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Abstract: The paper deals with the problem of representing special functions by branched
continued fractions, particularly multidimensional A- and J-fractions with independent
variables, which are generalizations of associated continued fractions and Jacobi continued
fractions, respectively. A generalized Gragg’s algorithm is constructed that enables us to
compute, by the coefficients of the given formal multiple power series, the coefficients
of the corresponding multidimensional A- and J-fractions with independent variables.
Presented below are numerical experiments for approximating some special functions by
these branched continued fractions, which are similar to fractals.
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1. Introduction

The problem of representing special functions arises, in particular, when solving
various functional equations. It contributes to the development and implementation of
effective methods and algorithms that are implemented until the construction of special
software [1-5]. Currently, various tools are used to represent these functions, including the
multidimensional generalization of continued fractions—branched continued fractions—as
a special family of functions (see, [6-14]). The construction of the rational approxima-
tions of a special function is based on the correspondence between the approximants of
the branched continued fraction and the formal multiple power series, which represents
this function (see, [15,16]). Furthermore, the problem of constructing the corresponding
branched continued fractions contributes to the emergence of their various structures
(see, [17-23]).

In [24], Dmytro Bodnar introduced the so-called “branched continued fractions with
independent variables”, which, by their structure, are a multidimensional analogue of
the multiple power series. The correspondence properties of these branched continued
fractions with polynomial elements are closely connected to the degree and form of these
polynomials. Their types are essential in the analytical continuation of special functions
through branched continued fractions [16,25-27]. Based on the classical algorithm [15,28],
algorithms have been constructed that enable us to compute, by the coefficients of the
formal multiple power series, the coefficients of the corresponding multidimensional C-, g-,
S-, A-, and J-fractions with independent variables [16,29,30].

The paper considers the problem of representing special functions by multidi-
mensional A- and J-fractions with independent variables, which are generalizations
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of associated continued fractions (or A-fractions) and Jacobi continued fractions (or
J-fractions) [31], respectively.

In the analytical theory of continued fractions, the use of Gragg’s algorithm [32],
which is based on Theorem 7.14 [28], is efficient for the constructed corresponding A- and
J-fractions.

Let the coefficients of the formal power series

L(z) =1+ c1z+coz® +c32° + ...
satisfy the conditions H,(ql) # 0,n > 1, where H,Sl) and n > 1, are Hankel determinants
associated with L(z). Then, the coefficients of the A-fraction
p1z

1+ o2
14+q1z —

paz*

1+qz— ————
92 1+4+q1z—

corresponding to L(z), can be computed as follows:

Ok
Pke1 = ——r Gkt1=T—1— T k=0,
Ok—1

where
k 1 X
0k = ) bksCoky1—r, T = o Y birCokior,
=i r=0

r=0

and for1 <r<k+1,

b1y = bir + Gi1bir—1 — Pr1be—1,—2,

with the initial conditions

01 =boo=brr10=1 71 ="br 1, 1bxx1 =0

In this paper, we construct and study a generalization of the Gragg’s algorithm.
First, in Section 2, we give the necessary definitions. Then, in Section 3, we construct a
generalized Gregg’s algorithm and establish necessary and sufficient conditions for its
existence (Theorems 1 and 2 for multidimensional A- and J-fractions with independent
variables, respectively). Finally, in Section 4, we give examples of representing special
functions by multidimensional A- and J-fractions with independent variables, which are
similar to fractals.

2. Correspondence
2.1. Formal Multiple Power Series [15,16]

Formal multiple power series at z = 0. Let N be a fixed natural number, Z>( be
the set of non-negative integers, C be the set of complex numbers, ZY, = Zxo x Z>q x
... X Z>q be the Cartesian product of N copies of the Z~, CN = C x C x ... x Cbe the
Cartesian product of N copies of the C, k = (kq,ky,...,ky) be an element of ZQIO, and
z = (z1,22,...,zn) be an element of CN.Fork € ZQIO and z € CN, put -

k k
Kl =kilko! .. kn!, K| =k +ko+...+ky, 2X=2z02R
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A series of the form

Li(z) = Y az",

[k|>0

where ¢y € C for |k| > 01is called a formal multiple power series at z = 0. A set of formal
multiple power series at z = 0 is denoted by L.

