Therefore, a larger range of generalized Hurst exponent
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H(q) denotes a more complicated structure of the series. For q = 2, H(2) is equivalent to the
Hurst exponent.

Furthermore, we can obtain the multifractal spectrum of the series by a Legendre
transform. The multifractal spectrum is known as another effective way to describe a
multifractal series. The range of H(q) is usually related to the multifractal level of the
series. A higher △H(qmin − qmax) value always indicates stronger multifractal properties of
the series.

Here, the scaling exponent τ(q) is defined by:

τ(q) = qH(q)− 1 (8)

Then, the singularity strength h(q) and the singularity spectrum D(q) can be obtained
by the Legendre transform.

h(q) =
dτ(q)

dq
= H(q) + qH′(q) (9)

D(q) = qh(q)− τ(q) = 1 + q[α − H(q)] (10)

The multifractal spectrum width is represented by the difference between h(q)max and
h(q)min, where h(q)max and h(q)min denote the maximum and minimum of h(q), respectively.
It also means the difference between the maximum and minimum probability from the
statistical distribution perspective. As a suitable quantitative indicator of the multifractal
degree of the series, the multifractal spectrum width is often employed in research on
multifractal properties. In this paper, we define MD as [36]:

MD = h(q)max − h(q)min (11)

3.2. MF-DCCA

To study the multifractal properties of cross-correlations among financial markets,
Zhou (2008) [37] proposed the MF-DCCA method. Since then, the MF-DCCA has been
used to analyze the nonlinear dependency between price and volume in the agricultural
commodity futures markets [38] and the portfolio strategy in global crude oil markets [39].
In this paper, we adopt the MF-DCCA method to investigate the multifractal properties of
cross-correlations among main indices in the U.S. stock market. We consider two series X(i)
and Y(i), where i = (1, 2, . . ., N). The lengths of the series X(i) and Y(i) are N. The following
five steps constitute the key to the MF-DCCA method.

Step 1. Construct the profiles for the model.

X(i) =
i

∑
t=1

[x(t)− x], Y(i) =
i

∑
t=1

[y(t)− y], i = 1, 2, . . . , N (12)

where

x =
1
N

N

∑
t=1

x(t) and y =
1
N

N

∑
t=1

y(t) (13)

Step 2. The profiles {X(i)} and {Y(i)} are subsequently separated into Ns nonoverlap-
ping segments (or windows) of equal length s where Ns = [N/s]. As the series length N is
not necessarily a multiple of the considered time-scale s, there is a relatively shorter part
at the profile remaining in most cases. To consider this part of the series, we repeat the
same process, which starts from the other end of the series. In this way, we can obtain 2Ns

segments altogether.
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Step 3. For each segment v, we can obtain the local trends Xv(i) and Yv(i) (v = 1, 2, . . .,
2Ns) by fitting the considered series data for each separated segment based on the OLS
method. Then, we can determine the variance by the following equation:

F2(s, v) =
1
s

s

∑
i=1

|X((v − 1)s + i)− Xv(i)|·|Y((v − 1)s + i)− Yv(i)| (14)

for each segment v, v = 1, 2, . . ., Ns, and

F2(s, v) =
1
s

s

∑
i=1

|X(N − (v − Ns)s + i)− Xv(i)|·|Y(N − (v − Ns)s + i)− Yv(i)| (15)

for each segment v, v = Ns + 1, . . ., 2Ns. Here, we use Xv(i) and Yv(i) to represent the
fitting polynomial with order k in segment v, respectively. This is conventionally called the
MF-DCCA-k model. Empirically, we set the range of s to 2k + 2 ≤ s ≤ N/4.

Step 4. The q-order fluctuation function is obtained by averaging over all segments. it
can be calculated as follows:

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[
F2(s, v)

] q
2

} 1
q

(16)

for any q ̸= 0, and

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

ln
[

F2(s, v)
]}

(17)

for q = 0, where the index variable q can be any real number. For q is 2, this method is used
as the standard DCCA procedure.

Step 5. We can determine the scaling behaviors of the fluctuations within the series
by investigating the log–log plots of Fq(s) versus s for each q value. If the two considered
series {x(i)} and {y(i)} are long-range cross-correlated, the q-order fluctuation function Fq(s)
will increase for large values of s, which exhibits a power-law correlation as follow.

Fq(s) ≈ sHxy(q) (18)

This can be also presented as follow after taking logarithm.

logFq(s) = Hxy(q)log(s) + logA (19)

The generalized cross-correlation exponent Hxy(q), which is known as the scaling
exponent, describes the power-law correlation between the two time series {X(i)} and {Y(i)}.
Particularly, if the series {X(i)} is identical to {Y(i)}, the MF-DCCA is equivalent to the
MF-DFA. Furthermore, if the scaling exponent Hxy(q) for the two series is independent
of order q, the cross-correlation between the two series exhibits monofractal properties.
However, if the scaling exponent Hxy(q) for the two series is dependent on order q, the
cross-correlation between the two series exhibits multifractal properties. Moreover, when
q is negative, Hxy(q) indicates the scaling behaviors of the segments with relatively small
fluctuations. Conversely, when q is positive, Hxy(q) indicates the scaling behaviors of the
segments with relatively large fluctuations.

