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Abstract: This paper investigates the state estimation problem for nonlinear cyber–physical
systems (CPSs). To conserve system resources, we propose a novel hybrid dynamic event-
triggered mechanism (ETM) that prevents the occurrence of Zeno behavior. This work
is based on designing an interval observer under the hybrid dynamic ETM to solve the
state reconstruction problem of Lipschitz nonlinear CPSs subject to disturbances. That is,
the designed triggering mechanism is integrated into the design of the Interval Observer
(IO), resulting in a hybrid dynamic event-triggered interval observer (HDETIO), and the
system stability and robustness are proved using a Lyapunov function, demonstrating
that the observer can effectively provide interval estimation for CPSs with nonlinearity
and disturbances. Compared to existing work, the primary contribution of this work is
its ability to pre-specify the minimum inter-event time (MIET) and apply it to interval
state estimation, enhancing its practicality for real-world physical systems. Finally, the
correctness and effectiveness of the designed hybrid dynamic ETM and IO framework are
validated with an example.

Keywords: hybrid dynamic event-triggered mechanism; cyber–physical systems; interval
state estimation

1. Introduction
With the rapid advancements in computer technology, network communication,

and control theory, CPSs have enabled a profound integration of physical entities with
computation, communication, and control functions [1]. These systems have found wide
applications in fields such as smart grids [2], aerospace engineering [3], and robotic sys-
tems [4]. Concurrently, the ongoing progression of Industry 4.0 has greatly enhanced
the flexibility and intelligence of CPSs. However, in practical engineering applications,
CPSs often face limitations in accessing complete state parameters due to the limitations
of measurement techniques and resource constraints. This brings challenges to the im-
plementation of some CPSs functions, such as observer-based state feedback control and
distributed coordinated control. Therefore, solving the state estimation problem in CPSs is
significant and has drawn a great deal of attention from researchers.

In research related to the state estimation problem of CPSs, the predominant methods
include observer techniques and filtering approaches. For instance, ref. [5] explored the de-
velopment of a hybrid state estimation mechanism that integrates discrete and continuous
observation techniques and demonstrates its application in the field of electric vehicle tech-
nology. Ref. [6] studied the stochastic stability of state estimation based on Kalman filtering
within lossy network environments. Ref. [7] primarily focused on attack detection and
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security state estimation of CPSs under finite-time attacks. Due to the presence of various
unknown signals in the system, which can generally be classified as random signals or in-
terval signals, existing observers can be categorized into point estimators and IOs. The IOs,
first proposed by J.L. Gouzé et al. [8], have been provided with a structural framework.
Subsequently, researchers introduced coordinate transformation methods into switching
systems and constructed a series of interval observers for switching systems [9,10], re-
laxing the limitations of interval observer design conditions. Furthermore, for CPSs, IOs
not only solve the state estimation problem, but also provide an interval range of states,
making them more applicable to real-world engineering scenarios. With the continuous
innovation and development of IO design techniques, scholars have proposed numerous
set-membership estimation methods to design such observers. For example, polytopes [11],
ellipsoids [12], and zonotopes [13] can all be used to enclose the actual state of the system at
each moment. Additionally, IOs exhibit good robustness against certain nonlinearities [14]
and unknown disturbances [15]. Ref. [16] investigated the stealthiness of attack strategies
against χ2 detectors for CPSs under covert deceptive attacks and achieved interval estima-
tion of the state through H∞ technology and reachable set analysis. Consequently, IOs are
of significant practical importance in the study of CPSs reconstruction problems.

On the other hand, in CPSs, efficiently utilizing computational and communication
resources is a critical issue. Consequently, the ETM has gradually garnered significant
research attention. The core concept of the ETM is that it does not trigger control actions
at fixed time intervals; instead, it relies on changes in system states or specific events
to trigger actions. This mechanism can reduce redundant data transmission caused by
periodic sampling, particularly when system states do not change significantly, thereby
markedly decreasing energy consumption and network burden. A periodic ETM was
previously proposed in [17], which also studied static state feedback and dynamic output-
based controllers based on the periodic ETM. To further conserve energy while ensuring
system performance, an additional variable was introduced in [18], resulting in the dynamic
ETM. Consequently, the dynamic ETM has begun to attract preliminary research interest,
as stated in [19–22]. Among these studies, ref. [19] applied the dynamic ETM to a singular
system affected by random network attacks and designed an H∞ controller to enhance
the robustness of the singular system. Meanwhile, ref. [20] integrated model-based CPSs
with the dynamic ETM to investigate the L2 gain performance of CPSs in the presence of
DoS attacks, while also considering the implications of quantization. Additionally, ref. [23]
introduced adaptive event-triggered control into nonlinear uncertain systems; an adaptive
controller based on backstepping was designed to deal with the parametric uncertainties.
At the same time, adaptive event triggering control [24] was applied to commercial mobile
robots subject to input delay and limited communications. It provides a broader perspective
on the applicability and scalability of the method.