Let R(z) be a function holomorphic in a neighbourhood of the origin (z = 0). Let the
mapping A : R(z) — A(R) associate with R(z) its Taylor expansion in a neighbourhood of
the origin. A sequence {R;(z)} of functions holomorphic at the origin is said to correspond
at z = 0 to a formal multiple power series L. (z) if

lim A(L, = A(Ry)) = oo,
where A is the function defined as follows: A : L — Z>o U {oo}; if Ly(z) = 0, then
A(Ly) = o0; if Ly(z) # 0 then A(L,) = m, where m is the smallest degree of homogeneous
terms for which ¢ # 0, thatis m = |k|.

If {R,(z)} corresponds at z = 0 to a formal multiple power series L. (z), then the
order of correspondence of Ry (z) is defined as

Va = ALy — A(Ry)).

By the definition of A, the series L.(z) and A(R;) agree for all homogeneous terms up to
and including degree (v, — 1).

Formal multiple power series at z = c0. A sequence of rational functions {R,(z)} is
said to correspond at z = oo to a formal multiple power series

L'2) = ¥ &, (1)

[k|>0

where ¢ € C, k > 0, if the sequence {R,,(1/wy,1/ws,...,1/wy)} corresponds to a formal
multiple power series at w = 0 obtained from (1) by replacing z; with 1/w;, 1 <i < N.

A formal multiple power series (1) is said to be an asymptotic expansion of a function
R(z) at z = oo, with respect to a region D in CV, if for every n > 0 there exist p, > 0 and
#1n > 0 such that

no. N4 n+1
Riz)— Y =\ <m|Y =] , |lal>pn 1<k<N, z€D
k=0 % = |
We denote this by
Ck
R(z) ~ S koo, 1<k<N

2.2. Branched Continued Fractions [16,25]
Leti(0) = 0,39 = {0}, and, fork > 1,

jk = {l(k) : l(k) = (il,iz,...,ik), 1 S ip S ipfl/ 1 S p S k, io = N}

Let ({aix) tickea,, k=1 {lik) tigk)ea,, k=0) denote the ordered pair of sequences of com-
plex numbers with a;() # 0foralli(k) € Jy, k > 1, and if for k > 1 there exists a multi-index
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i(k) € 3y such that by = 0, than b;;_y),; # 0 for 1 < j < i and j # i;. Let the sequence
{fx} is defined as follows:

fo = bo,
N g

i)
fi="bo+ —,
ilgl bi(1)

- %)
1 /bi(]) + b
i=1"i(2)
- i)
fk = bO + igl i ai(z) s
by + L
2=1"10) e
+Y
=1 Vi) T
The ordered pair

(i) Yiwyea,, k=1 1bik) Yikyea,, k200, {fitezo)

is the branched continued fraction with independent variables denoted by the symbol

N a
bo+ Y ‘ i) : )
A 1
=1y ai2)
i(1) + ‘Zl i a4(3)
= ) 1
bz(Z) + i3Z=:1 7b1(3)+

The numbers 4;(;) and by, are called the elements of the branched continued fraction with
independent variables, the relation a;(y) /b;y) is called the kth partial quotient, and the value
fi is called the kth approximant.

Let (i1,ip,...,i,...) be a fixed infinite multi-index, such that 1 < i <i_; fork > 1,
where i) = N. The continued fraction

Ll,‘l

b: Aiyi

I

+

Aiyiy,i3

bil jiniz T

biy i, +

is called the (iy,1y, ..., i, .. .)-branch of the branched continued fraction with independent
variables (2).

Next, leteg = (0,0,...,0), ex = (9k1,9k2, - - -, 0k N) be a multi-index, where 1 < k <N,
d;j is a Kronecker symbol. Let us introduce the following sets of multi-indices for k > 1

€ = {eik) © €i(k) = Cipin,...iy = iy T + ... e, i(k) € Ty}

and the mapping ¢ : 3y — €, such that ¢(i(k)) = e;q for all i(k) € Jy, k > 1. It can be
shown that the mapping ¢ is bijective.



