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Abstract: This study delves into the synchronization issues of the impulsive fractional-
order, mainly the Caputo derivative of the order between 0 and 1, bidirectional associative
memory (BAM) neural networks incorporating the diffusion term at a fixed time (FXT) and
a predefined time (PDT). Initially, this study presents certain characteristics of fractional-
order calculus and several lemmas pertaining to the stability of general impulsive nonlinear
systems, specifically focusing on FXT and PDT stability. Subsequently, we utilize a novel
controller and Lyapunov functions to establish new sufficient criteria for achieving FXT
and PDT synchronizations. Finally, a numerical simulation is presented to ascertain the
theoretical dependency.

Keywords: fractional-order; impulse effect; fixed-time synchronization; predefined-time
synchronization
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1. Introduction
Neural networks are a cornerstone of artificial intelligence, mimicking the human

brain to address technological challenges and pave the way for new discoveries. These
networks are instrumental in information processing, pattern classification, and cognitive
control. Through mathematical modeling, we can examine and replicate brain functions in
artificial systems, such as robotics. Both theoretical and practical research are essential to
advance the field of dynamic neural networks.

Recently, fractional-order neural networks have become popular among scholars be-
cause fractional calculus can explain phenomena that classical calculus cannot, such as
random errors and unusual diffusion processes. Their memory and hereditary properties
make them valuable in various fields, including blood flow, electrolysis, and viscosity [1].
These fractional calculus properties, which allow neural networks to exhibit characteris-
tics such as memory and heredity, demonstrate advantages over traditional integer-order
derivatives when applied to various processes. These networks possess infinite memory,
and the adjustment of the fractional parameters enhances the device output by increasing
the degrees of freedom. They excel in information processing, parameter estimation, and di-
verse artificial intelligence applications and are comparable to biological networks [2,3] and
geometric models [4]. Additionally, fractional-order derivatives offer more accurate depic-
tions of chaotic behavior and a variety of nonlinear phenomena, because fractional-order
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derivatives exhibit global correlation and can better describe processes with strong histori-
cal dependence. Consequently, in recent years, a significant number of studies have been
presented focusing on fractional-order chaotic systems [5,6]. With the increasing complexity
of economic issues in the financial field, which are influenced by nonlinear factors, financial
systems exhibit highly intricate phenomena. Therefore, it is essential to investigate the dy-
namic characteristics and effects of chaos in intricate financial systems [7]. Fractional-order
models can better capture the complex behaviors and interactions within financial markets
or provide more accurate risk assessments and predictions. In [8], variable-order time-
fractional generalized Navier–Stokes equations were introduced to describe the anomalous
dynamics in porous flows to reveal the impact of the fractional order on fluid flow in
porous media. Other works detailed the use of fractional-order systems in the encryption
of images [9–11].

On the other hand, in various scientific domains, including image encryption [12,13],
pattern formation, biology [14] and chemistry, reaction–diffusion terms are indispensable.
In particular, bidirectional associative memory (BAM) neural networks with reaction–
diffusion terms enhances their ability to store and recall the associations between input and
output patterns, making them effective tools for pattern recognition [15] and associative
memory tasks [16]. Ali et al. [17] examined the synchronization of fractional-order BAM
neural networks with fuzzy terms and time-varying delays by presenting sufficient con-
ditions. Lin et al. [18] investigated the synchronization of issue of BAM neural networks
with diffusion and time-varying delays and achieved spatio-temporal synchronization by
proposing an impulsive pinning controller. Chen et al. [19] investigated the global expo-
nential synchronization for BAM neural memristive neural networks with mixed delays
and reaction–reaction diffusion terms based on a new integral inequality with an infinite
distributed delay. Furthermore, in certain networks, especially biological neural networks,
there are instances where we must precisely capture the propagation of electrical signals
and the diffusion of neurotransmitters within a neuron network. To achieve this, we must
consider the impact of previous states and the spatial arrangement of neurons. Therefore,
we will focus on fractional-order BAM neural networks subject to reaction–diffusion terms.

However, in the aforementioned studies, they neglected abrupt changes in the system.
Many motion processes in nature undergo sudden changes compared with the entire motion
process, and the duration of these abrupt changes is very short; we refer to this phenomenon
as impulse effects. Impulse effects are significant in many engineering systems, such as
instantaneous transitions or resets in system states, video encoding, image encryption [20,21],
and natural language processing [22]. Several studies have been conducted on impulse
phenomena [16,22,23]. In [23], the synchronization of linearly coupled memristor-based
recurrent neural networks with impulses was investigated. In [22], the authors provided
sufficient conditions for the asymptotic stability of impulse stochastic systems. In [16], new
stability criteria for reaction–diffusion impulsive neural networks were developed.

Synchronization is also a critical element in numerous natural processes, and it holds
paramount importance within neural network systems. The analysis of the synchronization
between two systems can be encapsulated in the stability of an error system. Particularly
in the realm of fractional-order neural networks, synchronization is vital for preserving
the stability, performance, and communication among linked networks. It improves the
precision and efficiency of computations, enhancing performance in tasks such as sig-
nal processing, pattern recognition, and control systems. Many studies have explored
this field; for instance, Pratap et al. [24] investigated the asymptotic synchronization of
Cohen–Grossberg fractional-order neural networks and confirmed the global existence of
asymptotically stable solutions. Velmurugan et al. [25] analyzed finite-time synchronization
conditions for fractional-order memristor-based neural networks using Laplace transforms
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and Mittag–Leffler functions. Subsequently, Du and Lu [26] introduced a fractional-order
Gronwall inequality for finite-time synchronization of fractional-order memristor-based
neural networks with a time delay. However, finite-time synchronization has limitations
such as the settling time depending on the initial conditions, which are often unknown
in practical applications, complicating the determination of precise convergence times.
To address these limitations, the concept of fixed-time (FXT) stability was introduced by
Polyakov [27] and has been applied to various neural network systems, including those of
fractional-order, with reaction–diffusion and impulsive terms [5–7,20]. Nevertheless, there
is a paucity of studies on the synchronization of fractional-order impulsive neural networks
incorporating reaction–diffusion terms. Building upon preceding work, this study explores
the FXT and predefined-time (PDT) synchronizations in impulsive fractional-order systems
with reaction–diffusion components. The main contributions of this study are as follows:

• We present a novel controller to establish a sufficient condition for reaching FXT
and PDT synchronizations in fractional-order impulsive neural networks with diffu-
sion terms.