In this case, the bivariate Hurst exponent Hxy(2) has similar characteristics and in-
dications as a univariate Hurst exponent. Specifically, if the Hurst exponent Hxy(2) is
greater than 0.5, the cross-correlation between the two series {X(i)} and {Y(i)} is long-range
persistent. If the Hurst exponent Hxy(2) is less than 0.5, the cross-correlation between the
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two series is anti-persistent. If the Hurst exponent Hxy(2) is equal to 0.5, the two series
exhibit no cross-correlation or, at most, short-range cross-correlation.

Moreover, Yuan et al. (2012) [40] put forward ∆H as an indicator of financial risk.
Similarly, we can also use ∆H to measure the degree of multifractal properties of considered
series. ∆H can be determined as:

∆H = Hmax(q)− Hmin(q) (20)

According to this method, a greater value of ∆H indicates a stronger degree of the
multifractal properties of the series. Consequently, ∆Hxy, which can measure the degree of
the multifractal properties of cross-correlations between two series, can be quantitatively
obtained when Hxy(q) is substituted for H(q) in Formula (20). ∆Hxy can be calculated in a
similar way.

4. Data
In this study, we choose the three most widely used indices, i.e., the SPX, the DJI, and

the IXIC, to represent the U.S. stock market. The SPX represents approximately 80% of the
total value of the U.S. stock market and gives a good indication of movement in the U.S.
market as a whole. Known for its listing of the U.S. market’s best blue-chip companies
with regularly consistent dividends, the DJI represents about a quarter of the value of the
entire U.S. stock market. Changes in the IXIC generally indicate the performance of the
technology sector as well as investors’ attitudes toward more speculative stocks. The daily
data for the SPX, DJI, and IXIC indices are collected from the Wind database. The sample
includes 7245 observations from 1 January 2005 to 1 November 2024.

Moreover, we consider two different stages to study the different multifractal proper-
ties under different trends in the U.S. stock market. The two sub-periods are:

(1) sub-period 1: from 9 October 2007 to 6 March 2009, containing 355 observations;
(2) sub-period 2: from 9 March 2009 to 31 March 2024, containing 5502 observations.

It is clear that the prices experienced a downward trend in sub-period 1 and a steady
upward trend over a relatively long period of time in sub-period 2.

If the closing price on day t is represented by pt, the daily returns of the SPX, the DJI,
and the IXIC indices are calculated as natural logarithmic returns as:

rt = ln
(

pt

pt−1

)
Figure 1 shows the closing prices and the logarithmic returns of the indices in the

whole sample. The trends of these returns are relatively close, indicating basic correlations
and consistency among the three major indices in the U.S. stock. The returns fluctuated
most remarkably before and after the global financial crisis, which broke out in 2008,
whereas they exhibited relatively fewer fluctuations at other times. This shows the effects
of the 2008 global financial crisis on the U.S. stock market. Moreover, Figure 1 apparently
shows two different market phases, the two sub-periods we consider.

For the causes of the multifractal properties, fluctuations in these returns exhibit
nonlinear properties, causing long-range correlations in the series. This may be viewed
as one possible reason for multifractal properties. On the other hand, the multifractal
properties can also be caused by certain extreme events like the 2008 global financial crisis,
which may lead to a fat-tailed distribution of the series. This may be another reason for
multifractal properties.
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Figure 1. Prices and returns of the U.S. stock market indices. Notes: “SPX”, “DJI”, and “IXIC” de-
note the daily returns of the Standard and Poor’s 500, the Dow Jones Industrial Average, and the 
Nasdaq Composite indices, respectively. “I” and “II” represent the sub-period 1 and sub-period 2, 
respectively. The green and red dashed lines describe the two sub-periods. Data source: Wind 
database. 

As Figure 1 shows, the prices displayed a downward trend in sub-period 1 and ex-
hibited a sharp fall around September 2008. The SPX and the DJI showed similar falling 
trends in this stage. On the contrary, the prices showed an increasing trend in sub-period 
2 and exhibited a sharp growth since 2016. Overall, the fluctuations of the returns in sub-
period 1 are more frequent and intense than in sub-period 2, especially during the period 
from October 2008 to February 2009, when the fluctuations of the returns reached the max-
imum degree in this period. Typically, the returns showed similarly large fluctuations 
around and in 2020, probably due to the COVID-19 pandemic. 

The descriptive statistics of the sample are summarized in Table 1. Average returns 
of the three indices slightly exceed zero. The DJI has the lowest average return, and the 

Figure 1. Prices and returns of the U.S. stock market indices. Notes: “SPX”, “DJI”, and “IXIC” denote
the daily returns of the Standard and Poor’s 500, the Dow Jones Industrial Average, and the Nasdaq
Composite indices, respectively. “I” and “II” represent the sub-period 1 and sub-period 2, respectively.
The green and red dashed lines describe the two sub-periods. Data source: Wind database.