Fractal Fract. 2025, 9, 89 5 of 30

Multidimensional A-fraction with independent variables. A branched continued
fraction with independent variables of the form

i Peiq)Zin 3)
. 5 . ’
—] 11 (_1) zl,zzpi 7 Z:
11 1+ qu(l)Zil + Z ‘ €i(2) (51.1 .12
=1 b (=1)"25p,. . 2,z
2=l n _— Z i(3)“i2%13
e %z 14 Geq) i+

=1

where the pe, ., € C\ {0}, qe;,, € C, ey € €, k = 1, is called a multidimensional A-fraction
with independent variables. For each n > 1 the nth approximant f,(z) of (3) is expressed by

Pei) i

(5, .
(1) Peia) Ziy Zin

fu(z) =

4)

M=

111

i
1 L\ Zi
+ Jej1)%ix + iZl 1+ ei2)Zi + ; &
2 o ff (=1)" 1" e, Zi, 4 Zi,
1 + qei(n)zin

ip=1

A multidimensional A-fraction with independent variables (3) is said to correspond
at z = 0 to a formal multiple power series L, (z) if its sequence of approximants { f,,(z) }
corresponds to Ly (z) atz = 0.

The following result was proved in ([16], Theorem 3.5), and for convenience, we
present its proof.

Theorem 1. Every multidimensional A-fraction with independent variables (3) with sequence of
approximants { f,(z) } corresponds at z = 0 to a uniquely determined formal multiple power series

Liz) = Y. acz, (5)

where ¢ € C, |k| > 1. The order of correspondence of the nth approximant f,(z) is (2n + 1),
n > 0, and hence the formal Taylor series at z = 0 of f,,(z) has the form

2n
faz)= Y az*+ Y 71((”)21‘, n>1, (6)
K[=1 k| >2n+1

where 'yl((n) €eC, k| >2n+1,n>0.

Proof. Let
ngr)l) (z) =1+ Geyy Zinr €i(n) € En, m 21,
and
. 5
Ik (—1) etk Pe Z. 7.
n i(k+1) "k “ k1
Q£1(2> (z) =1+ Gej Zix T ' Z i Oip 1 ’
iry1=1 144, —_— kif (—1) k12 Peis2)Zixs1%ik 40
i(k+1) “lk+1

igy2=1

1+9e0%i,, + j i1
ﬂ]el(Hz) [ ) N lf (_1)&”71/771 Pej(n)zin—lzi"
1+ lhi(n)zin

iy=1
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where €i(k) € ¢, 0<k<n-—1,n>1.Then

Fulz) = % Pe;)
=1 QY (2)

1

Zl'1

, n>1.

Since the equality Q% (0) = 1holds foralli(k) € €,1 <k <n,n > 1, then for each

i(k) € €,1 <k <mn,n > 1, the finite branched continued fraction 1/ Q(EZZ) (z) atz = 0 has
a formal multiple power series (5). Then, every nth approximant f, (z), n > 1is a function
holomorphic in origin, and hence, for each n > 1, let the formal multiple power series

fulz) = Y o2k,

k>1

be the expansion of the approximant f,(z) atz = 0.
Since

Q) (2) 20, i) e, 1<k<n n>1,

then, using the well-known formula for the difference between two approximants of (3)
(see [16] and also [33]), for n > 1 and k > 1, we obtain

n+1 5
i i (T1)"Pei Zi 11(*1) KK Pey) Zi 1 Zi
r=
Z e Z n+1 n
=1 iy =1 +k
pel 1@5,';) ><z>HlQ£::3><z>
r= r=

N
Fusele) = fule) = 1

in neighborhood of origin. Hence, for arbitrary n > 1 and k > 1, we have

Alfurt) = Af) = 1 (I =)z
|k|>2n+1

in a neighborhood of z = 0. So, for every n > 1and k > 1

Vn = MA(furk) = A(fu)) =2n+1

and it tends monotonically to cc as n — co.

Thus, for each n > 1, k > 1, the relation 'yl((wrk) = 'yl((”) holds for any 1 < |k| < 2n.
The multidimensional A-fraction with independent variables (3) corresponds to the formal
multiple power series (5), where ¢ = ,h(([lkl/ 2+1) (here, [-] means the integer part of the

number) for all k > 0, since

L@ ~Alf) = Y (Y o)
|k|>2n+1

for each n > 1. Hence, the order of correspondence of the nth approximant f,(z) is (2n + 1)
and the formal multiple power series (6) is a formal Taylor series for f,(z) atz = 0.