• We establish the robustness of the FXT and PDT synchronization approaches against
fluctuations in parameter configurations.

• We demonstrate the influence of the fractional-order parameter on the synchronization
of the given system.

The organization of the paper is laid out as follows: Section 2 provides the necessary
definitions, lemmas, and details of the systems under study, which are vital for the proof
of the main results in the following section. Section 3 describes the design of a new
controller intended for FXT and PDT synchronizations in impulsive reaction–diffusion
fractional-order neural networks. Section 4 presents an evaluation of the effectiveness of
the theoretical findings introduced in this study. Finally, Section 5 concludes the paper with
a summary of the main points.

2. Preliminaries
2.1. Theoretical Background

The study of fractional-order derivatives has gained prominence with the development
of mathematical analysis. There are various definitions of fractional-order derivatives,
including the Caputo derivative and Riemann–Liouville’s derivative. The specific definition
is as follows [28]:

• Riemann–Liouville integral for α ∈ (0, 1):

Iαx(t) =
1

Γ(α)

∫ t

0

x(θ)
(t − θ)1−α

dθ.

• Riemann–Liouville derivative for α ∈ (0, 1):

RLDαx(t) =
d
dt

I1−αx(t) =
1

Γ(1 − α)

d
dt

∫ t

0

x(θ)− x(0)
(t − θ)α

dθ.

• Caputo derivative:

Dαx(t) =
1

Γ(1 − α)

∫ t

0

x′(θ)
(t − θ)α

dθ, 0 < α < 1,

Dαx(t) =
1

Γ(1 − α)

∫ t

0

x′(θ)
(t − θ)1−m+α

dθ, m − 1 < α < m.
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Our main concentration is on the Caputo derivative with order α ∈ (0, 1). We will
now present lemmas and properties that facilitate the derivation of the main results.

Property 1 ([29]). The following property can potentially be met for α > 0, β > 0,

Dα
(

Iβx(t)
)
= Dα−βx(t).

Property 2 ([30]). The Caputo fractional derivative of the |x(t)| satisfies the following inequality:

Dα|x(t)| ≤ sign(x(t))Dαx(t),

where 0 < α < 1, x(t) ∈ C1[0, ∞).

Lemma 1 ([31]). The equality

RLDα
t x(t) = Dα

t x(t) +
x(0)

Γ(1 − α)tα

holds true if x(t) ∈ C[0, ∞). Where, 0 < α < 1.

Lemma 2 ([32]). Given that 0 < a ≤ 1, b > 1, and zi > 0 for i = 1, 2, . . . , k, the subsequent
inequalities are valid:

k

∑
i=1

za
i ≥ (

k

∑
i=1

zi)
a,

k

∑
i=1

zb
i ≥ k1−b(

k

∑
i=1

zi)
b.

2.2. System Description

Throughout this study, we consider the following class of nonlinear impulsive neural
networks characterized by fractional-order dynamics and the inclusion of diffusion terms:

Dα
t vι(t, x) = dι∆vι(t, x)− aιvι(t, x) +

m

∑
κ=1

bικhκ(wκ(t, x)) + Iι, t ̸= tτ ,

Dα
t wκ(t, x) = d̂κ∆wκ(t, x)− âκwκ(t, x) +

n

∑
ι=1

b̂κι ĥι(vι(t, x)) + Îκ , t ̸= tτ ,

vι(t+τ , x) =
ξι

Γ(2 − α)
vι(tτ , x), t = tτ ,

wκ(t+τ , x) =
ξ̂κ

Γ(2 − α)
wκ(tτ , x), t = tτ ,

(1)

for ι ∈ I = {1, 2, . . . , n}, κ ∈ J = {1, 2, . . . , m}, where the numbers of neurons are

represented by n and m, ∆µ = ∑l
h=1

d2µ

dx2
h
, and l is the space dimension. The state variables

for the ιth neuron and the κth neuron at time t and spatial location x are represented
by vι(t, x) ∈ R and wκ(t, x) ∈ R, respectively. The self-inhibition rates of the neurons
are denoted by the positive constants aι and âκ . The synaptic connection weights are
represented by the constants bικ and b̂κι. The activation functions for the neurons are hι(·)
and ĥκ(·). The biases of the neurons are given by the variables Iι and Îκ . Additionally, ξι

and ξ̂κ are positive constants. The functions vι(t+τ , x) and wκ(t+τ , x) describe the impulse
jumps that take place at the specific impulse moments tτ (τ = 1, 2, 3, . . .). The sequence
{tτ} is strictly increasing and satisfies the condition limτ→+∞ tτ = +∞.

The initial and boundary conditions for the system (1) are detailed as
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{
vι(0, x) = v0

ι (x),

wκ(0, x) = w0
κ(x),

for x ∈ Ω,


∂vι(t, x)

∂ν
= 0,

∂wκ(t, x)
∂ν

= 0,
for (t, x) ∈ (0,+∞)× ∂Ω,

for ι ∈ I, κ ∈ J , where v0
ι and w0

κ are bounded continuous functions.
The response system for the drive system can be introduced as

Dα
t v∗ι (t, x) = dι∆v∗ι (t, x)− aιv∗ι (t, x) +

m

∑
κ=1

bικhκ(w∗
κ(t, x)) + Iι + uι(t, x), t ̸= tτ ,

Dα
t w∗

κ(t, x) = d̂κ∆w∗
κ(t, x)− âκw∗

κ(t, x) +
n

∑
ι=1

b̂κι ĥι(v∗ι (t, x)) + Îκ + ûκ(t, x), t ̸= tτ ,

v∗ι (t
+
τ , x) =

ξι

Γ(2 − α)
v∗ι (tτ , x), t = tτ ,

w∗
κ(t

+
τ , x) =

ξ̂κ

Γ(2 − α)
w∗

κ(tτ , x),

(2)

for ι ∈ I, κ ∈ J. Where, v∗ι (t, x) ∈ R and w∗
κ(t, x) represent the state variables of the

system (2). The controllers, denoted as uι(t, x), ûκ(t, x), will be designed in the subse-
quent section.