As Figure 1 shows, the prices displayed a downward trend in sub-period 1 and
exhibited a sharp fall around September 2008. The SPX and the DJI showed similar falling
trends in this stage. On the contrary, the prices showed an increasing trend in sub-period
2 and exhibited a sharp growth since 2016. Overall, the fluctuations of the returns in
sub-period 1 are more frequent and intense than in sub-period 2, especially during the
period from October 2008 to February 2009, when the fluctuations of the returns reached the
maximum degree in this period. Typically, the returns showed similarly large fluctuations
around and in 2020, probably due to the COVID-19 pandemic.

The descriptive statistics of the sample are summarized in Table 1. Average returns
of the three indices slightly exceed zero. The DJI has the lowest average return, and the
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IXIC has the highest average return. Correspondingly, the IXIC has the highest standard
deviation, which confirms that the Nasdaq market has comparatively higher returns and
risks. The skewness values of these returns are less than zero, which means that the
distributions of returns are left-tailed. In other words, the tail on the left side of the curve
seems to be longer than that on the right. Furthermore, the kurtosis values of these returns
are much greater than three. This reveals that the distributions show non-Gaussian fat-tailed
characteristics and are peaked with excessive kurtosis and extreme values. Hence, these
returns deviate from the normal distribution, which directly contributes to the multifractal
properties of the series.

Table 1. Descriptive statistics of daily returns of the U.S. stock market indices.

Index Sample Period Number of
Observations

Mean
(%)

Standard
Deviation Skewness Kurtosis

SPX 1 January 2005~1
November 2024 7245 0.0214 0.0101 −0.6085 23.2028

Whole
sample DJI 1 January 2005~1

November 2024 7245 0.0187 0.0095 −0.5518 27.8727

IXIC 1 January 2005~1
November 2024 7245 0.0293 0.0113 −0.4859 15.5791

SPX 9 October 2007~6
March 2009 355 −0.2312 0.0240 −0.0595 6.7637

Sub-period 1 DJI 9 October 2007~6
March 2009 355 −0.2116 0.0219 0.1947 6.9598

IXIC 9 October 2007~6
March 2009 355 −0.2162 0.0243 −0.0159 5.8424

SPX 9 March 2009~31
March 2024 5502 0.0371 0.0094 −0.6176 21.7133

Sub-period 2 DJI 9 March 2009~31
March 2024 5502 0.0326 0.0090 −0.7795 30.3792

IXIC 9 March 2009~31
March 2024 5502 0.0461 0.0108 −0.5192 14.7032

Note: “SPX”, “DJI” and “IXIC” denote the daily returns of the Standard and Poor’s 500, the Dow Jones Industrial
Average, and the Nasdaq Composite indices, respectively. Data source: Wind database.

In sub-period 1, the three returns are all less than zero and show a downward trend of
the returns. The SPX exhibits a lower mean value in the bear market compared with the DJI
and the IXIC. The skewness values of the SPX and the IXIC are less than zero, suggesting
that the distributions of the two indices exhibit the distribution feature of a longer left tail in
this period. Instead, the opposite occurs for the DJI. The kurtosis values of these returns are
all greater than three, showing their fat-tailed distribution properties. These distribution
properties are consistent with the properties obtained through the whole sample. This
confirms that these returns all exhibited multifractal properties in sub-period 1.

However, in sub-period 2, the IXIC exhibits a higher mean value and standard de-
viation compared with the SPX and the DJI. The skewness values of these returns are
less than zero, showing the distribution feature of a longer left tail in this period. The
kurtosis values of these returns are all greater than three, demonstrating their fat-tailed
distribution properties. These distribution properties are consistent with the properties
obtained through the whole sample. This confirms that these returns all exhibit multifractal
properties in sub-period 2.

5. Empirical Results
5.1. Multifractal Properties of the U.S. Stock Market

According to the MF-DFA method, generalized Hurst exponents and the multifractal
spectra of the daily returns of the SPX, the DJI, and the IXIC are shown in Figure 2. As
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Figure 2 shows, the horizontal axis and the vertical axis represent the multifractal order
value q and the Hurst exponent value, respectively. According to the MF-DFA method, the
generalized Hurst exponent H(q) is an important indicator for the multifractal properties
of series. The q-order generalized Hurst exponents H(q) of the SPX, the DJI, and the IXIC
returns are obviously correlated to the order value q and drop smoothly with the rise in
order value q. Therefore, their H(q) values are not a constant but a function of q. This
means that the three returns exhibit significant multifractal properties. The H(q) values
show a downward trend on the interval [−5, 5]. When q = 2, the classical Hurst exponents
H(q) of the original sequence are 0.1005, 0.1056, and 0.1013, indicating negative long-range
correlations in the series. The results reveal that the returns exhibit strong persistence and
that the changes in these returns are opposite to the changes in the past. The spectra of
the series all exhibit a single peak function, which shows the multifractal properties of the
daily returns.
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Figure 2. The Hurst exponent and multifractal spectrum of the daily returns. Notes: “SPX”, “DJI”,
and “IXIC” denote the returns of the Standard and Poor’s 500 Index, the Dow Jones Industrial
Average, and the Nasdaq Composite Index, respectively. Figure 2 describes the Hurst exponent and
multifractal spectrum of the SPX, DJI, and IXIC indices, respectively. q, H(q), hq, and Dq denote order
value, q-order Hurst exponent, singularity strength, and singularity spectrum, respectively.

