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Abstract: This paper introduces a convolution model with non-singular rational kernels in
which coefficients are considered complex. An interlacing property of the poles and zeros in
these rational kernels permits the accurate approximation of the power law function t−ν in
a predefined time range, where ν can be complex or real. This class of model can be used to
model fractional (dynamical) behaviours in order to avoid fractional calculus-based models
which are now associated with several limitations. This is an extension of a previous study
by the author. In the real case, this allows a better approximation, close to the limits of the
approximation interval, compared to the author’s previous work. In the complex case, this
extends the scope of application of the convolution models proposed by the author.

Keywords: convolution model; power law; fractional behaviours modelling; complex
orders; non-singular rational kernels; fractional order model approximation; impulse
response

1. Introduction
The last decades have demonstrated the omnipresence of phenomena having a power

law or kinetics, also called fractional kinetics. These phenomena are very often stochastic in
nature and can generate the construction of fractal geometries. The orders of these kinetics
depend on the geometry dimension on which they operate. When operating within a
dynamic system, they give the system a fractional behaviour from an input-output point of
view [1].

In the literature, these fractional dynamic behaviours are commonly captured by
models of the same name, models defined using fractional order derivatives and integral
operators, operators and models analyzed in the now-classic books of Samko et al. [2], Pod-
lubny [3], Miller and Ross [4], Monje et al. [5], Baleanu et al. [6], and Petras [7]. However, in
recent years, these operators and models have shown several limitations and led to physical
inconsistencies. For instance, ref. [8] shows that physical interpretations can invalidate the
obtained model in the case of incommensurate orders, ref. [9] demonstrates that fractional
state space descriptions used in the literature are not strictly state space descriptions and
questions the definition of “fractional state”, ref. [10] highlights that models of groundwater
flow and those of the impurity spread which use Caputo or Riemann-Liouville fractional-
partial-derivative definitions are non-objective, ref. [11] reveals units matter in fractional
order models of thermo-solutal and magnetic nanoparticle transport for drug delivery
applications, and ref. [12] discloses the sub-optimality and stability issues of recursive
pole and zero-distribution algorithms for the approximation of fractional order models.
A more in-depth analysis of the literature would lead to an extension of this list and this
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situation can lead to erroneous conclusions, particularly when initial conditions are taken
into account as this is the case in the three following papers of Stynes [13], Hanyga [14] and
Diethelm et al. [15]. One demonstration (among others) of these erroneous analyses is given
in ref. [16]. They are the consequence of the use of fractional differentiation definitions
which mask the doubly infinite nature of fractional models, revealed in ref. [17] and ref. [18]
and taken into account in ref. [19] for fractional model initialization.

The definition of fractional differentiation and integration operators by means of
singular kernel integrals is one of the causes of these limitations. This is why other,
entirely different modelling tools have been introduced in ref. [1] (non-linear models,
distributed-parameters models, time-delay models, time-varying models, and convolution-
type models) and in ref. [20] (peridynamic models). Some authors have simply sought new
definitions using other types of kernels, that is, new operators that retain fractional behaviour
without being strictly fractional differentiation or integration operators. In this line of research,
there are many results both on theoretical and practical points. It is not possible within this
paper to give an exhaustive list, but it is necessary to cite the following works.

The idea of modifying the definition of fractional operators and using non-singular
kernels was first put forward by Caputo and Fabrizio in ref. [21]. Their study was the
starting point for significant developments.

Some authors have shown the interest of this work through developments concerning
numerical methods [22], diffusion models [23], definition modifications [24], a multi-step
homotopy analysis method [25], numerical method developments [26], and/or applica-
tions [24,27]. Other authors have proposed new definitions [28] (Atangana-Baleanu), [29]
(tempered), [30] (Caputo–Fabrizio extensions), [31] (proper fractional integral operators
of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives), [32] (non-singular
Mittag–Leffler kernel) and/or analyzed their properties [33]. The papers cited here are only
a very small part of those on the topic. It would not be possible to cite them all, but the
previous ones could be useful to the interested reader to begin an in-depth analysis.