The initial and boundary conditions for the system (2) are detailed as{
v∗ι (0, x) = v∗0

ι (x),

w∗
κ(0, x) = w∗0

κ (x),
for x ∈ Ω,


∂v∗ι (t, x)

∂ν
= 0,

∂w∗
κ(t, x)
∂ν

= 0,
for (t, x) ∈ (0,+∞)× ∂Ω,

where the functions v∗0
ι (·) and w∗0

κ (·) are both continuous and bounded. Let ι ∈ I, κ ∈ J,
and the paper maintains the following consistent assumptions.

Assumption 1. There exist constants Li > 0 (i = 1, 2, . . . , n) and L̂j > 0 (j = 1, 2, . . . , m) such
that the activation functions hi(·) and ĥi(·) satisfy

|hi(a1)− hi(a2)| ≤ Li|a1 − a2|,
|ĥj(a1)− ĥj(a2)| ≤ L̂j|a1 − a2|,

where a1 and a2 are arbitrary real constants.

The error system of (1) and (2) is

Dα
t ε ι(t, x) = dι∆ε ι(t, x)− aιε ι(t, x) +

m

∑
κ=1

bικ Hκ(ηκ(t, x)) + uι, t ̸= tτ ,

Dα
t ηκ(t, x) = d̂κ∆ηκ(t, x)− âκηκ(t, x) +

n

∑
ι=1

b̂κι Ĥι(ε ι(t, x)) + ûκ , t ̸= tτ ,

ε ι(t+τ , x) =
ξι

Γ(2 − α)
ε ι(tτ , x), t = tτ ,

ηκ(t+τ , x) =
ξ̂κ

Γ(2 − α)
ηκ(tτ , x), t = tτ ,

(3)
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where

ε ι(t, x) = v∗ι (t, x)− vι(t, x),

ηκ(t, x) = w∗
κ(t, x)− wκ(t, x),

Hκ

(
ηκ(t, x)

)
= hκ

(
w∗

κ(t, x)
)
− hκ

(
wκ(t, x)

)
,

Ĥι

(
ε ι(t, x)

)
= ĥι

(
v∗ι (t, x)

)
− ĥι

(
vι(t, x)

)
,

for ι ∈ I, κ ∈ J.
Here. we delineate the essential definitions and supporting lemmas that form the

basis of our main results. Consider the system described below:

d
dt

φ(t) = F (t, φ(t)), t ̸= tτ ,

φ(0) = φ0,

∆φ|t=tτ = Λ(tτ , φ(tτ)), tτ ∈ N,

(4)

where the state vector of the system denoted by φ(t) ∈ Rn. F : R+ × Rn → Rn is a
given continuous function with the condition that F (0, φ(0)) = 0. Λ : R+ × Rn = Rn

is a function that is both continuously differentiable and locally Lipschitz and meets the
condition Λ(t, 0) = 0.

Definition 1 ([32,33]). The zero solution of the system (4) is called FXT-stable if the solution
φ(t, φ0) starting from the initial condition φ0 ∈ Rn meets the following criteria:

(i) Lyapunov stable. For any ε > 0, there is a δ = δ(ε) > 0 such that ∥φ(t, φ0)∥ < ε for any
∥φ0∥ ≤ δ and t ≥ 0;

(ii) Finite-time convergence. There exists a function T : Rn \ 0 → (0,+∞), called the settling
time (ST) function, such that limt→T(φ0)

φ(t, φ0) = 0 and φ(t, φ0) = 0 for all t ≥ T(φ0);
(iii) T(φ0) is bounded. There exist Tmax > 0 such that T(φ0) ≤ Tmax for all φ0 ∈ Rn.

Definition 2 ([34]). The zero solution of system (4) is PDT-stable if it exhibits FXT stability for
any initial condition φ0 ∈ Rn and for any given time Tc > 0 T(φ0) ≤ Tc holds true.

Lemma 3 ([33]). If a Lyapunov function V(t, φ(t)) exists and satisfies

(i) ε1∥φ(t)∥2 ≤ V(t, φ(t)) ≤ ε2∥φ(t)∥2 , ∀t ∈ R+, φ ∈ Rn;
(ii) {

V̇(t, φ(t)) ≤ −µVp(t, φ(t))− λVq(t, φ(t)), t ̸= tτ ,

V(t+, φ(t+τ )) ≤ ΛV(tτ , φ(tτ)), t = tτ ,
(5)

where ε1, ε2, K, µ, λ are positive scalars, 0 < p < 1, q > 1 and 0 < Λ ≤ 1. Then, the system (4) is
FXT-stable with the ST

T1 = 2ντ N0 +
1

(1 − p)η
ln

µ

µ − η
+

1
(1 − q)η

ln
(

1 − ηΛN0(1−q)

λ

)
where η = ln Λ

ντ
.

In Lemma 3, ντ denotes the average impulse interval, and N0 is a positive constant.
For the detailed definitions of ντ and N0, refer to Definition 2 in the reference [32].

Lemma 4 ([34]). If a Lyapunov function V(t, φ(t)) exists and satisfies:]

(i) ε1∥φ(t)∥2 ≤ V(t, φ(t)) ≤ ε2∥φ(t)∥2 , ∀t ∈ R+, φ ∈ Rn;
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(ii) V̇(t, φ(t)) ≤ −T0

Tc

(
µVp(t, φ(t)) + λVq(t, φ(t))

)
, t ̸= tτ ,

V(t+, φ(t+τ )) ≤ ΛV(tτ , φ(tτ)), t = tτ ,
(6)

then the system (4) will be PDT-stable with a preassigned time Tc, where T0 is given as
T0 = 1

µ(1−p)π2 + 1
λ(q−1)ϖ , ϖ = Λ−τ0(1−γ), π = Λτ0(1−p). ε1, ε2, K, µ, λ, p, q are described

in Lemma 3.