There are two major sources of multifractality: long-range correlations and fat-tailed
distributions of volatilities. Empirically, we can study the effects of long-range correlations
by the shuffling test and study the effects of the fat-tailed distributions by the phase-
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randomizing test. In this study, the shuffled series and the phase-randomized series are
named shuf and sur, respectively. As Figure 2 shows, the Hurst exponents of the shuffled
series and the phase-randomized series exhibit different structural characteristics. For the
three returns, the widths of the multifractal spectra of the test series (the shuffled series and
the phase-randomized series) are slightly less than that of the original series. This indicates
the multifractal properties in the three original series. Moreover, the generalized Hurst
exponents H(q) of the original series and test series drop when order q rises. This means
that the original series of the three indices and their shuffled and phase-randomized series
exhibit multifractal properties.

5.2. Multifractal Degree of the U.S. Stock Market

From the empirical results, we find that the correlations between the multifractal
spectrum f(α) and the q-order singularity exponent α exhibit the shape of a single-peak
bell. Figure 2 also shows the relationships between the singularity strength h(q) and the
singularity spectrum D(q). The main structural parameters of the multifractal spectrum of
the returns are listed in Table 2.

Table 2. Multifractal properties of the returns of the U.S. stock market indices.

Index ∆α ∆f R

SPX 1.8104 2.4475 −0.4300
DJI 1.4446 1.6499 −0.3300

IXIC 1.5452 1.5410 −0.2909
Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500 Index, the Dow Jones Industrial
Average, and the Nasdaq Composite Index, respectively. ∆α, ∆f, and R denote multifractal spectrum width,
distribution proportion of high values and low values and asymmetric exponent, respectively.

As Table 2 shows, the SPX has the highest ∆α value among the three returns, and the
DJI has the lowest ∆α value, suggesting that the local fluctuations in the SPX are most
uneven and those in the DJI are relatively most even. Therefore, the SPX exhibits the
highest multifractal degree, whereas the DJI exhibits the lowest one. For the three returns,
the chance of maximization of daily returns is greater than that of being at a minimum
because ∆f > 0. Hence, large fluctuations exist in the three original series of the returns in
the U.S. stock market. The SPX has the highest ∆f value among the three returns, and the
IXIC has the lowest, which implies that the SPX displays the largest fluctuations and the
IXIC displays the smallest fluctuations. For the three indices, the asymmetric exponents
are all negative. This shows that the shapes of the multifractal spectra of these returns are
left-skewed. The right half of the return ∆αR has a larger range of values. The events with
lower returns have an advantage over those with higher returns. These empirical results
are in line with the conclusions in Seth et al. (2015) [3] and also confirm that the U.S. stock
market is not completely efficient.

5.3. Efficiency of the U.S. Stock Market

The U.S. stock market is not always efficient, and the inefficiency is partly caused by
the multifractal properties of the market. The multifractal degree (MD) value is measured
by the difference between αmax and αmin. A large value of MD corresponds to a high
multifractal degree and low market efficiency, indicating large volatilities.

In this section, we study the asymmetrical dynamics of the multifractal properties
of the U.S. stock market in terms of the multifractal degree and efficiency. The empirical
results from the U.S. stock market show the asymmetries in the sub-period 1 and sub-period
2 we consider. Table 3 shows the MD values of the three returns for the whole sample and
two sub-samples.
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Table 3. Multifractal degree (MD) values of the returns in the U.S. stock market.

Whole Sample Sub-Period 1 Sub-Period 2 △MD

SPX 1.8104 1.1691 2.3010 1.1319
DJI 1.4446 1.4413 1.9491 0.5078

IXIC 1.5452 1.0412 1.6371 0.5959
Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500 Index, the Dow Jones Industrial
Average, and the Nasdaq Composite Index, respectively.

As Table 3 shows, the SPX has the highest MD value, and the DJI has the lowest MD
value for the whole sample. The multifractal properties may provide some evidence for
less efficiency in the U.S. stock market.

In sub-period 2, the SPX also has the highest MD value, and the IXIC has the lowest
MD value. This means that the SPX has the highest multifractal degree among the three
indices under the upward trend of prices. In sub-period 1, these returns generally show
lower MD than in sub-period 2. The IXIC shows the lowest MD in both sub-period 1 and
sub-period 2, suggesting the lower multifractal degree in these two periods considered.
Table 3 also reveals that the SPX return experiences the greatest fluctuations when the
market witnessed a shift from a downward trend to an upward trend. In contrast, the DJI
shows the smallest fluctuations among the three indices when the same transformation
occurred because of the minimum MD change value △MD.

Therefore, the multifractal properties are different during downward and upward
trends in the U.S. stock market. This asymmetry may provide some insights for market
participants in terms of different properties under different trends in the market.

5.4. Cross-Correlations in the U.S. Stock Market

To quantitatively analyze the cross-correlations between two different returns among
the SPX, the DJI, and the IXIC, we estimate the cross-correlation exponents by the MF-DCCA
method. Figures 3–6 show the cross-correlation of each pair.
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Figure 3. Hxy(q) value with q varying from −5 to 5 for each bivariate case of SPX, DJI, and IXIC.
Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500 Index, the Dow
Jones Industrial Average, and the Nasdaq Composite Index, respectively. q and Hxy(q) denote the
order value and the generalized cross-correlation exponent, respectively.