Furthermore, the integration of ETM into CPSs introduces a critical challenge: exclud-
ing Zeno behavior, which refers to the phenomenon of infinite actuator triggering within
a limited time. Reference [25] explored the consistency control of multi-agent systems
utilizing distributed ETM, addressing the exclusion of Zeno behavior by ensuring that the
interval between any successive trigger events exceeds a constant positive value. In [26],
Zeno behavior was excluded through a proof by contradiction. However, due to the in-
herent minimum reaction time of practical hardware and the theoretical MIET potentially
being a very small positive number, Zeno behavior can still occur. Therefore, an effective
method to eliminate the limitations of Zeno behavior is to improve the trigger conditions
by pre-designing a MIET that ensures a strictly positive MIET and to meet the demands of
practical applications. Consequently, a new hybrid dynamic ETM was proposed in [27].
Reference [28] extended this hybrid dynamic ETM to multi-agent systems, successfully
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achieving consensus control. However, the issue of interval estimation in CPSs based on
hybrid dynamic ETM has not been studied yet.

Therefore, this paper proposes a novel HDETIO design method for state reconstruction
and resource optimization in nonlinear CPSs with disturbance. It addresses the state
estimation problem of CPSs under a hybrid dynamic ETM. By reducing the number of
executions of the trigger while ensuring the estimation accuracy, it achieves the effect
of optimizing resources. At the same time, it also avoids the infinite triggering fault
of the trigger caused by the insufficiency of actual engineering hardware. The primary
approach is to reduce the observer’s reliance on the original systems’ output through the
hybrid dynamic ETM, thereby designing an IO using the positive system method and
analyzing its stability. The contributions of this paper mainly lie in two aspects: Firstly,
the introduction of a novel hybrid dynamic ETM that prevents Zeno behavior and allows
for the pre-specification of the MIET during the design process. Secondly, a novel HDETIO
is constructed, which not only achieves interval estimation of CPSs, but also conserves
system resources. The structure of this paper is organized as follows: Section 2 elaborates
on fundamental concepts. Section 3 presents the main conclusions, with a primary focus
on the design of HDETIO and the stability analysis of CPSs. Section 4 demonstrates their
effectiveness through numerical simulations. Finally, the Conclusions are summarized.

Notation: For a matrix H ∈ Rm×n, HT is utilized to represent the transpose of matrix
H, and we define H ≻ 0(≺ 0) to indicate that H is a positive definite (negative definite)
matrix, respectively. We also define H+ = max(H, 0) and H− = H+ −H. The symbol ∥ · ∥
denotes the Euclidean norm. For a square matrix Υ, the expression λΥ max (λΥ min) represents
the maximum (minimum) eigenvalue of Υ. In symmetric block matrices, symmetric terms
can be represented by ∗. In is the n dimensional identity matrix.

2. Preliminaries
To begin with, we consider a nonlinear continuous system as follows,{

ẋ(t) = Ax(t) + Bu(t) + F(x(t)) + Dd(t),

y(t) = Cx(t),
(1)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the state and control input. F(x(t)) ∈ Rnx is the
nonlinear term. y(t) ∈ Rny and d(t) ∈ Rnd represent the output and unknown process noise.

In an effort to optimize and significantly boost the performance of our resources, we
have implemented an innovative ETM. This mechanism is designed to activate certain
processes or operations only after specific conditions are met and a set triggering interval
time τmin

ETI has elapsed. This strategy aims to cut down on pointless calculations and
communications, thereby conserving energy and improving the overall efficiency of the
system. The hybrid dynamic ETM is presented as follows:{

tk+1 = inf{t ≥ tk + τmin
ETI |Φ(y(t), ey(t)) ≥ η(t)},

η̇(t) = −λη(t)− Φ(y(t), ey(t)),
(2)

where λ > 0, η(0) > 0, Φ(y(t), ey(t)) = α
[
eT

y (t)P̄ey(t)− βyT(t)Qy(t)
]
, ey(t) = y(t) −

y(tk), and τmin
ETI is the pre-specified minimum triggering interval and y(tk) is the output

transmitted after triggering. The initial condition is t0 = 0 and η(t) is a bounded non-
negative function.