Let us prove that this L(z) is unique. Assume that the multidimensional A-fraction
with independent variables (3) also corresponds to

P(z) = Z ﬁg‘k‘/z]-ﬂ)zk

k>1

atz = 0. Since for any n > 1
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P(z)—Afe) = Y (BUIM/ATD ok
|k|>2n+1

then ﬁi([|k|/2]+1) = 71(([\k\/2]+1) for all k such that 1 < |k| < nand n > 1. That is, the L(z) is
unique. [

The following results is true.

Theorem 2. Let ® be a domain containing the origin (z = 0). Assume that a multidimensional
A-fraction with independent variables (3) corresponds at z = 0 to a formal multiple power series
(5) and converges uniformly on every compact subset of ® to a function f(z), holomorphic in the
domain ©. Then, the formal multiple power series (5) is the formal Taylor series at z = 0 of the

function f(z).

Proof. Since the sequence of approximants { f,(z)} of (3) converges uniformly on every
compact subset of the domain D to a function f(z) holomorphic in D, then, by Weierstrass’
theorem (see [34]) for arbitrary k > 0, we have

M fu(z) A f(2)

ozk ozk

on each compact subset of the domain ®. In addition, by Theorem 1 for each n > 1, the
A(fn) and L(z) agree for all homogeneous terms up to and including degree 2n.
Thus, for any k > 0, we obtain

) olkl g, okl
nlgr;( az{: (0)) - azlf(o)

= k!Ck,

where k! = kl'kzl e kN'
Hence,

olkl PAS
-1 ( - (0)>k! = ¥ ack

k>1
forallze®. O

Note that the domain of convergence of the multidimensional A-fraction with inde-
pendent variables (3) may be wider than the domain of convergence of the multiple power
series (5). Then, the branched continued fraction (3) is the analytical continuation of the
function represented by this series.

Multidimensional J-fraction with independent variables. A branched continued
fraction with independent variables of the form

z

P 7)
P i (—1)%ni2 Peio, ’
Geiqry +zip + Z - 5
ir=1 12 (_1) 23 pfi(g,)
Ge;ny T Ziy + Z

is1 Jeizy) T 2ia T
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where Peygyr Qeiryr Ci(k) € &, k > 1, are complex numbers and, in addition, Pei #£ 0,
eik) € €, k > 1, is called a multidimensional |-fraction with independent variables.

A multidimensional J-fraction with independent variables (7) is said to correspond
at z = oo to the formal multiple power series (1) if its sequence of approximants { f,; (z) }
corresponds to L*(z) at z = oo.

Note that multidimensional J-fractions with independent variables are closely related
to multidimensional A-fractions with independent variables.

Indeed, if we set z; = 1/w;, 1 <i < N, in (3) and perform the equivalence transfor-
mation (see, [33]), setting Peipy = Wi €i(k) € &, k > 1, then, as a result, we will arrive at a
multidimensional J-fraction with independent variables.

Finally, note that a multidimensional J-fraction with independent variables (7) does
not always exist that corresponds to the formal multiple power series (1) at z = co. The
necessary and sufficient conditions for the coefficients of the formal multiple power se-
ries will be given in the next section for multidimensional A-fractions with independent
variables (3).

3. Branched Continued Fraction Construction
3.1. Generalized Gragg's Algorithm

Let N > 2. Let us consider the formal multiple power series (5) and show step by step
the process of constructing the multidimensional A-fraction with independent variables (3).
Step 1.1: Let Cey, # 0 for 2 < i; < N. Then, we can rewrite L(z) in the form

N
L(z) = Pey(z1) + ) Ce;, Ziy Re; (2),
i1=2
where

PEO (Zl) = Z Ci’lelz¥/ REil (Z) = Z

n=1 k>0
mathbfkj:O, i1+1<j<N

Step 1.2: Let H,, (n) # 0 for n > 1, where

Cey C2eq . Cneq

C2£1 C3el P C(n+1 e1
Hel( ) = )

Cney  C(n+l)ey -+ Cu—-1)g

(we note that here H,, (n) comprises the Hankel determinants (of dimension 7) associated
with the formal power series Py (z1)). By Gragg's algorithm, there exist numbers p;,, and
Gney, 1 > 1, such that p., #0,n > 1, and

00 7
P, (Zl) = Z C”‘flqu ~ P 2 =k, (Zl)/
n=1 P2e,27
1+gez1 —

2
P3ei 21

1+ I]23121 — ]WT
1
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where the symbol '~" means the correspondence between P, (z;1) and F,,(z1) (at the origin).