In Figure 3, the relationships between generalized cross-correlation exponents Hxy(q)
and the order of fluctuation function q for the SPX, the DJI, and the IXIC returns are
displayed, with q varying from −5 to 5. Figure 3 shows the slopes of generalized Hurst
exponents Hxy(q) across different scales ranging from −5 to 5 and reveals that Hxy(q)
coefficient values are not constant and are dependent on q. This implies strong evidence
for multifractal properties in the cross-correlations among the returns. As Figure 3 shows,
for all three pairs of indices, Hxy(q) for small fluctuations is higher than that for large
fluctuations. The scaling exponents Hxy(q) for q < 0 are larger than those for q > 0, which
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means that the cross-correlated behaviors of small fluctuations are more persistent than
those of large fluctuations. For the three pairs of the returns, Hxy(q) functions monotonically
fall for −5 ≤ q ≤ 5. The fluctuations of the three pairs of the cross-correlations may cause
them to be more persistent and strengthen the cross-correlations for the interval q ≥ 2.
Therefore, when there is a large fluctuation in one return in the short term, it is probably
caused by the volatilities in the other two series. For the smallest fluctuations (q = −5), the
cross-correlations among the returns show the strongest long-memory properties, which
suggests that the long-range dependence largely explains the multifractal properties of the
cross-correlations in the U.S. stock market.
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Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500 Index, the Dow
Jones Industrial Average and the Nasdaq Composite Index, respectively. q and τ(q) denote the order
value and the Renyi exponent, respectively.
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Figure 5. Multifractal spectrum of the cross-correlations with q varying from 5 to −5 for each bivariate
case of the returns. Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500
Index, the Dow Jones Industrial Average and the Nasdaq Composite Index, respectively. α and f (α)
denote the singularity exponent and the multifractal spectrum of the cross-correlations, espectively.
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Figure 6. Log–log plots of Fq(s) versus s with q varying from −5 to 5 for each bivariate case of the
returns. Notes: “SPX”, “DJI”, and “IXIC” denote the returns of the Standard and Poor’s 500 Index,
the Dow Jones Industrial Average and the Nasdaq Composite Index, respectively. Curves from the
bottom to the top are corresponding to the plots with q = −5, −4, . . ., 4, 5.
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Figure 4 shows the relationships between the Renyi exponents τ(q) and the order q for
the three pairs of the returns. The exponent τ(q) is a strictly monotonic increasing convex
function of q for −5 ≤ q ≤5. In addition, there is an obviously nonlinear relationship
between τ(q) and q, confirming that the cross-correlations between the SPX and the DJI, the
SPX and the IXIC, and the DJI and the IXIC returns have some multifractal properties.

Since the cross-correlations display multifractal properties, we can derive the multi-
fractal spectra f (α) of the cross-correlations. Figure 5 shows the relationships between the
multifractal spectra f (α) and the singularity exponent α for the three pairs of the returns. As
Figure 5 shows, the tops of the multifractal spectrum curves f (α) are flat, and the opening
of the curves is wide. The multifractal spectra f (α) are distributed in a wide range and
vary with the change in the singularity exponents α. For the cross-correlation between the
SPX and the DJI, f (α) reaches the minimum value of 0.3729 when α equals 0.2685 and the
maximum value of 1 when α equals 0.5758. The width of multifractal spectrum of SPX-DJI
pair is 0.4465. For the cross-correlation between the SPX and the IXIC, f (α) reaches the
minimum of 0.4704 when α equals 0.3111 and the maximum of 1 when α equals 0.5674. The
width of the multifractal spectrum of the SPX-IXIC pair is 0.4078. For the cross-correlation
between the DJI and the IXIC, f (α) reaches the minimum of 0.4158 when α equals 0.2869
and the maximum of 1 when α equals 0.5685. The width of the multifractal spectrum of the
DJI-IXIC pair is 0.4084. Therefore, the cross-correlations between any two returns among
the SPX, the DJI, and the IXIC exhibit multifractal properties. These results are partly
consistent with those of Cao et al. (2017) [41]. Particularly, the cross-correlation between
the SPX and the DJI has the greatest multifractal level among the three pairs of the returns,
indicating the largest volatilities. And the other two pairs have almost similar multifractal
cross-correlations in terms of the multifractal spectra.