Figure 1 illustrates the interval observer design framework based on the hybrid dy-
namic ETM. Within this system, the hybrid dynamic ETM mitigates the burden on commu-
nication and computational resources by reducing unnecessary data updates. The design
of the interval observer takes into account the disturbances and event-driven impacts of
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CPSs, ensuring the stability and robustness of the system. The objective of this paper is to
conduct research on the state estimation problem of CPSs within the hybrid dynamic ETM
environment by designing an effective interval observer, thereby conserving the resources
of the networked system.

Hybrid dynamic Event-triggered

Timer

Event Detector

Minimum Trigger

Interval Time
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Figure 1. The IO structure with HDETM.

Remark 1. The hybrid dynamic ETM reverts to a static ETM under the condition where the
minimum event-triggered interval τmin

ETI is zero and the dynamic threshold function η(t) is zero.
In this scenario, the simplified form of ETM as shown below,

tk+1 = inf{t ≥ tk|Φ(y(t), ey(t)) ≥ 0}. (3)

This represents a transition from a dynamic to a static triggering logic, highlighting the flexibility of
the hybrid dynamic ETM framework to adapt to different system requirements. Furthermore, it is
crucial to acknowledge that the hybrid dynamic ETM degrades to a dynamic ETM if, and only if,
τmin

ETI = 0. The following equations determine the dynamic ETM:{
tk+1 = inf{t ≥ tk|Φ(y(t), ey(t)) ≥ η(t)},

η̇(t) = −λη(t)− Φ(y(t), ey(t)).
(4)

These equations are the dynamic adjusted of the triggering condition according to the system state
and the threshold function η(t), which is influenced by the system performance and the chosen
design parameter β. This degradation to DETM emphasizes the seamless transition of the hybrid
dynamic ETM in response to specific operational constraints, providing a robust framework for
event-triggered control systems.

Remark 2. The configuration of the ETM is depicted in Figure 1. Within this proposed framework,
the parameter τmin

ETI > 0 is defined to ensure a minimum positive interval between triggers, thereby
averting the occurrence of Zeno behavior. This is accomplished by incorporating a timer (refer to
Figure 1) that measures the duration since the last triggering event. Additionally, as illustrated in
Figure 1 and Equation (3), the triggering condition is determined using only local variables.

Remark 3. Figure 2 shows the event-triggered interval for a case. If the depicted behavior is the
result of either a static or dynamic ETM, the minimum triggering interval is determined after the
mechanism has been activated. Conversely, if the behavior is derived from a hybrid dynamic ETM,
the minimum interval is known prior to the triggering event and is established during the system
design phase; all of the trigger interval times are above the red dashed line shown in Figure 2. This
prior knowledge of the minimum interval allows for a more informed selection and design tailored to
specific requirements.



Fractal Fract. 2025, 9, 86 5 of 16

0

0.5

1

1.5

R
e

le
a

s
e

 i
n

s
ta

n
ts

 a
n

d
 r

e
le

a
s
e

 i
n

te
rv

a
ls

0 1 2 3 4 5 6 7

t(s)

Figure 2. Triggering time instants and intervals.

Remark 4. In the design of interval observers for linear continuous systems, it is essential to first
ascertain that the system’s initial state and disturbances are bounded, as outlined in Assumption
1. This condition is typically satisfied in practical applications, and its constraint is considered
negligible, which is the same as that in [9,14].

Lemma 1 ([29]). Supposing that the function I(x) exhibits global Lipschitz continuity and
differentiability, it is then possible to identify two non-decreasing Lipschitz functions g(x) and φ(x)
that satisfy

I(x) = g(x)− φ(x). (5)

Lemma 2 ([29]). Let the function I(x) be defined in Lemma 1, it is possible to find a globally
Lipschitz continuous function Ī(xa, xb) such that

Ī(x, x) = I(x),
∂Ī

xa
≥ 0,

∂Ī

xb
≤ 0.

(6)

The preceding lemmas assist in establishing the bounds for I(x, x):

Ī(x−, x+) ≤ I(x, x) ≤ Ī(x+, x−). (7)

Lemma 3 ([29]). For I(x), along with Ī(x+, x−) and Ī(x−, x+), as outlined in Lemma 2, there
exist the constants ρi(i = 1, 2, 3, 4), such that{

Ī(x+, x−)− I(x) ≤ ρ1(x+ − x) + ρ2(x − x−),

I(x)− I(x−, x+) ≤ ρ3(x+ − x) + ρ4(x − x−).
(8)

Lemma 4 ([30]). For a constant matrix A ∈ Rm×n and a vector ς ∈ Rn ∈ [ς−, ς+], then

A+ς− − A−ς+ ≤ Aς ≤ A+ς+ − A−ς−. (9)

Lemma 5 ([31]). If Equation (2) holds, then the event-triggered variable η(t) > 0 at any time t.