2.3. Fractional-Order Lyapunov Exponent

Lyapunov exponents are invaluable tools for characterizing chaos, analyzing stability,
predicting critical transitions, and efficiently computing the properties of chaotic attractors.
Their applications extend from theoretical studies to practical data-driven approaches
in various scientific fields. For example, the largest Lyapunov exponent determines the
dominant rate of divergence or convergence of trajectories, while the full spectrum of
Lyapunov exponents can reveal the overall stability characteristics of the system. In chaotic
systems, the presence of at least one positive Lyapunov exponent confirms the existence of
chaotic dynamics [35,36]. Now, we introduce the Lyapunov exponent for a fractional-order
system Dα

t Φ = f(Φ(t)), where Φ(t) = (ϕ1, ϕ2, . . . , ϕn), f(Φ(t)) = ( f (ϕ1), f (ϕ2), . . . , f (ϕn))

are real-valued n-dimensional vector. Then, its Lyapunov exponents can be introduced
as [35]

a(k)ij = ∆tα ∂ fi
∂ϕj

a(k−1)
ij −

k+1

∑
ℓ=1

ωla
(k−ℓ)
ij ,

λj = lim
k→∞

1
kh

ln ∥a(k)j ∥,

with ωℓ =
(
1 − 1+α

ℓ

)
ωℓ−1, and initial value (a(0)1 , a(0)2 , . . . , a(0)j , . . . , a(0)n ) = I (I is n identity

matrix). For more specific information, please refer to work [35].

3. Main Results
We present a pair of pivotal theorems that are instrumental in achieving FXT and PDT

synchronizations within the system under consideration.

3.1. FXT Synchronization

The controllers uι(t) and ûκ(t) are designed as

uι(t, x) =− διε ι(t, x)−
[
θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)|

+ ϑι ε̃
q−1

2 (t)Dα−1
t |ε ι(t, x)|

]
sign(ε ι(t, x)),

ûκ(t, x) =− δ̂κηκ(t, x)−
[
θ̂κ η̃

p−1
2 (t)Dα−1

t |ηκ(t, x)|

+ ϑ̂κ η̃
q−1

2 (t)Dα−1
t |ηκ(t, x)|

]
sign(ηκ(t, x)),

(7)

where ι ∈ I, κ ∈ J, δι, δ̂κ , θι, θ̂κ , ϑι and ϑ̂κ are positive constants, p ∈ (0, 1), q ∈ (1,+∞). ε̃

and η̃ are given as follows:

ε̃(t) =
∫

Ω

n

∑
ι=1

Dα−1
t |ε ι(t, x)|dx,

η̃(t) =
∫

Ω

m

∑
κ=1

Dα−1
t |ηκ(t, x)|dx.
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Theorem 1. Suppose Assumption 1 is met; if the inequalities −aι − δι + L̂ι ∑m
κ=1 |b̂κι| ≤ 0

and −âκ − δ̂κ + Lκ ∑n
ι=1 |bικ | ≤ 0 are satisfied for ι ∈ I, κ ∈ J, then the drive–response

systems (1) and (2) attain FXT synchronization with the ST time

T2 = 2ντ N0 +
2

(1 − p)η
ln

Θ

Θ − η
+

2
(1 − q)η

ln
(

1 − ηζ
1
2 N0(1−q)

Υ

)
,

where η = ln Λ
ντ

, Θ = min{θ, θ̂}, Υ = min{ϑ, ϑ̂} and ζ =
max{maxι∈I{ξι},maxκ∈J{ξ̂κ}}

Γ(2−α)
.

Proof. In this paper, we construct the Lyapunov function below:

V(t) = V1(t) + V2(t) =
∫

Ω

n

∑
ι=1

Dα−1
t |ε ι(t, x)|dx +

∫
Ω

m

∑
κ=1

Dα−1
t |ηκ(t, x)|dx. (8)

By the definition of V1(t), and by applying Property 1 and Property 2, the derivative
of the Lyapunov function V1(t) can be handled as

V̇1(t) =
d
dt

∫
Ω

n

∑
ι=1

Dα−1
t |ε ι(t, x)|dx

=
∫

Ω

n

∑
ι=1

1
Γ(1 − α)

d
dt

Dα−1
t |ε ι(t, x)|dx

=
∫

Ω

n

∑
ι=1

Dα
t |ε ι(t, x)|dx

≤
∫

Ω

n

∑
ι=1

sign(ε ι(t, x))Dα
t ε ι(t, x)dx.

Then, substituting (7) into the above inequality, it follows that

V̇1(t) ≤
∫

Ω

n

∑
ι=1

sign(ε ι(t, x))
[
Dι∆ε ι(t, x)− aιε ι(t, x) +

m

∑
κ=1

bικ Hκ(ηκ(t, x))− διε ι(t, x)

− sign(ε ι(t, x))θι ε̃
p−1

2 (t)Dα−1
t |ε ι(t, x)| − sign(ε ι(t, x))ϑι ε̃

q−1
2 (t)Dα−1

t |ε ι(t, x)|
]
dx

≤
n

∑
ι=1

∫
Ω
Dιsign(ε ι(t, x))∆ε ι(t, x) + (−aι − δι)|ε ι(t, x)|

+ sign(ε ι(t, x))
m

∑
κ=1

bικ Hκ(ηκ(t, x))− θι ε̃
p−1

2 (t)Dα−1
t |ε ι(t, x)|

− ϑι ε̃
q−1

2 (t)Dα−1
t |ε ι(t, x)|dx.

First, by utilizing Green’s identities along with the model’s boundary condition for
the diffusion term, we have∫

Ω
Dιsign(ε ι(t, x))∆ε ι(t, x)dx ≤ Dι

∣∣∣ ∫
Ω

sign(ε ι(t, x))∆ε ι(t, x)dx
∣∣∣

≤ Dι

∣∣∣ ∫
Ω

∆ε ι(t, x)dx
∣∣∣

= Dι

∣∣∣ ∫
∂Ω

∇ε ι(t, x) · νdS
∣∣∣ = 0.