The coefficients p,e, and gp.,, n > 1, are given by the formulas

(%
Pn+1)e, = = s An41)e; = Yn—1)ey — Tneps 1 >0,
! O(n—1)e; ! ! !

where
n n
Oney = Z C2n+1-r)e, anl (1’), Tney One; = Can+2-r)e B‘Vlfl(r)l

r=0 r=0

andforl1 <r<n+1,

B(nJrl)el (1’) = Bnel (T) + q(n+1)e Bn@l (1’ - 1) - p(n+1)elB(n71)el (1’ - 2)

with the initial conditions

U—ey = B0€1 (O) = B(n+1)el (0) =1 1= B(n—l)el(_l) = Bue, (I’l + 1) =0.

Thus, we can write

N
L(z) ~ Fyy(z1) + ) ce; ziy Re, (2).
=2

Step 1.3: Let Hel.1 (n) #0for2 <i; < Nandn > 1, where

Ce;, Ce;, . Cre;,

Cey,, C3e; oo Clng)e

H, (n) = ¢y i i
i

Cre; C(n+1)eil e C(2n71)ei1

®)

By Gragg's algorithm, for each 2 < i; < N, there exists numbers p;eil and q;gil ,n>1,such

that pfwil #0,n>1,and

/
Pfil Zi
2

o

n
Z Cnefl le ~ / z
n=1 pZeil il

/
1+ Ge;, Ziy — 2
pBEi] il

1 At S
R R
i1 ..

The coefficients p,’wl_1 and q;ei] ,n > 1 are given by the formulas

Uneil

/ /
= —1 =T 1y —Tne., 1>0,
p(nJrl)e,vl 0.(”71)6[1 q(nJrl)e,v1 (n—1)e;, nej, =

where

n n
One;, = Z C2n+1-r)e;, Bneil (r), Tne;, One;, = ZC(2n+2—r)e,] Bneil (r),
r=0 r=0

andforl <r<n+1,

B(n—',—l)e,»1 (7’) = Bneil (7’) + q(n—',-l)eil Bneil (r— 1) - p(n—l—l)eil B(n—l)eil (1’ -2)

©)

(10)
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with the initial conditions
0'7(21-] = BOe,-l (0) = B(nJrl)ei1 (0) =1, T,el.l = B(nfl)eil (71) = anil (11 + 1) =0. (1)
Since
0.06"1 / .
Ceil == Ceil BOeil (0) == a = pgil/ 2 S 11 S N/
we set p,, = péil,Z <i; <N.
Thus,
N
L(z) ~ Foy(z1) + ) Pe; ziy Re; (2).
=2
Step 1.4: Foreach 2 <i; < N by
/ _ Cip _k
R, (z) = Y oz (12)
[k|>0

muthbfkj:O, i1+1<j<N

we denote a formal multiple power series reciprocal to R, (z). The coefficients of (12) are

uniquely determined by the recurrence relations

. K
i

(13)

[ [ . . . . .
where ¢, = 1; moreover, ck1 = 0, if there exists an index j, 1 < j < N, such that k]- < 0.

Thus, we can write

N .
Pe; Zi
L(Z) NF€0(21)+ Z Rll 1

ih=2 eil (Z)

The next construction of the multidimensional A-fraction with independent variables

will be carried out using the ideas outlined in Steps 1.1-1.4.

Step 2.1: Let cig # 0for2 < i, <i;and 2 < i; < N. In addition, for the formation of

partial denominators of the multidimensional A-fraction with independent variables, we
€i . . .

set the following conditions cn;iz =0for1<i,<i;—1,2<i; < Nandn > 1. Then, for

each 2 <i; < N, we can rewrite the formal multiple power series (12) in the form

e; b,
Réil (Z) = 1 + CE;; Zil + Zi] Peil (Zl) + Z CC;}Z)ZilzizREi(z) (Z)’

=2
where
e
[e9)
_ iy n _ ktei) x
Peil (z1) = 2 Cejy +ne1 %17 Re;y) (z) = 2 o 2
n=1 [k|>0 Cej(z)
mathbfk;j=0, i, +1<j<N
Since
. Coe; €2e. Boe: (0)
e e, e e .
Cei'l:_i’l:_éz_roei :qé, 2<1i; <N,
1 Ceil eril 1 n

we set g, = q;il,z <i; <N.
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Thus,
N Pe;, Ziy