Assumption 1. The initial state x(0) and the disturbances d(t) of the system are bound.
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Assumption 2. If the function F(x(t)) satisfies the Lipschitz condition and F(0) = 0, there exists
ι ∈ N+, such that any x1, x2 ∈ Rn, and the following inequality holds

∥F(x1)− F(x2)∥ ≤ ι∥x1 − x2∥. (10)

3. Main Results
3.1. Design of the HDETIO Frame

Firstly, we design the following HDETIO frame:

˙̂x+(t) =Ax̂+(t) + Bu(t) + F̄(x+(t), x−(t)) + D+d+(t)− D−d−(t)

+ L(y(tk)− Cx̂+(t)) + L+e+y (t)− L−e−y (t),
˙̂x−(t) =Ax̂−(t) + Bu(t) + F̄(x−(t), x+(t)) + D+d−(t)− D−d+(t)

+ L(y(tk)− Cx̂−(t)) + L+e−y (t)− L−e+y (t),

(11)

where x̂+(t) and x̂−(t) are the estimation of x(t) and L is the gain matrix of the system to
be designed.

Theorem 1. Suppose that A − LC is a Metzler matrix and Assumption 1 holds, then

x̂−(t) ≤ x(t) ≤ x̂+(t). (12)

Proof. In the light of (9) and Assumption 1, we can draw the following conclusion:

Σ1 =F̄(x+(t), x−(t))− F(x(t)) + D+d+(t)− D−d−(t)− Dd(t)

− Ley(t) + L+e+y (t)− L−e−y (t) ≥ 0,

Σ2 =F(x(t))− F̄(x−(t), x+(t)) + Dd(t)− D+d−(t) + D−d+(t)

− L+e−y (t) + L−e+y (t) + Ley(t) ≥ 0.

(13)

In view of the ETM (2), we can define the error system as follows:{
ex

+(t) = x̂+(t)− x(t),

ex
−(t) = x(t)− x̂−(t).

(14)

Subsequently, the error systems are transformed into the equations as below:{
ė+x (t) = (A − LC)e+x (t) + Σ1,

ė−x (t) = (A − LC)e−x (t) + Σ2.
(15)

Based on (15), if A − LC is a Metzler matrix, and under the fact that x̂−(0) ≤ x(0) ≤ x̂+(0),
e+(0) ≥ 0 and e−(0) ≥ 0, we conclude that ė−x (t) and ė−x (t) are non-negative. Therefore,
one can obtain

x̂−(t) ≤ x(t) ≤ x̂+(t), t ≥ 0.

3.2. Stability Analysis of HDETIO

Defining ξ(t) =
[
(ex

+(t))T (ex
−(t))T

]T
, then (15) can be written as

ξ̇(t) = Ãξ(t) + F̃(x(t)) + D̃d(t) + L̃ey(t) + Ẽg(t), (16)
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where

Ã =

[
A − LC 0

0 A − LC

]
, F̃(x(t)) =

[
F̄(x+(t), x−(t))− F(x(t))
F(x(t))− F̄(x−(t), x+(t))

]
,

D̃ =

[
−D
D

]
, L̃ =

[
−L
L

]
, Ẽ =

[
L+ −L− D+ −D−

L− −L+ D− −D+

]
, g(t) =


e+y (t)
e−y (t)
d+(t)
d−(t)

.

Theorem 2. Under the conditions of Theorem 1 and Assumption 2, by employing the HDETM (2),
if there exists Φ > 0, β > 0, vi > 0(i = 1, . . . , 8), γ and λ > 0, such that the following matrix
inequality holds: Λ1 0 0

∗ Λ2 0
∗ ∗ Λ3

 ≺ 0, (17)

where
Λ1 =ÃT P + PÃ + (

1
v1

+
1
v2

+
1
v3

+
1
v4

)P2 + λP + v1ϱTϱ,

Λ2 =v3 L̃T L̃ − αL̃T PL̃ + λϕ(0)L̃T PL̃,

Λ3 =αβCTQC + v5ϕ(0)ATCTCA + v7λCTCmax
k2 I − γI.