(9)

Then, in view of Cauchy’s inequality and Assumption 1, we have
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∫
Ω

n

∑
ι=1

n

∑
κ=1

sign(ε ι(t, x))
m

∑
κ=1

bικ Hκ(ηκ(t, x))dx ≤
∫

Ω

n

∑
ι=1

m

∑
κ=1

|bικ ||Hκ(ηκ(t, x))|dx

≤
∫

Ω

n

∑
ι=1

m

∑
κ=1

|bικ |Lκ |ηκ(t, x)|dx
(10)

Furthermore, for the controller term, we have

−
∫

Ω
(sign(ε ι(t, x)))2θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)|dx

= −
∫

Ω
θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)|dx

= −θι ε̃
p−1

2 (t)
∫

Ω
Dα−1

t |ε ι(t, x)|dx

= −θι

( ∫
Ω

Dα−1
t |ε ι(t, x)|dx

) p+1
2

= −θιV
p+1

2
1 .

(11)

Similarly, one can obtain

−
∫

Ω
(sign(ε ι(t, x)))2ϑι ε̃

q−1
2 (t)Dα−1

t |ε ι(t, x)|dx = −ϑιV
q+1

2
1 . (12)

Then, by substituting (9), (11), (12) into (10), we can obtain the following inequality for
V1(t),

V̇1(t) ≤
∫

Ω

n

∑
ι=1

[
(−aι − δι)|ε ι(t, x)|+

m

∑
κ=1

|bικ |Lκ |ηκ(t, x)|
]
dx − θV

p+1
2

1 − ϑV
q+1

2
1 , (13)

where θ = minι∈I{θι} and ϑ = minι∈I{ϑι}. Similarly, we have the subsequent inequality
for V2,

V̇2(t) ≤
∫

Ω

m

∑
κ=1

[
(−âκ − δ̂κ)|ηκ(t, x)|+

n

∑
ι=1

|b̂κι|L̂ι|ε ι(t, x)|
]
dx − θ̂V

p+1
2

2 − ϑ̂V
q+1

2
2 , (14)

where θ̂ = minκ∈J{θ̂κ} and ϑ̂ = minκ∈J{ϑ̂κ}.
Finally, by substituting (13) and (14) into (8), we have the following inequality for V(t):

V̇(t) ≤
∫

Ω

n

∑
ι=1

(
− aι − δι + L̂ι

m

∑
κ=1

|b̂κι|
)
|ε ι(t, x)|+

n

∑
κ=1

(
− âκ − δ̂κ + Lκ

n

∑
ι=1

|bικ |
)
|ηκ(t, x)|

− θV
p+1

2
1 − θ̂V

p+1
2

2 − ϑV
q+1

2
1 − ϑ̂V

q+1
2

2

=
∫

Ω

n

∑
ι=1

(
− aι − δι + L̂ι

m

∑
κ=1

|b̂κι|
)
|ε ι(t, x)|+

n

∑
κ=1

(
− âκ − δ̂κ + Lκ

n

∑
ι=1

|bικ |
)
|ηκ(t, x)|

− min{θ, θ̂}
(
V

p+1
2

1 (t) + V
p+1

2
2 (t)

)
− min{ϑ, ϑ̂}

(
V

q+1
2

1 + V
q+1

2
2

)
.

If the following inequalities hold true,

− aι − δι + L̂ι

m

∑
κ=1

|b̂κι| ≤ 0,

− âκ − δ̂κ + Lκ

n

∑
ι=1

|bικ | ≤ 0,
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and by applying Lemma1, we can derive the following inequality,

V̇(t) ≤ −ΘV
p+1

2 (t)− ΥV
q+1

2 (t), (15)

where Θ = min{θ, θ̂} and Υ = min{ϑ, ϑ̂}.
When t = tτ ,

V(t+τ ) = V1(t+τ ) + V2(t+τ )

=
∫

Ω

n

∑
ι=1

Dα−1
t |ε ι(t+τ , x)|+

m

∑
κ=1

Dα−1
t |ηκ(t+τ , x)|dx

=
∫

Ω

n

∑
ι=1

Dα−1
t | ξι

Γ(2 − α)
ε ι(tτ , x)|+

m

∑
κ=1

Dα−1
t | ξ̂κ

Γ(2 − α)
ηκ(tτ , x)|dx

≤ max{maxι∈I{ξι}, maxκ∈J{ξ̂κ}}
Γ(2 − α)

∫
Ω

n

∑
ι=1

Dα−1
t

(
|ε ι(tτ , x)|+

m

∑
κ=1

Dα−1
t |ηκ(tτ , x)|

)
dx,

thus, we have,
V(t+τ ) ≤ ζV(tτ), (16)

where ζ =
max{maxι∈I{ξι},maxκ∈J{ξ̂κ}}

Γ(2−α)
. Utilizing inequalities (15) and (16), and in accordance

with Lemma 3, the drive–response system detailed in (1) and (2) attains FXT synchroniza-
tion under the controller (7). The proof is completed.

Remark 1. In prior studies, particularly those involving neural networks incorporating reaction–
diffusion terms [37,38], the scholars applied inequality (

∫
Ω udx)p ≤

∫
Ω updx. According to

Hölder’s inequality [39], inequality (
∫

Ω udx)p ≤ |Ω|p−1
∫

Ω updx holds for u ∈ L(p), p ≥ 1,
where |Ω| stands for the volume of the bounded compact set Ω with the smooth boundary ∂Ω.
However, in [37,38], the authors did not show the necessary condition for values of p in (0, 1].
In this paper, we present a novel controller and Lyapunov function that enables us to bypass this
inequality during the proof.

In Theorem 1, we discussed the FXT synchronization of impulsive fractional-order
neural networks incorporating reaction–diffusion components. By eliminating the im-
pulse component from the drive–response systems (1) and (2), then these systems can be
reconstructed as follows

Dα
t vι(t, x) = dι∆vι(t, x)− aιvι(t, x) +

m

∑
κ=1

bικhκ(wκ(t, x)) + Iι,

Dα
t wκ(t, x) = d̂κ∆wκ(t, x)− âκwκ(t, x) +

n

∑
ι=1

b̂κι ĥι(vι(t, x)) + Îκ ,
(17)


Dα

t v∗ι (t, x) = dι∆v∗ι (t, x)− aιv∗ι (t, x) +
m

∑
κ=1

bικhκ(w∗
κ(t, x)) + Iι + uι(t, x),

Dα
t w∗

κ(t, x) = d̂κ∆w∗
κ(t, x)− âκw∗

κ(t, x) +
n

∑
ι=1

b̂κι ĥι(v∗ι (t, x)) + Îκ + ûκ(t, x),
(18)