Figure 6 shows the log–log plots of log(Fq(s)) versus log(s) for each pair of the SPX,
the DJI, and the IXIC returns as q =−5, −4, −3, . . ., 5 when polynomial order k = 2 (i.e.,
MF-DCCA-2, when k = 1, 3, 4, and 5, the results are qualitatively similar). Although larger
fluctuations of log(Fq(s)), especially for q ≥ 2 and q ≤ −1, are observed for large values
of log(s), the estimated coefficients Hxy(q) and constant log(A) in Equation (19) are all
significant at the 1% significance level through the method of linear least squares. For
different q values, each fluctuation curve is approximately linear. The q-order fluctuation
function Fq(s) and time scales show a significant power law correlation, showing that
power-law cross-correlations exist between the SPX and the DJI, the SPX, and the IXIC, the
DJI and the IXIC. Therefore, the changes in fluctuations of the SPX, the DJI, and the IXIC
returns are not merely affected by their own fluctuations. Specifically, the fluctuations of
the DJI and the IXIC returns that are cross-correlated with the SPX return can also have
effects on the fluctuations of the SPX return. The fluctuations of the SPX and the IXIC
returns that are cross-correlated with the DJI return can also have effects on the fluctuations
of the DJI return. The fluctuations of the SPX and the DJI returns that are cross-correlated
with the IXIC return can also have effects on the fluctuations of the IXIC return. As Figure 6
shows, cross-correlations of the three pairs of returns exhibit similar properties.

5.5. Robustness Tests

In this section, we employ another time window selected from 2005 to 2019 to conduct
the MF-DFA and MF-DCCA analysis and obtain similar results.

Table 4 shows that the returns exhibit multifractal properties in the period we now consider.
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Table 4. Multifractal properties of the returns of the U.S. stock market indices in specified time window.

Index ∆α ∆f R

SPX 1.1719 1.3489 −0.3412
DJI 1.2672 1.6787 −0.3553

IXIC 0.9365 0.7183 −0.1428

In addition, we use this time window to examine the multifractal properties of cross-
correlations among the returns. The results are similar to those we have obtained in this
section. The multifractal properties of cross-correlations are shown in Figure 7.
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6. Conclusions
This study investigates the multifractal properties of the returns in the U.S. stock

market and the multifractal properties of cross-correlations among the series. According
to analysis through the MF-DFA and MF-DCCA methods, there is evidence of multifrac-
tal properties of the returns and their cross-correlations. The asymmetrical multifractal
properties and multifractal cross-correlations in the U.S. stock market may contribute to a
complex nonlinear system.

Main conclusions are as follows. First, for the whole sample, the SPX exhibits the
highest multifractal degree, while the DJI exhibits the lowest multifractal degree. This
means that the SPX has comparatively larger volatility. Second, the cross-correlation be-
tween the SPX and the DJI has the greatest multifractal level among the three pairs of
the returns. This indicates the largest volatility in the return cross-correlation. Third, for
the three pairs of indices, the cross-correlated behaviors of small fluctuations are more
persistent than those of large fluctuations. Finally, the U.S. stock market exhibits asym-
metrical multifractal properties, which implies different multifractal properties in different
stages. The multifractal properties are different during downward and upward trends in
the market. The returns considered show lower multifractal degrees under a downward
trend of prices than under an upward trend. The SPX has the highest multifractal degree
when the upward trend occurs, whereas the IXIC has the lowest multifractal degree. The
DJI has the highest multifractal degree when the downward trend occurs, whereas the
IXIC still has the lowest multifractal degree. The SPX experiences the greatest fluctuations
when the market witnesses a shift from a downward trend to an upward trend. Regarding
multifractal properties, the SPX demonstrates greater differences and volatilities during
different market periods.

These empirical results reveal important implications for different entities in the U.S.
stock market. For investors, they may respond to the market information in a nonlinear way
and should comprehensively consider the stock market as a whole and take into account
the impacts of fluctuations in different returns on future returns to effectively manage the
portfolio risks. For policy makers and regulators, they may continue to monitor the risks
and abnormalities in the market and promote the healthy development of the market.

More studies will be conducted to uncover the determinants of the inefficiency and
cross-correlations in the U.S. stock market dynamics. In the subsequent research, we will
discuss more about the impacts of trading strategies on the market and the dynamic cross-
correlations in the market to develop a more comprehensive theoretical framework for
the link of the multifractal properties to the efficiency and microstructure of the market.
Moreover, we will study the issue of data quality and preprocessing in more depth.

Author Contributions: Methodology, C.H.; Validation, C.H. and Y.X.; Formal analysis, C.H. and Y.X.;
Data curation, C.H.; Writing—original draft, C.H. and Y.X.; writing—review and editing, C.H. and
Y.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant num-
ber 72203019).

Data Availability Statement: The data presented in this study are openly available at https://cn.
investing.com.

Acknowledgments: We sincerely thank anonymous reviewers for their helpful comments and
suggestions in improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://cn.investing.com
https://cn.investing.com


Fractal Fract. 2025, 9, 73 18 of 19

References
1. Mandelbrot, B.B. A multifractal walk down wall street. Sci. Am. 1999, 280, 70–73. [CrossRef]
2. Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; John Wiley Sons: New York, NY, USA, 1994;

Volume 24.
3. Seth, N.; Sharma, A.K. International stock market efficiency and integration: Evidences from Asian and U.S. markets. J. Adv.

Manag. Res. 2015, 12, 88–106. [CrossRef]
4. Ito, M.; Noda, A.; Wada, T. The Evolution of Stock Market Efficiency in the U.S.: A Non-Bayesian Time-Varying Model Approach.

Appl. Econ. 2016, 48, 621–635. [CrossRef]
5. Benkraiem, R.; Lahiani, A.; Miloudi, A.; Shahbaz, M. New insights into the U.S. stock market reactions to energy price shocks. J.