Then, (11) is the HDETIO of system (1). Furthermore, the minimum tmin
ETI < τM ensures the

absence of Zeno behavior.

Proof. Let us introduce an auxiliary function ϕ(t) with the following dynamics:

ϕ̇(t) = −s(t)
[
c2ϕ2(t) + c1ϕ(t) + c0

]
, (18)

where s(t) is defined as

s(t) =

1, f or tk ≤ t ≤ tk + tmin
ETI

0, f or t > tk + tmin
ETI

(19)

and c2, c1, and c0 are positive constants, and the initial condition ϕ(0) > 0. In order to
ensure ϕ(t) > 0 for t ≥ 0, it is necessary to appropriately select tmin

ETI . Simultaneously,
from ϕ(t) > 0, it can be inferred that ϕ̇(t) ≤ 0, which means ϕ(t) ≤ ϕ(0).

From Equation (18), we have d(t) = dϕ(t)/(c2ϕ2(t) + c1ϕ(t) + c0) for 0 ≤ t ≤ τM.
The value of τM, which corresponds to ϕ(τM) = 0, can be determined by integrating

τM =
∫ 0

ϕ(0)

dϕ(τ)

(c2ϕ2(τ) + c1ϕ(τ) + c0)
. (20)

Employing established techniques of mathematical integration, we arrive at the fol-
lowing expression for τM:

τM =


2
θ arctan

(
2c2ϕ(0)θ

θ2+c2
1+2c1c2ϕ(0)

)
, c2

1 < 4c0c2,

1
θ ln

(
2c1c2ϕ(0)+4c0c2+2c2ϕ(0)θ
2c1c2ϕ(0)+4c0c2−2c2ϕ(0)θ

)
, c2

1 > 4c0c2,
4c2ϕ(0)

c2
1+2c1c2ϕ(0)

, c2
1 = 4c0c2.

(21)
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By setting 0 < tmin
ETI < τM, we ensure ϕ(t) > 0 for all t ≥ 0, which is a critical requirement

for our subsequent analysis. In addition, the Lyapunov function is constructed as

V(t) = V1(t) + V2(t), (22)

where V1(t) = ξT(t)Pξt + η(t) and V2(t) = ϕ(t)eT
y (t)P̄ey(t). Then, calculating the V1(t)

derivative, we have

V̇1(t) =[Ãξ(t) + F̃(x(t)) + D̃d(t) + L̃ey(t) + Ẽg(t)]T Pξ(t)

+ ξT(t)P[Ãξ(t) + F̃(x(t)) + D̃d(t) + L̃ey(t) + Ẽg(t)]

− λη(t)− αeT
y (t)L̃T PL̃ey(t) + αβyT(t)Qy(t)

=ξT(t)[ÃT P + ÃP]ξ(t) + 2F̃T(x(t))Pξ(t) + 2[D̃d(t)]
T

Pξ(t)

+ 2[L̃ey(t)]
T

Pξ(t) + 2[Ẽg(t)]
T

Pξ(t)− λη(t)

− αeT
y (t)L̃T PL̃ey(t) + αβyT(t)Qy(t).

(23)

According to the basic inequality, then

2F̃T(x(t))Pξ(t) ≤ v1 F̃T(x(t))F̃(x(t)) +
1
v1

ξT(t)P2ξ(t),

2[D̃d(t)]
T

Pξ(t) ≤ v2[D̃d(t)]T D̃d(t) +
1
v2

ξT(t)P2ξ(t),

2[L̃ey(t)]
T

Pξ(t) ≤ v3[L̃ey(t)]T L̃ey(t) +
1
v3

ξT(t)P2ξ(t),

2[Ẽg(t)]
T

Pξ(t) ≤ v4[Ẽg(t)]T Ẽg(t) +
1
v4

ξT(t)P2ξ(t).

(24)

And based on Lemma 3 and (16), the nonlinear term satisfies{
F̃(x(t)) ≤ ϱξ(t),

F̃T(x(t))F̃(x(t)) ≤ ξT(t)ϱTϱξ(t),
(25)

where

ϱ =

[
ϱ1 ϱ2

ϱ3 ϱ4

]
.

The following conclusion can be drawn from the above inequality:

V̇1(t) ≤ξT(t)[ÃT P + PÃ + (
1
v1

+
1
v2

+
1
v3

+
1
v4

)P2 + v1ϱTϱ]ξ(t)

+ v2[D̃d(t)]T [D̃d(t)] + v3[L̃ey(t)]T [L̃ey(t)] + v4[Ẽg(t)]T [Ẽg(t)]

− λη(t)− αeT
y (t)L̃T PL̃ey(t) + αβxT(t)CTQCx(t).