Corollary 1. Assume that Assumption 1 hold, if the inequalities −aι − δι + L̂ι ∑m
κ=1 |b̂κι| ≤ 0,

and −âκ − δ̂κ + Lκ ∑n
ι=1 |bικ | ≤ 0 are met for ι ∈ I, κ ∈ J, then the drive–response

systems (17) and (18) reaches FXT synchronization with the ST time T3 = 2
Θ(1−p) +

2
Υ(1−q)

under the controller (7), where Θ = min{θ, θ̂} and Υ = min{ϑ, ϑ̂}.
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3.2. PDT Synchronization

As we mentioned in the introduction section, PDT synchronization is necessary
in some situations. Here we consider the PDT synchronization of the drive response
systems (1) and (2). To achieve PDT synchronization, we redesign controller uι(t) and
ûκ(t) as

uι(t, x) =− T0

Tc

[
διε ι(t, x) +

(
θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)|

+ ϑι ε̃
q−1

2 (t)Dα−1
t |ε ι(t, x)|

)
sign(ε ι(t, x))

]
,

ûκ(t, x) =− T0

Tc

[
δ̂κηκ(t, x) +

(
θ̂κ η̃

p−1
2 (t)Dα−1

t |ηκ(t, x)|

+ ϑ̂κ η̃
q−1

2 (t)Dα−1
t |ηκ(t, x)|

)
sign(ηκ(t, x))

]
,

(19)

Theorem 2. Suppose that Assumption 1 holds; if inequalities − Tc
T0

aι − δι +
Tc
T0

L̂ι ∑m
κ=1 |b̂κι| ≤ 0,

and − Tc
T0

âκ − δ̂κ + Tc
T0

Lκ ∑n
ι=1 |bικ | ≤ 0 are satisfied for ι ∈ I, κ ∈ J, then the drive–

response system (1) and (2) reaches PDT synchronization within preassigned time Tc, where
T0 = 2

Θ(1−p)π2 + 2
Υ(q−1)ϖ , ϖ = ζ−

1
2 N0(1−q), π = ζ

1
2 N0(1−p), η = ln ζ

ντ
. Θ = min{θ, θ̂}

and Υ = min{ϑ, ϑ̂}.

Proof. In this paper, we construct the Lyapunov function as shown below;

V(t) = V1(t) + V2(t) =
∫

Ω

n

∑
ι=1

Dα−1
t |ε ι(t, x)|dx +

∫
Ω

m

∑
κ=1

Dα−1
t |ηκ(t, x)|dx. (20)

By the definition of V1(t), and by applying Property 1 and Property 2, the derivative
of Lyapunov function V1(t) can be described as

V̇1(t) =
d
dt

∫
Ω

n

∑
ι=1

Dα−1
t |ε ι(t, x)|dx

=
∫

Ω

n

∑
ι=1

1
Γ(1 − α)

d
dt

Dα−1
t |ε ι(t, x)|dx

=
∫

Ω

n

∑
ι=1

Dα
t |ε ι(t, x)|dx

≤
∫

Ω

n

∑
ι=1

sign(ε ι(t, x))Dα
t ε ι(t, x)dx.

Then, substituting (7) into the above inequality, it follows

V̇1(t) ≤
∫

Ω

n

∑
ι=1

sign(ε ι(t, x))
[
Dι∆ε ι(t, x)− aιε ι(t, x) +

m

∑
κ=1

bικ Hκ(ηκ(t, x))− T0

Tc
διε ι(t, x)

− T0

Tc
sign(ε ι(t, x))θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)| − T0

Tc
sign(ε ι(t, x))ϑι ε̃

q−1
2 (t)Dα−1

t |ε ι(t, x)|
]
dx

≤
n

∑
ι=1

∫
Ω
Dιsign(ε ι(t, x))∆ε ι(t, x) + (−aι −

T0

Tc
δι)|ε ι(t, x)|+ sign(ε ι(t, x))

m

∑
κ=1

bικ Hκ(ηκ(t, x))

− T0

Tc
θι ε̃

p−1
2 (t)Dα−1

t |ε ι(t, x)| − T0

Tc
ϑι ε̃

q−1
2 (t)Dα−1

t |ε ι(t, x)|dx

Similar to Theorem 1, by using inequalities (9)–(12), we can obtain that

V̇1(t) ≤
T0

Tc

∫
Ω

n

∑
ι=1

[
(− Tc

T0
aι − δι)|ε ι(t, x)|+ Tc

T0

m

∑
κ=1

|bικ |Lκ |ηκ(t, x)|
]
dx − θV

p+1
2

1 − ϑV
q+1

2
1 , (21)

where θ = minι∈I{θι}, ϑ = minι∈I{ϑι}. Similarly, we have the subsequent inequality
for V2,
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V̇2(t) ≤
T0

Tc

∫
Ω

m

∑
κ=1

[
(− Tc

T0
âκ − δ̂κ)|ηκ(t, x)|+ Tc

T0

n

∑
ι=1

|b̂κι|L̂ι|ε ι(t, x)|
]
dx − θ̂V

p+1
2

2 − ϑ̂V
q+1

2
2 , (22)

where θ̂ = minκ∈J{θ̂κ} and ϑ̂ = minκ∈J{ϑ̂κ}.
Finally, by substituting (21) and (22) into (20), we have the following inequality for

V(t), such that

V̇(t) ≤ T0

Tc

∫
Ω

n

∑
ι=1

(
− Tc

T0
aι − δι +

Tc

T0
L̂ι

m

∑
κ=1

|b̂κι|
)
|ε ι(t, x)|

+
n

∑
κ=1

(
− Tc

T0
âκ − δ̂κ +

Tc

T0
Lκ

n

∑
ι=1

|bικ |
)
|ηκ(t, x)|

− θV
p+1

2
1 − θ̂V

p+1
2

2 − ϑV
q+1

2
1 − ϑ̂V

q+1
2

2

=
T0

Tc

∫
Ω

n

∑
ι=1

(
− Tc

T0
aι − δι +

Tc

T0
L̂ι

m

∑
κ=1

|b̂κι|
)
|ε ι(t, x)|

+
n

∑
κ=1

(
− Tc

T0
âκ − δ̂κ +

Tc

T0
Lκ

n

∑
ι=1

|bικ |
)
|ηκ(t, x)|

− min{θ, θ̂}
(
V

p+1
2

1 (t) + V
p+1

2
2 (t)

)
− min{ϑ, ϑ̂}

(
V

q+1
2

1 + V
q+1

2
2

)
.