L(z) ~ Fy(z1) + Y -
= o
h=s9 + Ge;, Ziy + z;, PE,.1 (zl) + Z Ceiz2) Zl'lzizRgi(z) (Z)
=2

Step 2.2: Let Hjlﬁl(n) #0for2 <i; < Nandn > 1, where

eil (3[1 6,’1
Ceyy e cel_l e Cepy +1ey
81‘] 61‘] E,‘l
Heil _ Cei] +2eq Cei] +3eq Cei1+(n+1)e1
eip +ey (1’1) -
Cezl eil Ceil
ej; +neq e +(n+1)e; e +(2n—T)e;

By Gragg’s algorithm, for each 2 < i; < N there exist numbers Pe;, +ney and Gei,+neys >1,

such that Pe;, +ney #0,n>1,and
00 . ; z
Z ngl S p5’11+31 1 -F (Z )
e +nep~1 2 e \#1)-
n=1 Pei, +2¢177
1+ Qeil +Elzl - >
14 Pei, +3e1%1
e, +2e1Z21 —
i 1 1 =+ qeil +3€121—

The coefficients Pe;, +ney and Ge;, +nes 1 > 1 are given by the formulas

61'1
o,
ej, +neq €i €y
= = - - >
Pei, +(n+1)e; o 7 e +(n+1)er Te,-lJr(nfl)el Tejy+neyr 12 0,
e +(n—1)ey
where
o = i ¢ B (r) T g = Z ¢ B (r)
e +ney = 0 ey +(2n+1—r)ey “eiy Fne Ny Tep tney e Anep 0 iy +(2n+2-r)ey "oy e
r= r=

andforl <r<n+1,
e

. e; e; i
' (1’) = Bel;-i-nel (7’) + qe,‘1+(n+1)el Be,; +neq (1’ - 1) - Pei1+(n+1)el BgiiJr(n,l)e] (1’ - 2)

with the initial conditions

[ e; [
1~ = Be, (0)= B6i1+("+1)€1 =1, Teil —a T Ve

Thus, we can write
p ei Zip

N

L(z) ~ Fo(z1) + . -
1=2 €

n 1+ qeil Zj, + Zi, Feil (Zl) + 2 Ce,%z) ZilzizRL’i(z) (Z)

12:2

Step 2.3: Let Hei1+e (n) £0for2 <i, <i; —1,2<i; < Nandn > 1, where
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e; i

1 1 1
C C e C
ej, +eiy ej, +2e;, ey T1ei,
eiy ei) eiy
e c c ...oc
HE11+E (7’1) _ ei +2€1'2 €iy +3€i2 ei +(i’l+l)€i2
i T
€i € €
1 1 1
Ceiy +nei, Cfil +(n+l)e, “°° C€i1+(2n—1)€i2

Then, by Gragg’s algorithm, for each 2 < i, <i; —1and 2 < i; < N, there exist numbers
Péiﬁneiz and qél_l+nei2, n > 1, such that péil+nei2 #0,n>1,and

/
s e; Peil +€1'2le

1 n
Z C€i1+”€iz Zip ™

n=1

! 2
Peil +261‘2 Ziz

/
1+ De;, +ei, 2in — 7 22
Peil +3ei2 ip

— ; —
1 + qeil +3€,‘2 ZIZ .

/
1 + qeil +2ei2 Ziz

The coefficients p;, . and g . ,n > 1are given by the formulas
n 2 i 2

E,‘l
/ _ ey, +nei, ' _
Py tustle, = & 7 ey lnrie, e
ej; +H(n—1)e;,

i — for n>0
iy +(m—1)e;, ey tnei, =

where
61‘1 . 61‘1 611 61‘1 E,’l o E,‘l E,l
Ueil +nep, T r;o Cﬂ’il +(2n+1-r)e;, Beil tnei, (r), Tfil +nei, Ueil tne, g Ce,vl +(2n+2-r)e;, B€f1+”€i2 (r),

andforl1 <r<n+1,

e; €

e i
Bgii_i'_(n_i'_l)giz (1’) = Bel-11+ne,-2 (r) + %,-1+(n+1)e,-2 BeiiJrneiz (1’ - 1) - peil+(n+l)e,-2 Bgil_l,_(n_l)giz (T - 2)

with the initial conditions

e & & & €
0’81_]178,,2 - BE';"'OE"Z (0) = Beii‘*‘(”*‘l)f«’iz 0)=1, Te"ll*eiz - Bé’ii"‘("—l)eiz (1) = Bef:Jr”e"z (n+1) =0.