(26)

Meanwhile, one has

ėy(t) = ẏ(t)

= CAx(t) + CBu(t) + CF(x(t)) + CDd(t).
(27)
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Then, calculating the derivative of V2(t) yields

V̇2(t) =− s(t)[c2ϕ2(t) + c1ϕ(t) + c0]eT
y (t)L̃T PL̃ey(t)

+ ϕ(t)[CAx(t) + CBux(t) + CF(x(t)) + CDd(t)]T L̃T PL̃ey(t)

+ ϕ(t)eT
y (t)L̃T PL̃[CAx(t) + CBux(t) + CF(x(t)) + CDd(t)]

=− s(t)[c2ϕ2(t) + c1ϕ(t) + c0]eT
y (t)L̃T PL̃ey(t) + 2ϕ(t)[CAx(t)]T L̃T PL̃ey(t)

+ 2ϕ(t)[CBu(t)]T L̃T PL̃ey(t)− 2ϕ(t)[CF(x(t))]T L̃T PL̃ey(t)

+ 2ϕ(t)[CDd(t)]T L̃T PL̃ey(t).

(28)

Similar to (23), the following inequalities can be obtained

2[CAx(t)]T L̃T PL̃ey(t) ≤ v5[CAx(t)]T [CAx(t)] +
1
v5

ey
T(t)(L̃T PL̃)2ey(t),

2[CBx(t)]T L̃T PL̃ey(t) ≤ v6[CBu(t)]T [CBu(t)] +
1
v6

ey
T(t)(L̃T PL̃)2ey(t),

2[CF(x(t))]T L̃T PL̃ey(t) ≤ v7[CF(x(t))]T [CF(x(t))] +
1
v7

ey
T(t)(L̃T PL̃)2ey(t),

2[CDd(t)]T L̃T PL̃ey(t) ≤ v8[CDd(t)]T [CDd(t)] +
1
v8

ey
T(t)(L̃T PL̃)2ey(t).

(29)

According to Assumption (2), the following inequality is true:

FT(x(t))CTCF(x(t)) ≤ λCTCmax
FT(x(t))F(x(t)) ≤ λCTCmax

k2||x||2 (30)

where λCTCmax
represents the largest eigenvalue of the matrix CTC and k stands for the

Lipschitz coefficient.
Therefore,

V̇2(t) ≤ey
T(t)[−s(t)(c2ϕ2(t) + c1ϕ(t) + c0)L̃T PL̃ + ϕ(t)(

1
v5

+
1
v6

+
1
v7

+
1
v8

)

× (L̃T PL̃)2]ey(t) + v5ϕ(t)[CAx(t)]T [CAx(t)] + v6ϕ(t)[CBu(t)]T [CBu(t)]

+ v8ϕ(t)[CDd(t)]T [CDd(t) + v7ϕ(t)λCTCmax
FT(x(t))F(x(t)).

(31)

In view of V̇1(t) and V̇2(t), we can obtain

V̇(t) = V̇1(t) + V̇2(t)

≤ ξT(t)[ÃT P + PÃ + (
1
v1

+
1
v2

+
1
v3

+
1
v4

)P2 + v1ϱTϱ]ξ(t)

+ ey
T(t)[−s(t)

[
c2ϕ2(t) + c1ϕ(t) + c0

]
L̃T PL̃ + ϕ(0)(

1
v5

+
1
v6

+
1
v7

+
1
v8

)

× (L̃T PL̃)2 + v3 L̃T L̃ − αL̃T PL̃]ey(t)

+ xT(t)[αβCTQC + v5ϕ(0)ATCTCA + v7ϕ(0)λCTCmax
k2 I]x(t)

+ (v2 + v8ϕ(0))[CDd(t)]T [CDd(t)] + v4[Ẽg(t)]
T
[Ẽg(t)]

+ v6ϕ(0)[CBu(t)]T [CBu(t)]− λη(t).