This paper is part of this development. It is the sequel to two papers that proposed
to define convolution-type operators having fractional behaviours, ref. [34] for general
description and ref. [35] for dedicated algorithms. In these papers, the non-singular kernel
is a rational function approximating the power-law function t−ν. Such an approximation is
permitted by a specific interleaving of the poles and zeros of this rational function. This
paper in an extension of [34,35] as it considers rational functions with complex coefficients
to generate power-law functions t−ν, where ν can be either real or complex. It is organized
as follows. The essential results of [34,35] are first summarized, and it is shown that the
fractional behaviours generated with the given kernels are based on rational functions
with interlacing poles and zeros. The paper then considers complex conjugate poles and
zeros, and, by retaining only the real part, it proposes new rational functions for the
approximation of the power law function t−ν, ν ∈ R. The idea of interlacing complex poles
and zeros is finally used to approximate the power law function t−ν, ν ∈ C.

2. Fitting Fractional Behaviours with Non-Singular Kernels: A Reminder
To capture fractional behaviours, it was proposed in [34,35] to introduce the convolu-

tion operator

y(t) =
∫ t

0
fa(t − τ)u(τ)dτ = η(t) ∗ u(t), (1)

in which the kernel η(t) is an approximation of the power-law function

f (t) = t−ν, ν ∈ R, (2)

under the form of a non-singular rational function
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fa(t) = C0

∏N
j=1

(
t
t′j
+ 1
)

∏N
j=1

(
t
tj
+ 1
) (3)

In relation to (3), the gain C0, the zeros t′j and the pole tj are computed Algorithm 1.

Algorithm 1 [34,35]

1. Chose the time interval [tl , th] on which the approximation is required and the
degree N (number of poles and zeros) of the rational function.

2. Compute r = N
√

th
tl

.

3. Compute β = rν and α = r
β .

4. Compute t1 = tl ∗
√

α and the other t′j and tj using relations.

β =
t′j
tj

and α =
tj+1

t′j
(4)

5. Compute C0 = (tm)
−−ν

∏N
j=1

(
tm
tj
+1
)

∏N
j=1

(
tm
t′j
+1

) with tm =
√

tlth (middle of [tl , th] on a

logarithmic scale)

6. Compute the approximation fa(t) = C0

∏N
j=1

(
t
t′j
+1

)
∏N

j=1

(
t
tj
+1
) .

Figure 1 shows that algorithm 1 interlaces in a log–log representation, and the zeros t′j
and the poles tj reach the approximation of f (t) = t−ν.
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To produce fractional behaviours with model (1), the key point is to obtain, at least
in a given time range, an accurate approximation of the function (2). Algorithm 1 does
this very well with a non-singular rational function with real coefficients. The following
paragraphs explore what can be created by considering complex coefficients.

3. A First Extension with Complex Poles and Zeros
The approximation proposed by relation (3) and algorithm 1 can be generalized

considering the following non-singular rational function with complex coefficients:

fa(t) = C0

∏N
j=1

(
t

eiθ t′j
+ 1
)

∏N
j=1

(
t

eiθ tj
+ 1
) with C0 = (tm)

−ν
∏N

j=1

(
tm

eiθ tj
+ 1
)

∏N
j=1

(
tm

eiθ t′j
+ 1
) . (5)

After partial fraction expansion, the function fa(t) becomes:

fa(t) = A0 + ∑N
j=1

Aj(
t

eiθ tj
+ 1
) (6)

where the complex coefficients Aj = aj + ibj, j ∈ [0..N] are defined by

A0 = C0∏N
j=1

tj

t′j
and Aj = C0

∏N
k=1

(
− tj

t′k
+ 1
)

∏N
k = 1
k ̸= j

(
− tj

tk
+ 1
) j ∈ [1..N]. (7)

Figure 2, created with MATLAB Simulink software as the figures in the sequel, shows
a comparison of the approximation fa(t) with the function f (t) = t−ν. This comparison
is conducted in a log–log frame, that is to say that Log

(
Re
{

fa(t)
})

and Im
{

fa(t)
}

are
represented as a function of Log(t) for various values of θ and with ν = 0.4.
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A practical implementation of such an approximation (to eliminate the imaginary part)
can be conducted by keeping only the real part of the function fa(t). As the real part of
the function

aj + ibj
t

eiθ tj
+ 1

is
t
tj

(
ajcos θ − bjsin θ

)
+ aj

t2

t2
j
+ 2 t

tj
cos θ + 1

(8)

the real part of the function fa(t) is thus

Re
{

fa(t)
}
= a0 + ∑N

j=1

t
tj

(
ajcos θ − bjsin θ

)
+ aj

t2

t2
j
+ 2 t

tj
cos θ + 1

. (9)

Figure 3 shows a comparison of f (t) with Re
{

fa(t)
}

for various values of θ and for

ν = 0.5, tl = 10−3, th = 105, and N = 10. This figure reveals a perfect fit of the function f (t)
within the interval [tl , th] with a very small number of parameters.