Since for2 <ip <i1 —1,2<i; <N,

i i it
1 1 1
Cfi(z) - Cfi(Z) ej, +0e;, (0)
ei
1
_ Ueil +0€l‘2
= o
61'1 761‘2
!
- Pei(z) ’

and for2 <i; <N,
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€i
1
Ce;, C2e;y + C3e;,
Ce;
2
Cae; Ceiy — (C2¢;)
(Ceil )2

C361’1 + CZeil %il BOEil (0)

Cel-l
B C3€i1 Bgil (0) + CZCil Beil (1)
B ce;, Boe;, (0)

(o eil

0-061'1
]
- pZe,-l ’

oy oy . . .
we set Pei) = Peyyyr P2ei) = szil, 2<ip<i;—1,2<1i; <N.Thus,

Pei, Ziy
i
2 S
1+ %l—l zi, +zj, Feil (Zl) + Z (*1) e pei(z)zilzizRei(z) (Z)

=2

M=

L(Z) ~ Feo(zl) +

I

Step 2.4: Letforeach2 <ip <ijand2 <i; <N

/ _ €i(2) _k
R (2) = Y oz (14)
[k|=0
mathbfk]:O, lz-‘rlS]SN
be reciprocal to the formal multiple power series R, (z). It is known that the coefficients

cz(z), k| >1,ki =0, +1 < j < N of (14) are uniquely determined by a recurrence formula

k| 1
€i(2) €i(2) TTEi(2)
e = -y, g,
[r|=1 Cei)
e; e; . .
where COI(Z) = 1; moreover, ck'm = 0, if there exists an index j such that 1 < j < N and that
k]' < 0. Then

N Pei, Ziy
L(z) ~ Fpy(z1) + Z , 5 .
1 (_]) i1.in pei(z) Zi\ Ziy

=2
1+6]gi Zi +z; ng (Zl)+ Z
e b ip=2 Ré’i(z) (Z)

Let us continue the construction of the multidimensional A-fraction with indepen-
dent variables.

Step 3.1: Let 62224)-613 #0forl <izg <ip,2<iy<i;,2<1i <N,and ci’éz = 0 for
1<i3<ip—1,2<i,<i,2<i < N,andn > 1. Then, for each2 < i, < i; and
2 <i; < N, we have

e; iy e;
R,’EM) (z) =1+ cef)ziz + Zizpei@) (z1) + Z ce;;ig ZizzisRei@) (z),

i3=2
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where
€i(2)
[ee]
_ ei2) " . k+eiy i
P,y (21) = ) Copyiner 21, Reyy) (2) = X T )
n=1 [k|>0 Ci,i3

k=0, i3+1<j<N

Since for2 <ip <i1—1,2<i; <N,

eh
iRy _ i Tei2)
Ceiz - ei,
€i(2)
e[l
Ce[l +2e;, ~¢iy +0€i2( )
= — o
eiy -‘rOEl‘2
gil
_Te,vl +0e;,
_
- qei(Z)r
and for2 <i; <N,
61‘1
CZeil . 7C3€l‘1
61'1 - 61'1
2611

el-l + 6,‘1 +
Czeil CZE,'l Ceil C3€1‘1 C4Eil

ey e
61‘1 2(3,’1 Seil

CZeil C4B[1 Ceil - C3€i1 CZE,‘l

Cejf e, Cop — (€20, )*

Gy Cae;, + C3e; Ge;y Boe, (0)

B Ce;) C3e;) Be,-l (0) + C2¢; ey BOei1 (0)
C2e; Cae; + C3e; Bey) (1)

Ceil B C3€i] Beil (0) + Czei] Beil (1)
C2e; Boe; (0)  Cae, Bey (0) + cae, Bey (1)

eril e i

- TOEil - TEil
/
quilf
o o . . .
we set QEM) — qei(z)l q2ei1 - ‘7231.1/ 2 S (%) S 11 - 1/ 2 S 11 S N ThuS,