Suppose the following inequalities hold:

− Tc

T0
aι − δι +

Tc

T0
L̂ι

m

∑
κ=1

|b̂κι| ≤ 0,

− Tc

T0
âκ − δ̂κ +

Tc

T0
Lκ

n

∑
ι=1

|bικ | ≤ 0,

and by applying Lemma1, we can derive the following inequality,

V̇(t) ≤ −T0

Tc
(ΘV

p+1
2 (t) + ΥV

q+1
2 (t)), (23)

where Θ = min{θ, θ̂} and Υ = min{ϑ, ϑ̂}. Based on inequalities (16) and (23), and in
accordance with Lemma 4, the drive–response system detailed in (1) and (2) attains PDT
synchronization under the controller (19). The proof is complete.

Remark 2. Most synchronization outcomes related to fractional-order neural networks, such
as those reported in [2,26], are characterized by infinite-time synchronization, also known as
asymptotic synchronization. However, infinite-time synchronization may not align with specific
practical requirements, particularly in terms of speed and precision. Consequently, the studies
in [5,20,26,29] focused on finite and FXT synchronization in fractional-order neural networks.
Building on this foundation, we investigate the finite-time and FXT synchronization of impulsive
fractional-order BAM neural networks incorporating reaction–diffusion terms. Definitions 1 and
2 outline FXT and PDT synchronization, respectively, revealing that PDT synchronization is an
extension of FXT synchronization. This approach allows us to tailor the control strategy to meet
actual engineering requirements. Therefore, the synchronization criterion presented in this paper
offers greater flexibility and broader applicability than those in [5,20,29].

Corollary 2. Suppose Assumption1 is met, if the inequalities − Tc
T0

aι − δι +
Tc
T0

L̂ι ∑m
κ=1 |b̂κι| ≤ 0,

and − Tc
T0

âκ − δ̂κ + Tc
T0

Lκ ∑n
ι=1 |bικ | ≤ 0 hold for ι ∈ I, κ ∈ J, then the drive–response

systems (17) and (18) reach PDT synchronization in PDT Tc under the controller (19).
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4. Numerical Examples
The simulations are conducted using Python. The (α − 1)-th-order integrals are

computed through the Grünwald–Letnikov method, since, when α ∈ (0, 1), the two
fractional-order integrals, Grünwald–Letnikov and Caputo integrals, are indistinguishable
in practical applications and completely equivalent [28,40]. To discretize the fractional-
order diffusion equation, the L1 approximation method was employed [41]. This section
includes two numerical examples to confirm the correctness of the analytical findings
presented in the previous section.

Example 1. Consider the following fractional-order impulsive neural networks with
reaction–diffusion term

Dα
t vι(t, x) = dι∆vι(t, x)− aιvι(t, x) +

3

∑
κ=1

bικhκ(wκ(t, x)) + Iι, t ̸= tτ ,

Dα
t wκ(t, x) = d̂κ∆wκ(t, x)− âκwκ(t, x) +

3

∑
ι=1

b̂κι ĥι(vι(t, x)) + Îκ , t ̸= tτ ,

vι(t+τ , x) =
ξι

Γ(2 − α)
vι(tτ , x), t = tτ ,

wκ(t+τ , x) =
ξ̂κ

Γ(2 − α)
wκ(tτ , x), t = tτ ,

(24)

for ι, κ ∈ {1, 2, 3}, and x ∈ [−5, 5], t ∈ [0, 25], the spatial and temporal step sizes are taken as
∆x = 0.33 and ∆t = 0.01, respectively. We take the parameters to α = 0.9, {Iι} = { Îκ} = 0,
{ξi} = 0.5 and {ξ̄ j} = 0.65. The other parameters are shown in Table 1. The activation
functions are given as hκ(·) = tanh(·) and ĥι(·) = tanh(·).

Table 1. The main parameters for Example 1.

dι d̂κ aι âκ bικ b̂ικ

0.9631 0.3146 0.0073 1.2633 −2.8999 1.4399 −1.133 −1.9869 2.977 3.0862
0.9631 0.3146 2.6592 0.2561 1.3996 −2.2743 −0.5121 −2.0131 −3.4819 2.2811
0.9631 0.3146 3.0266 1.7172 1.4111 −1.7352 −3.923 −1.2189 −0.1094 −2.8969

The initial conditions are v0
1 = 0.0517 sin( 3x

5 ), v0
2 = 0.08146 sin( 3x

5 ), v0
3 = 0.04863 sin( 3x

5 ),
w0

1 = 0.10239 sin( 3x
5 ), w0

2 = 0.11400 sin( 3x
5 ) and w0

3 = 0.127070 sin( 3x
5 ). The results presented

in Figures 1 and 2, along with the corresponding Lyapunov exponents calculated using the
method outlined in Section 2.3 are λv = (−0.1216,−0.1379,−0.1404) and λw = (−0.1541,
−0.1374, 1.376). Therefore, the system (24) exhibits a chaotic attractor.

v12
0

2

v 2

1
0

1

v 3

1
0
1

w1
4 2 0 2 4

w 2

2
0

2

w
3

1

0

1

Figure 1. The chaotic attractor of v(t, x) (left) and w(t, x) (right) in system (24), where x = −1 is fixed.
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2 0 2
v1

1.0

0.5

0.0
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1.0

v 2
1 0 1

v2
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1.0
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0.0
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2

1
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2
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w
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1 0 1
w3

4

2

0

2
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Figure 2. The chaotic attractor of the system (24), where x = −1 is fixed.