Fractal Fract. 2025, 9, x FOR PEER REVIEW 5 of 16 
 

 

A practical implementation of such an approximation (to eliminate the imaginary 
part) can be conducted by keeping only the real part of the function 𝑓௔ഥ (𝑡). As the real part 
of the function 

௔ೕା௜௕ೕ೟೐೔ഇ೟ೕାଵ is 
೟೟ೕ൫௔ೕ ୡ୭ୱ ఏି௕ೕ ୱ୧୬ ఏ൯ା௔ೕ೟మ೟ೕమାଶ ೟೟ೕ ୡ୭ୱ ఏାଵ   (8)

the real part of the function 𝑓௔ഥ (𝑡) is thus 

ℛ𝑒൛𝑓௔ഥ (𝑡)ൟ = 𝑎଴ + ∑ ೟೟ೕ൫௔ೕ ୡ୭ୱ ఏି௕ೕ ୱ୧୬ ఏ൯ା௔ೕ೟మ೟ೕమାଶ ೟೟ೕ ୡ୭ୱ ఏାଵே௝ୀଵ .  (9)

Figure 3 shows a comparison of 𝑓(𝑡) with ℛ𝑒൛𝑓௔ഥ (𝑡)ൟ for various values of 𝜃  and 
for 𝜈=0.5, 𝑡௟ = 10ିଷ, 𝑡௛ = 10ହ, and 𝑁 = 10. This figure reveals a perfect fit of the function 𝑓(𝑡) within the interval ሾ𝑡௟, 𝑡௛ሿ with a very small number of parameters. 

 

Figure 3. Comparison in log–log representation of 𝑓(𝑡) with ℛ𝑒൛𝑓௔ഥ (𝑡)ൟ for various values of 𝜃 and 
for 𝜈=0.5, 𝑡௟ = 10ିଷ, 𝑡௛ = 10ହ, and 𝑁 = 10. 

The approximation proposed by relation (3) and Algorithm 1 can thus be generalized 
considering the non-singular rational function with complex coefficients (5) using Algo-
rithm 2. 

Algorithm 2 
1. Use step 1 to 4 of algorithm 1.  

2. Compute 𝐶଴തതത = (𝑡௠)ିఔ ∏ ቆ ೟೘೐೔ഇ೟ೕାଵቇೕಿసభ
∏ ൭ ೟೘೐೔ഇ೟ೕᇲାଵ൱ೕಿసభ   with 𝑡௠ = ඥ𝑡௟𝑡௛  (middle of ሾ𝑡௟, 𝑡௛ሿ  on a 

logarithmic scale) 
3. Compute 𝐴ఫഥ = 𝑎௝ + 𝑖𝑏௝ using relation (7) 

Figure 3. Comparison in log–log representation of f (t) with Re
{

fa(t)
}

for various values of θ and

for ν = 0.5, tl = 10−3, th = 105, and N = 10.

The approximation proposed by relation (3) and Algorithm 1 can thus be general-
ized considering the non-singular rational function with complex coefficients (5) using
Algorithm 2.

Figure 3 further illustrates that the behaviour of the approximation varies near the
boundaries of the approximation interval, contingent upon the value of θ. It was observed
in ref. [34,35] that the rational kernel (3) allows an accurate fitting of the function f (t) on
a time domain range [tl , th] and fewer frequency oscillations around the curve of f (t) in
comparison to a distribution of exponential functions as conventionally used in the litera-
ture [36–41]. It was also observed that the fitting is less accurate than with a distribution
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of exponential functions close to the times tl and th. This additional parameter θ can thus
be used to solve this matter. As shown by Figure 4 for various values of ν, for θ close
to −π/2 or π/2, the approximation curve fits better on the f (t) curve for these times,
with identical accuracy between the times tl and th. This is confirmed by Figure 5, which
compares f (t) (relation (2)) and the approximations given by relation (3) and relation (9)
for ν = 0.5, tl = 10−3, th = 105, N = 10 and θ = π/2 − π/100.