(32)

Let φ(t) =
[
ξT(t) ey

T(t) xT(t)
]T

, together with (18). Then,
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V̇(t) + λV(t)− γxT(t)x(t)

≤ ξT(t)[ÃT P + PÃ + (
1
v1

+
1
v2

+
1
v3

+
1
v4

)P2 + λP + v1ϱTϱ]ξ(t)

+ ey
T(t)[−s(t)

[
c2ϕ2(t) + c1ϕ(t) + c0

]
L̃T PL̃ + ϕ(0)(

1
v5

+
1
v6

+
1
v7

+
1
v8

)

× (L̃T PL̃)2 + v3 L̃T L̃ − αL̃T PL̃ + λϕ(t)L̃T PL̃]ey(t)

+ xT(t)[αβCTQC + v5ϕ(0)ATCTCA + v7ϕ(0)λCTCmax
k2 I − γI]x(t)

+ JT(t)ΩJ(t)

≤ φT(t)Λφ(t) + JT(t)ΩJ(t),

(33)

where

Λ =

Λ1 0 0
∗ Λ4 0
∗ ∗ Λ3

, Ω =

v2DT D + v8ϕ(0)DTCTCD 0 0
∗ v4ẼT Ẽ 0
∗ ∗ v6ϕ(0)BTCTCB

,

Λ1 =ÃT P + PÃ + (
1
v1

+
1
v2

+
1
v3

+
1
v4

)P2 + λP + v1ϱTϱ,

Λ4 =− s(t)
[
c2ϕ2(t) + c1ϕ(t) + c0

]
L̃T PL̃ + ϕ(0)(

1
v5

+
1
v6

+
1
v7

+
1
v8

)

× (L̃T PL̃)2 + v3 L̃T L̃ − αL̃T PL̃ + λϕ(t)L̃T PL̃,

Λ3 =αβCTQC + v5ϕ(0)ATCTCA + v7λCTCmax
k2 I − γI,

J(t) =
[
d(t) gT(t) uT(t)

]T
.

Then, we have the following two cases.
Case 1: When t > tk + tmin

ETI , s(t) = 0, which implies ϕ̇(t) = 0.
Define Λ2 = ϕ(0)( 1

v5
+ 1

v6
+ 1

v7
+ 1

v8
)(L̃T PL̃)2 + v3 L̃T L̃ − αL̃T PL̃ + λϕ(t)L̃T PL̃, then

Λ4 ≤ Λ2,

V̇(t) + λV(t)− γxT(t)x(t) ≤ φT(t)

Λ1 0 0
∗ Λ4 0
∗ ∗ Λ3

φ(t) + JT(t)ΩJ(t). (34)

V̇(t) ≤ −λV(t) + γxT(t)x(t) + JT(t)ΩJ(t). (35)

Case 2: When tk ≤ t ≤ tk + tmin
ETI , s(t) = 1, which implies ϕ̇(t) ̸= 0.

V̇(t) + λV(t)− γxT(t)x(t) ≤ φT(t)

Λ1 0 0
∗ Λ2 0
∗ ∗ Λ3

φ(t) + JT(t)ΩJ(t). (36)

V̇(t) ≤ −λV(t) + γxT(t)x(t) + JT(t)ΩJ(t). (37)

Remark 5. When considering the auxiliary function ϕ(t), both the parameter ci and the initial
condition ϕ(0) must be chosen in advance. As indicated by (18), selecting a large c2 results in a
rapid decay in ϕ(t) when t ≤ τmin

ETI . By combining this with the results of (20) and (21), it follows
that τM will be smaller under these conditions and vice versa. Thus, a balance between θ and τM (or
τmin

ETI ) should be considered. Additionally, as highlighted by (20), increasing ϕ(0) helps to increase
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τM. However, according to (18), larger initial values of ϕ(0) lead to a quicker decay in ϕ(t) in the
beginning. Therefore, although selecting a larger ϕ(0) can contribute to a greater τM, the effect is
often subtle and should be carefully accounted for when choosing ϕ(0).

Remark 6. According to (20), the parameter τmin
ETI can be chosen such that τmin

ETI ≤ τM, serving as
the lower bound for the MIET. Additionally, it is important to emphasize that τmin

ETI is independent
of disturbances. Consequently, even in the presence of disturbances, the MIET and Zeno-freeness
are still assured, which contrasts with several other existing ETM schemes found in the literature,
such as [27,28,32].

Remark 7. The design of the HDETIO in this paper employs the positive systems approach.
The specific verification steps can be divided into two parts: First, a HDETIO framework is designed,
and, by taking differences, it is verified that the error system is positive, which means that the
upper and lower bounds of the designed HDETIO strictly enclose the original system state. Second,
a Lyapunov function is constructed, and the stability and robustness of the designed HDETIO are
analyzed through differentiation. Thereby, the design of the HDETIO is completed.

4. Numerical Simulation
Consider a nonlinear cyber–physical system with the following parameters:

A =

[
−3 1
0 −4

]
, B =

[
1
2

]
,

C =
[
0.3 0

]
, D =

[
0.01

1

]
.