The response system of the system (24) is given as

Dα
t v∗ι (t, x) = dι∆v∗ι (t, x)− aιv∗ι (t, x) +

m

∑
κ=1

bικhκ(w∗
κ(t, x)) + Iι + uι(t, x), t ̸= tτ ,

Dα
t w∗

κ(t, x) = d̂κ∆w∗
κ(t, x)− âκw∗

κ(t, x) +
n

∑
ι=1

b̂κι ĥι(v∗ι (t, x)) + Îκ + ûκ(t, x), t ̸= tτ ,

v∗ι (t
+
τ , x) =

ξι

Γ(2 − α)
v∗ι (tτ , x), t = tτ ,

w∗
κ(t

+
τ , x) =

ξ̂κ

Γ(2 − α)
w∗

κ(tτ , x),

(25)

where parameters dι, d̂κ , aι, âκ , bικ , b̂κι, Iι, Îκ , along with the activations functions hκ(·)
and ĥι()̇, are similar to those in the drive system (24). The jump coefficients ξι = 0.5,
ξ̂κ = 0.65. δ1 = δ2 = 6.6, δ3 = 6.4, δ̂1 = 6.5, δ̂2 = 6.8, δ̂3 = 6.6. θ1 = θ2 = 3.2, θ3 = 4.2,
ϑ1 = ϑ2 = ϑ3 = 3.2, θ̂1 = 4.2, θ̂2 = θ̂3 = 3.2, ϑ̂1 = ϑ̂2 = 3.2, ϑ3 = 4.2, p = 0.4, q = 1.6,
and L̂ι = Lκ = 1.1, N0 = 0.1, ντ = 0.5. Consequently, we can easily calculate that

k = max{ max
ι∈{1,2,3}

{−aι − δι + L̂ι

3

∑
κ=1

|b̂κι|}, max
κ∈{1,2,3}

{−âκ − δ̂κ + Lκ

3

∑
ι=1

|bικ |}} = −3359.

This indicates that the inequalities outlined in Theorem 1 are met. Therefore, as shown
in Figures 3 and 4, the response system (25) achieves synchronization with the drive
system (24) within FXT T2 = 1.9785 under the controller (7). This confirms the controller’s
efficiency in reaching the desired FXT synchronization through numerical means.

Remark 3. Figures 1 and 2 clearly show that the system (24) exhibits chaotic phenomena.
Fractional-order derivatives consider the entire history of the system; this property can lead to
more complex nonlinear phenomena [42]. In impulsive neural networks, the state of the system
can change abruptly at a certain moment; therefore, associating the memory of fractional-order
derivatives to the abrupt changes of impulsive neural networks can result in a rich variety of
dynamical behaviors.
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Figure 3. The evolution diagram of ε1(t, x) (left), ε2(t, x) (middle), and ε3(t, x) (right).
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Figure 4. The evolution diagram of η1(t, x) (left), η2(t, x) (middle), and η3(t, x) (right).

Remark 4. Figures 3 and 4 depict the convergence of the error system to zero within the FXT T1,
as indicated by Theorem 1. Compared with the works [29,31], the results presented in this paper are
more practical and applicable.

As mentioned in the introduction section, there are cases where it is necessary to set
the synchronization time in advance. Theorem 2 provided the necessary conditions for
PDT synchronization. Now, we validate these conditions numerically, taking into account
the PDT synchronization of drive–response systems (24) and (25). All parameters are as
previously delineated in the FXT synchronization context. Set the preassigned-time as
Tc = 1.9; then,

k̃ = max{ max
ι∈{1,2,3}

{−T0

Tc
aι − δι +

T0

Tc
L̂ι

3

∑
κ=1

|b̂κι|}, max
κ∈{1,2,3}

{−T0

Tc
âκ − δ̂κ +

T0

Tc
Lκ

3

∑
ι=1

|bικ |}}

= −1.1623,

where T0 = 2.1194. This ensures that the conditions specified in Theorem 2 are satisfied.
Consequently, as demonstrated in Figures 5 and 6, in accordance with Theorem 2, the drive–
response systems (24) and (25) achieve synchronization within PDT Tc = 1.9.
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Figure 6. The time evolution diagram of η1(t, x) (left), η2(t, x) (middle), and η3(t, x) (right).

Finally, we examine the impact of the fractional-order parameter α on synchronization
by analyzing the outcomes for various values of α, such as α = 0.8, 0.9, 0.95, 0.98.

As observed in Figure 7, the convergence of ∥εi∥2 and ∥η∥2 (ι = 12, 3, κ = 1, 2, 3) is
more rapid for smaller α values. Nonetheless, when α = 0.8, there is oscillation around
t = 0.15, indicating a transient instability.
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Figure 7. The time evolution diagram of ∥ε ι∥2 (ι ∈ {1, 2, 3}) and ∥ηκ∥2 (κ ∈ {1, 2, 3}) for α =

0.8, 0.9, 0.95, 0.98, respectively.

To further investigate this behavior, we set α = 0.6, and Figure 8 reveals more pro-
nounced chattering effects compared to those observed in Figure 7.
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Figure 8. The time evolution diagram of ∥ε ι∥2 (ι ∈ {1, 2, 3}) (left) and ∥ηκ∥2 (κ ∈ {1, 2, 3}) (right) for
α = 0.6.
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5. Conclusions
In this study, the FXT and PDT synchronizations are investigated for the impulsive

fractional-order BAM neural networks with diffusion terms. Initially, we presented funda-
mental knowledge of the fractional-order calculus and the FXT and PDT synchronizations
of neural networks. Expanding on prior studies, we integrated the effects of the impulse
and fractional-order within reaction–diffusion BAM neural networks. Since, fractional-
order calculus and reaction–diffusion processes associated with impulsive BAM neural
networks provide a more comprehensive representation of real-world systems. These
systems exhibit not only temporal changes but also spatial factors and diffusion effects.
Consequently, the scope of applications for BAM neural networks has been broadened in
fields such as environmental science and secure communication [43]. We have developed an
innovative controller for the system and have formulated adequate conditions for the FXT
and PDT synchronizations of drive–response systems, employing the Lyapunov function
approach. To substantiate the theoretical results of our proposed model, a numerical exam-
ple was provided. Nevertheless, stochastic perturbations are frequently inevitable in many
dynamical systems. These perturbations enhance the network’s ability to generalize and
accurately forecast outcomes in uncertain environments, thus bolstering its robustness and
adaptability [34,44–46]. In future studies, we will focus on the synchronization of fractional-
order BAM neural networks with randomness, thereby enhancing the applicability of our
dynamic system.
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