Algorithm 2

1. Use step 1 to 4 of algorithm 1.

2. Compute C0 = (tm)
−ν

∏N
j=1

(
tm

eiθ tj
+1

)

∏N
j=1

(
tm

eiθ t′j
+1

) with tm =
√

tlth (middle of [tl , th] on a

logarithmic scale)
3. Compute Aj = aj + ibj using relation (7)

4. Compute Re
{

fa(t)
}
= a0 + ∑N

j=1

t
tj
(ajcos θ−bjsin θ)+aj

t2

t2j
+2 t

tj
cos θ+1

.
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{

fa(t)
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some close to −π/2 and π/2, for three values of ν (ν = 0.2, ν = 0.5, ν = 0.7), and for tl = 10−3,
th = 105, N = 10.

In order to make the expression of the approximation of f (t) real, instead of using
relation (9), it is possible to associate with relation (5) its complex conjugate, which leads to
the following approximation:

f ′a(t) = K0

∏N
j=1

(
t

eiθ t′j
+1

)
∏N

j=1

(
t

e−iθ t′j
+1

)

∏N
j=1

(
t

eiθ tj
+1

)
∏N

j=1

(
t

e−iθ tj
+1

) with K0 =

(tm)
−ν

∏N
j=1

(
tm

eiθ tj
+1

)
∏N

j=1

(
tm

e−iθ tj
+1

)

∏N
j=1

(
tm

eiθ t′j
+1

)
∏N

j=1

(
tm

e−iθ t′j
+1

) .

(10)

and thus, after simplifications,

f ′a(t) = K0

∏N
j=1

(
t2

t′j
2 + 2cosθ t

t′j
+ 1
)

∏N
j=1

(
t2

tj
2 + 2cosθ t

tj
+ 1
) with K0 = (tm)

−ν
∏N

j=1

(
t2

tj
2 + 2cosθ t

tj
+ 1
)

∏N
j=1

(
t2

t′j
2 + 2cosθ t

t′j
+ 1
) . (11)

As the function f ′a(t) is the product of two functions like (5), it is important to note
that it realizes the approximation of t−2ν. Using relation (11), the approximation of function
(3) can thus be carried out with Algorithm 3.
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Algorithm 3

1. Use step 1 and 2 of algorithm 1.
2. Compute β = r

ν
2 and α = r

β .

3. Compute t1 = tl ∗
√

α and the other t′j and tj using relations

β =
t′j
tj

and α =
tj+1

t′j
(12)

4. Compute K0 = (tm)
−ν

∏N
j=1

(
t2

tj
2 +2cosθ t

tj
+1

)

∏N
j=1

(
t2

t′j
2 +2cosθ t

t′j
+1

) with tm =
√

tlth (middle of [tl , th] on a

logarithmic scale

5. Compute the approximation f ′a(t) = K0

∏N
j=1

(
t2

t′j
2 +2cosθ t

t′j
+1

)

∏N
j=1

(
t2
tj

2 +2cosθ t
tj
+1

)

Figure 6 shows that algorithm 3 produces very accurate approximations of f (t) = t−ν

for various values of θ and various values of ν.
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4. A Second Extension to Complex Fractional Behaviour
In ref. [42], the existence of phenomena that can be described in terms of the fractional

kinetic equation containing complex-power-law exponents was highlighted. It is thus of
interest to define convolution operators such as (1) able to capture these behaviours without
a singular kernel.

The goal now is thus to approximate the time complex time function

f (t) = t−ν = ta+ib, ν ∈ R, a ∈ R, b ∈ R, (13)

using a rational function. Function (13) can be rewritten as:

f (t) = e(a+ib)ln(t) = ealn(t)(cos(bln(t)) + isin(bln(t))). (14)
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The real and imaginary parts of this function are defined by:

R{ f (t)} = ealn(t)cos(bln(t)) (15)

and
I{ f (t)} = ealn(t)sin(bln(t)). (16)

The gain and the phase (in degrees) associated with this complex function are defined by:

| f (t)|dB =
20ln

(
ealn(t)

)
ln(10)

= 20a
ln(t)

ln(10)
= 20aLog(t) (17)

and
φ( f (t)) =

180
π

bln(t) =
180

πln(10)
bLog(t). (18)