Int. Financ. Mark. Inst. Money 2018, 56, 169–187. [CrossRef]
6. Kyle, A.S.; Obizhaeva, A.A.; Tuzun, T. Microstructure invariance in U.S. stock market trades. J. Financ. Mark. 2020, 49, 100513.

[CrossRef]
7. Oleg, S.; Grigory, P.; Alexander, S.; Sergiy, B.; Alexander, V.; Eduardo, L.P.; Vladimir, B. Networks of causal relationships in the

U.S. stock market. Depend. Model. 2022, 10, 177–190.
8. Beckmann, L.; Debener, J.; Hark, P.F.; Pfingsten, A. CBDC and the shadow of bank disintermediation: US stock market insights on

threats and remedies. Financ. Res. Lett. 2024, 67, 105868. [CrossRef]
9. Ammy-Driss, A.; Garcin, M. Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional

stable dynamics. Phys. A Stat. Mech. Its Appl. 2023, 609, 128335. [CrossRef]
10. Belhoula, M.M.; Mensi, W.; Al Yahyaee, K.H. Dynamic speculation and efficiency in European natural gas markets during the

COVID-19 and Russia-Ukraine crises. Resour. Policy 2024, 98, 105362. [CrossRef]
11. Sharif, T.; Ghouli, J.; Bouteska, A.; Abedin, M.Z. The impact of COVID-19 uncertainties on energy market volatility: Evidence

from the US markets. Econ. Anal. Policy 2024, 84, 25–41. [CrossRef]
12. Koangsung, C.; Francesco, R.; Chung, C. The impact of COVID-19 on the Korean and US labour markets. Appl. Econ. 2024, 56,

4529–4543.
13. Benjamin, C.; Martin, H.; Kai, Z. The Impact of High-Frequency Trading on Modern Securities Markets. Bus. Inf. Syst. Eng. 2022,

65, 7–24.
14. Inés, J.; Andrés, M.-V.; Javier, P. Multivariate dynamics between emerging markets and digital asset markets: An application of

the SNP-DCC model. Emerg. Mark. Rev. 2023, 56, 101054.
15. Kocaarslan, B. Dynamic spillovers between oil market, monetary policy, and exchange rate dynamics in the US. Financ. Res. Lett.

2024, 69, 106137. [CrossRef]
16. Shaw, P.K.; Saha, D.; Ghosh, S.; Janaki, M.S.; Iyengar, A.N.S. Investigation of multifractal nature of floating potential fluctuations

obtained from a dc glow discharge magnetized plasma. Phys. A Stat. Mech. Its Appl. 2017, 469, 363–371. [CrossRef]
17. Al-Yahyaee, K.H.; Mensi, W.; Yoon, S.M. Efficiency; multifractality, and the long-memory property of the Bitcoin market: A

comparative analysis with stock, currency, and gold markets. Financ. Res. Lett. 2018, 27, 228–234. [CrossRef]
18. Stosic, D.; Stosic, D.; de Mattos Neto, P.S.; Stosic, T. Multifractal characterization of Brazilian market sectors. Phys. A Stat. Mech.

Its Appl. 2019, 525, 956–964. [CrossRef]
19. Tiwari, A.K.; Aye, G.C.; Gupta, R. Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation

approach. Financ. Res. Lett. 2019, 28, 398–411. [CrossRef]
20. Wang, F.; Ye, X.; Wu, C. Multifractal characteristics analysis of crude oil futures prices fluctuation in China. Phys. A Stat. Mech. Its

Appl. 2019, 533, 122021. [CrossRef]
21. Mensi, W.; Kumar, A.S.; Vo, X.V.; Kang, S.H. Asymmetric multifractality and dynamic efficiency in DeFi markets. J. Econ. Financ.

2023, 48, 280–297. [CrossRef]
22. de Salis, E.A.; dos Santos Maciel, L. How does price (in)efficiency influence cryptocurrency portfolios performance? The role of

multifractality. Quant. Financ. 2023, 23, 1637–1658. [CrossRef]
23. Li, W.; Lu, X.; Ren, Y.; Zhou, Y. Dynamic relationship between RMB exchange rate index and stock market liquidity: A new

perspective based on MF-DCCA. Phys. A Stat. Mech. Its Appl. 2018, 508, 726–739. [CrossRef]
24. Zhang, W.; Wang, P.; Li, X.; Shen, D. The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial

Average. Phys. A Stat. Mech. Its Appl. 2018, 510, 658–670. [CrossRef]
25. Ruan, Q.; Yang, B.; Ma, G. Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index.

Phys. A Stat. Mech. Its Appl. 2017, 468, 91–108. [CrossRef]
26. Fang, S.; Lu, X.; Li, J.; Qu, L. Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns.