Let the nonlinear function F(x(t)) =

[
0.5sinx1(t)
0.5sinx2(t)

]
and the disturbance d(t) = 0.5sin(t).

According to Lemma 3, we obtain the matrix ϱ in Equation (25) as

ϱ =


2 0 1 0
0 2 0 1
2 0 1 0
0 2 0 1

,

with d+(t) = 0.5 and d−(t) = −0.5.
Before simulation, initial values of the system need to be assigned, x1(0) = 5, x2(0) = 8.

And the initial values of the designed interval observer satisfy x+1 (0) = 9, x−1 (0) = 2,
x+2 (0) = 12 and x+2 (0) = 4. Additionally, the input is given by u(t) = sin(2πt)+ 3cos(πt)+
0.5sin(3πt). Other parameters are provided as follows: η(0) = 0.1, α = 0.5, β = 0.01,
c0 = 20, c1 = 0.5, c2 = 20, ϕ(0) = 20, γ = 0.8, λ = 0.01, k = 1, and vi = 0.5.

By solving problem (21), the minimum triggering interval τM = 0.0754, so we take
tmin
ETI = 0.0604. According to Theorem 2, the gain matrix and the event-triggered weighting

matrix are obtained as

L =

[
−0.1
−0.2

]
, P =

[
16.1082 1.8671
1.8671 14.7024

]
, P̄ = 0.8239, Q = 143.6600.

Figures 3 and 4 display the interval estimation of the state trajectories x1(t) and
x2(t), respectively. Figures 5 and 6 illustrate the accuracy of the state estimation, which
demonstrates the effectiveness and correctness of the designed IO. Additionally, Figure 7
represents the event-triggered intervals and the triggering instants, indicating that all event-
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triggered intervals are greater than the pre-designed tmin
ETI , thus saving system resources.

And Table 1 presents the number of triggering events for different values of tmin
ETI . It

can be observed that, while ensuring the estimation performance, as the pre-designed
tmin
ETI increases, the number of triggering events gradually decreases, which also implies a

reduction in the consumption of system resources.

Table 1. Trigger times for different tmin
ETI .

tmin
ETI 0.0504 0.0604 0.1346

Number of triggers (30 s) 193 183 143

The utilization rate of system resources 0.643% 0.610% 0.477%
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Figure 3. The state x1 and its interval estimation.
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Figure 4. The state x2 and its interval estimation.
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Figure 5. The estimation error of x1.
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Figure 7. Triggering instants and triggering intervals.

Additionally, we have conducted a comparison between the hybrid dynamic ETM
designed in this paper and the dynamic ETM in [33], as illustrated in Figure 8. It is evident
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that the hybrid dynamic ETM has a distinct MIET, which prevents the system’s operational
failures caused by the excessively short triggering intervals resulting from the dynamic
ETM shown in Figure 8, which may not be achievable with the required precision in
practical hardware applications. Moreover, Table 2 presents the number of triggers for both
event-triggering mechanisms. The hybrid dynamic ETM designed in this paper results
in fewer triggers, leading to a lower utilization rate of system resources, thus achieving
resource conservation.

Table 2. Trigger times for different event triggering mechanisms.

Different ETM Hybrid Dynamic ETM of This Paper Dynamic ETM of [33]

Number of triggers 183 223

0
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0.8

1

5 10 15 20 25 30
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0.8

1

1.2
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Triggering time instants and intervals of the hybrid dynamic ETM.

0 5 10 15 20 25 30

Triggering time instants and intervals of the dynamic ETM.

Figure 8. Triggering instants and triggering intervals of hybrid dynamic ETM and dynamic ETM [33]
under 30 s.

5. Conclusions
This paper investigates the state estimation problem of CPSs under a hybrid dynamic

ETM. The hybrid dynamic ETM studied allows for controlling the number of updates
and information transmissions through a pre-designed MIET control, thereby conserving
system resources. It also avoids the infinite triggering failure of the trigger in practical
engineering due to hardware limitations, providing broad possibilities for practical ap-
plications. Furthermore, for nonlinear CPSs subject to disturbances, we addressed the
nonlinear conditions through the Lipschitz condition and designed a novel HDETIO using
a positive system approach. The stability and robustness of the designed interval observer
were analyzed through Lyapunov stability analysis, solving the state interval estimation
problem of CPSs. Future research will concentrate on enhancing the estimation accuracy
and relaxing the limitations of this approach, as well as applying the designed HDETIO to
CPSs subjected to attacks or various types of disturbances.
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