The gain and the phase of f (t) as a function of Log(t) are represented, respectively, by
Figures 7 and 8. Note that the gain and the phase of f (t) are linear functions of Log(t).
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Figure 7. Gain of f (t) (that does not depend on parameter b) in log–log representation as a function
of Log(t) for various values of parameter a.
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To obtain an approximation of function f (t) using a rational function, let us consider
the function

g(t) =

1 + t

tkr−
(α+iβ)

2

1 + t

tkr
α+iβ

2

. (19)

For t ≪ tk, |g(t)|dB = 0 and φ( f (t)) = 0.
For t ≫ tk,

|g(t)|dB = 20αLog(r) (20)

and
φ(g(t)) =

β

ln(10)
Log(r). (21)

This gain and phase do not depend on time t. Asymptotically, the function g(t)
produces a step of gain and phase at the time tk, as shown by Figure 9. An approximation
of the gain and phase of function f (t) can thus be obtained by repeating these types of
steps periodically on a logarithmic scale (making it possible to condense the time domain
and making the gain and phase of f (t) linear). This idea is schematized in Figure 9. Using
Figure 9, the following relations can be obtained:

Log(th)− Log(tl) = N∆t thus ∆t = Log

((
th
tl

) 1
N
)

(22)

Log(tk+1)− Log(tk) = ∆t thus tk+1 = tk10∆t (23)

Log(t1)− Log(tl) =
∆t
2

thus t1 = tl10
∆t
2 . (24)

To satisfy the slope equality, the following equations hold:
For the gain

20αNLog(r) = 20aLog(th)− 20aLog(tl) thus αLog(r) = aLog
((

th
tl

) 1
N
)
=

a∆t
(25)

For the phase

180
π

β
ln(10) NLog(r) = 180

π
b

ln(10) Log(th)− 180
π

b
ln(10)20aLog(tl) thus βLog(r) =

bLog
((

th
tl

) 1
N
)
= b∆t

(26)

Note that the previous two relations lead to a system of 2 equations with 3 unknowns
{a, β, r}: {

αLog(r) = a∆t
βLog(r) = b∆t

. (27)

There is thus an infinity of solutions.
For the particular solution {a = a, β = b, r = 10∆t}, on the interval [tl , th], the function

f (t) can thus be approximated by

fa(t) = C0

∏N
1

(
1 + t

tkr−
(a+ib)

2

)

∏N
1

(
1 + t

tkr
a+ib

2

) (28)

using Algorithm 4.
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Algorithm 4. Approximation of f(t) (for given values of a and b)

1—Choose tl and th and the number N of intervals of which the function Log( f (t)) is
sampled in Figure 9.

2—Compute ∆t = Log
((

th
tl

) 1
N
)

, r = 10∆t and the times t1 = tl10
∆t
2 and tk+1 = tk10∆t,

k ∈ [1, N − 1]
3—Compute the gain C0 so that f (t) = fa(t) for Log(t) = 1

2 (Log(th) + Log(tl)) (namely
the middle of the interval [Log(tl), Log(th)]) thus for t =

√
thtl :

C0 = (thtl)
a+ib

2

∏N
1

(
1 +

√
thtl

tkr−
(α+iβ)

2

)

∏N
1

(
1 +

√
thtl

tkr
α+iβ

2

) (29)

Fractal Fract. 2025, 9, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 9. Illustration of the gain and phase approximation methodology for 𝑡ିఔ, 𝜈 ∈ ℝ, in log–log 
representation. Green lines and red lines show the successive asymptotic contributions of poles and 
zeros to the gain and phase. 

To satisfy the slope equality, the following equations hold: 
For the gain 20𝛼𝑁𝐿𝑜𝑔(𝑟) = 20𝑎𝐿𝑜𝑔(𝑡௛) − 20𝑎𝐿𝑜𝑔(𝑡௟) thus 𝛼𝐿𝑜𝑔(𝑟) = 𝑎𝐿𝑜𝑔 ቆቀ௧೓௧೗ ቁభಿ ቇ =𝑎Δ𝑡  

(25)