Phys. A Stat. Mech. Its Appl. 2018, 509, 551–566. [CrossRef]
27. Ghosh, D.; Chakraborty, S.; Samanta, S. Study of translational effect in Tagore’s Gitanjali using Chaos based Multifractal analysis

technique. Phys. A Stat. Mech. Its Appl. 2019, 523, 1343–1354. [CrossRef]

https://doi.org/10.1038/scientificamerican0299-70
https://doi.org/10.1108/JAMR-07-2011-0010
https://doi.org/10.1080/00036846.2015.1083532
https://doi.org/10.1016/j.intfin.2018.02.004
https://doi.org/10.1016/j.finmar.2019.100513
https://doi.org/10.1016/j.frl.2024.105868
https://doi.org/10.1016/j.physa.2022.128335
https://doi.org/10.1016/j.resourpol.2024.105362
https://doi.org/10.1016/j.eap.2024.08.008
https://doi.org/10.1016/j.frl.2024.106137
https://doi.org/10.1016/j.physa.2016.11.021
https://doi.org/10.1016/j.frl.2018.03.017
https://doi.org/10.1016/j.physa.2019.03.092
https://doi.org/10.1016/j.frl.2018.06.012
https://doi.org/10.1016/j.physa.2019.122021
https://doi.org/10.1007/s12197-023-09655-6
https://doi.org/10.1080/14697688.2023.2266448
https://doi.org/10.1016/j.physa.2018.05.097
https://doi.org/10.1016/j.physa.2018.07.032
https://doi.org/10.1016/j.physa.2016.10.016
https://doi.org/10.1016/j.physa.2018.05.136
https://doi.org/10.1016/j.physa.2019.04.171


Fractal Fract. 2025, 9, 73 19 of 19

28. Ahmed, H.; Aslam, F.; Ferreira, P. Navigating Choppy Waters: Interplay between Financial Stress and Commodity Market Indices.
Fractal Fract. 2024, 8, 96–118. [CrossRef]

29. Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation
analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [CrossRef]

30. He, L.-Y.; Chen, S.-P. Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives. Phys. A Stat. Mech.
Its Appl. 2010, 389, 3218–3229. [CrossRef]

31. Alvarez-Ramirez, J.; Cisneros, M.; Ibarra-Valdez, C.; Soriano, A. Multifractal Hurst analysis of crude oil prices. Phys. A Stat. Mech.
Its Appl. 2002, 313, 651–670. [CrossRef]

32. Cao, G.; Cao, J.; Xu, L. Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA.
Phys. A Stat. Mech. Its Appl. 2013, 392, 797–807. [CrossRef]

33. Onali, E.; Goddard, J. Unifractality and multifractality in the Italian stock market. Int. Rev. Financ. Anal. 2009, 18, 154–163.
[CrossRef]

34. Wang, Y.; Wu, C.; Pan, Z. Multifractal detrending moving average analysis on the U.S. Dollar exchange rates. Phys. A Stat. Mech.
Its Appl. 2011, 390, 3512–3523. [CrossRef]

35. Ning, Y.; Wang, Y.; Yang, Z.; Geng, Y. Measurement and multifractal properties of short-term international capital flows in China.
Phys. A Stat. Mech. Its Appl. 2017, 468, 714–721. [CrossRef]

36. Ihlen, E.A.F. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 2012, 3, 141. [CrossRef]
[PubMed]

37. Zhou, W. Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 2008, 77, 066211. [CrossRef]
38. He, L.-Y.; Chen, S.-P. Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets:

A perspective from multifractal detrended cross-correlation analysis. Phys. A Stat. Mech. Its Appl. 2011, 390, 297–308. [CrossRef]
39. Zhu, P.; Tang, Y.; Wei, Y.; Dai, Y. Portfolio strategy of international crude oil markets: A study based on multiwavelet denoising-

integration MF-DCCA method. Phys. A Stat. Mech. Its Appl. 2019, 535, 122515. [CrossRef]
40. Yuan, Y.; Zhuang, X.-T.; Liu, Z.-Y. Price–volume multifractal analysis and its application in Chinese stock markets. Phys. A Stat.

Mech. Its Appl. 2012, 391, 3484–3495. [CrossRef]
41. Cao, G.; Zhang, M.; Li, Q. Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among

Mainland China, US, and Hong Kong stock markets. Phys. A Stat. Mech. Its Appl. 2017, 472, 67–76. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/fractalfract8020096
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/j.physa.2010.04.007
https://doi.org/10.1016/S0378-4371(02)00985-8
https://doi.org/10.1016/j.physa.2012.10.042
https://doi.org/10.1016/j.irfa.2009.05.001
https://doi.org/10.1016/j.physa.2011.05.023
https://doi.org/10.1016/j.physa.2016.10.063
https://doi.org/10.3389/fphys.2012.00141
https://www.ncbi.nlm.nih.gov/pubmed/22675302
https://doi.org/10.1103/PhysRevE.77.066211
https://doi.org/10.1016/j.physa.2010.09.018
https://doi.org/10.1016/j.physa.2019.122515
https://doi.org/10.1016/j.physa.2012.01.034
https://doi.org/10.1016/j.physa.2017.01.019

	Introduction 
	Literature Review 
	Methodology 
	MF-DFA 
	MF-DCCA 

	Data 
	Empirical Results 
	Multifractal Properties of the U.S. Stock Market 
	Multifractal Degree of the U.S. Stock Market 
	Efficiency of the U.S. Stock Market 
	Cross-Correlations in the U.S. Stock Market 
	Robustness Tests 

	Conclusions 
	References