For the phase ଵ଼଴గ ఉ௟௡(ଵ଴) 𝑁𝐿𝑜𝑔(𝑟) = ଵ଼଴గ ௕௟௡(ଵ଴) 𝐿𝑜𝑔(𝑡௛) − ଵ଼଴గ ௕௟௡(ଵ଴) 20𝑎𝐿𝑜𝑔(𝑡௟) thus 𝛽𝐿𝑜𝑔(𝑟) =𝑏𝐿𝑜𝑔 ቆቀ௧೓௧೗ ቁభಿ ቇ = 𝑏Δ𝑡  
(26)

Note that the previous two relations lead to a system of 2 equations with 3 unknowns 
{𝑎, 𝛽, 𝑟}: ൜𝛼𝐿𝑜𝑔(𝑟) = 𝑎Δ𝑡𝛽𝐿𝑜𝑔(𝑟) = 𝑏Δ𝑡.  (27)

There is thus an infinity of solutions.  
For the particular solution {𝑎 = 𝑎, 𝛽 = 𝑏, 𝑟 = 10୼௧}, on the interval ሾ𝑡௟, 𝑡௛ሿ, the func-

tion 𝑓(𝑡) can thus be approximated by 

𝑓௔(𝑡) = 𝐶଴ ∏ ቌଵା ೟೟ೖೝష(ೌశ೔್)మ ቍభಿ
∏ ቌଵା ೟೟ೖೝೌశ೔್మ ቍభಿ   (28)

Figure 9. Illustration of the gain and phase approximation methodology for t−ν, ν ∈ R, in log–log
representation. Green lines and red lines show the successive asymptotic contributions of poles and
zeros to the gain and phase.

A comparison of the function f (t) given by relation (13) with its approximation fa(t)
(relation (28)) is shown in a 3D space in Figure 10. This figure shows the real part of the
logarithm if these functions (Re{Log(.)}) and the imaginary part of the logarithm if these
functions Im{Log(.)} as a function of Log(t). A comparison of the gains and phases of f (t)
and of its approximation fa(t) is also proposed by Figure 11. These two figures highlight
that algorithm 4 achieves an accurate approximation of f (t) on the time interval defined by
[tl , th] =

[
10−4, 10−4].
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1. without requiring classical fractional calculus operators.
2. using non singular kernels.

These kernels are rational functions that approximate the power law function t−ν on a
defined time range. This work is an extension of previous studies in this line [34,35], as the
coefficients in the rational functions considered are complex, and because the power ν can
be either real or complex. The fractional behaviour of these kernels is always the result of
the interlacing of the poles and zeros of these rational functions. By retaining only the real
part of the rational functions generated or by pairing it with its complex conjugate, accurate
approximations of the power law function t−ν within a specified time range are obtained.
The resulting kernels consist of a ratio of products of second-order polynomials. In the real
case, this approach provides a more accurate approximation near the boundaries of the
approximation interval compared to the previous work of the author [34,35]. For complex
values of ν, it broadens the applicability of the convolution models proposed by the author.
The mathematical contribution of the paper is therefore the definition of approximants for
the power law function t−ν, ν ∈ C, approximants that can be used in convolution kernels
to approximate fractional order operators.

This work is also a response to the limitations and drawbacks inherent in the fractional
models and operators mentioned in the literature, by introducing new modelling tools
designed to address fractional behaviours or through the re-identification of fractional-order
systems with integer-order models, using, for instance, phase-space reconstruction methods.
It serves as further evidence that fractional behaviours can be effectively modelled using
methodologies beyond those associated with fractional calculus. This further demonstrates
that working on fractional behaviour without confining oneself to fractional models creates
numerous opportunities for exploration within the domain of model analysis and identification.

It is now necessary to consider real-world fractional behaviours to accurately delineate
the limitations of the proposed non-singular rational kernels in modelling scenarios. For
instance, it should be interesting to develop methods to compute the kernel resulting from
the series or feedback connection of several models defined with the convolution operator
(1) with kernel (3). Do they still have a rational form as (3)? The author also plans to
develop parameter estimation algorithms and the corresponding discretization strategies.
Additionally, there is an intention to create tools for analyzing the properties of convolution
models which involve rational non-singular kernels, focusing on aspects such as stability,
controllability, and observability. The non-singular kernel proposed can also be used for the
simulation of fractional order models, in the same way as the exponential developments
commonly encountered in the literature. An interesting future work would thus be to
evaluate the interests and limitations of these kernels for numerical simulations.
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