N Pei, Ziy

L(z) ~ Foy(z1) + Y

il: 19 (_1) 11,1y pei(2) zilziz

2
1+ qeil Zj, =+ Zj, Peil (Zl) + Z ”
- e;
2 1 + qei(z) Ziz + Ziz Pei(z) (Zl) + Z Ceifi)?’ Zilzi3 Rei(3) (Z)
is=2

Step 3.2: Let Hsjz(zjrel(n) #0for2<i, <i,2<i; <Nandn > 1, where
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€i(2)

€ip +e1
Cfi(z)
€i(2) . e;, +2eq
HE,'Z +eq (n) - 2
€i(2)
Ceiz +neq

€i(2)
ejy +neq

%i(2)

Cei2+(n+1)el

€i(2)

eiy+(n+1)e;

Ci(2

ei2+(2n—1)51

)

Then, by Gragg’s algorithm, for each 2 < i, < ij and 2 < i; < N, there exist numbers
Pej(a)+ney and Gejip)+ners 1 > 1, such that Pe;(a)+ney # 0forn > 1and

i CE,-(Z) Zn - pE[(2)+elz]
e, teq 1 ‘ Zz
n=1 pE,(z) +2e141
1 + qﬂ’ +Elzl p ; Zz
i(2)1t3e1~1
L+ Geyp) 420021 — 1)
! l + qe +3€121

The coefficients Pe;)+ney and Gej(zy+ners > 1 are given by the formulas for n > 0,

€i(2)
. Oei(2>+nel
Pejo)+(n+1)er = o) ’

Uei(z)*‘(”—l)@l

where

€i(2)

q

ei(Z) +

€i(2) — €i(2) €i(2)
Ufi(2)+”31 - Z;)Cei(z)—l—(Zn—l—l—r)el Bei(2)+”€1 (r), Te ei(2 )+nfl @ () +”51
r=

andforl <r<n+1,

with the initial conditions

_ R €i _
ei(z)""("""l)el (1’) - Bei(2)+nel (r) + qBi(2)+(n+1)€1 B6i<2> +ney (r 1

i(2) €i(2)
Z ¢ i(2) T (2n+2-7)eg Bfi(z)Jrnfl (1’),

(n+1)e; —

(_1)5i1'i2 Pe;, Zi1Zi2

Zl + Z Cel i ZZZZI3R3 ( )

2) (Zl)'

Step 3.3: Let Hjj;ﬂei3(n) £0for2<iz<ip—1,2<iy<i;,2<i; <Nandn >1,

€i(2)
ei, +nejg

€i(2)

€i, +(1’l+1)€l‘3

%i(2) _ pfie) _ pbi) o %i(2) _ pfi)
Teio)—e1 = BE:‘(2>+0€1 0)= B@i(2)+("+1) =1, Teizy—er = Ber(2>+(”_1)‘?1
Thus,
N Pe;, Zi
n
L(z) ~ Fy(z1) + ¥ :
ij=2
1+ qe, ziy + 2, Fey (z1) + Z
1+qe 212 +212Fe
where
€i(2) €i(2)
ei, +eiy ei, +2€i3
Cei(z) €i(2)
€i(2) o e; +2e; e;, +3e;
;2 +€i3 (1’1) - 2 B 2 B
€i(2) Cei<2)
ej, e, ei +(n+1)e;,

ei,+(2n—1)e;,
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Then, by Gragg'’s algorithm, for each 2 <i3 <i; —1,2 <iy <ijand 2 <i; < N there exist
numbers pe —— and qe — > 1, such that pe — #0,n>1,and

i L@ Peis)%is

ei2+nei32i3
n=1

! 2
pei(z) +2€1’3 ZZ3

1 ! —
ey Py 430, %
Ci(2) T3¢ 13

1+ qe +3€, le

1+qe +2313 i3

The coefficients pe —— and qe — > 1 are given by the formulas for n > 0,

0_ei(2)
/ _ Lﬂs ' _ 50 _ i
pei(2)+(n+1)ei3 ) ’ qu(2)+(”+1)ez‘3 T e t(n—1)e, Gi(2) Ty

e +(n—1)eiy

where
0 e, = L o i1, B ney (D Tt e Oat e, ; Con+ (2 2-r)e, Beay ey ()
andforl1 <r<n+1,
BZEZ*(”H)L’@ (r) = B::((;;+ﬂ€i3 (r) + De;a)+(n+1)eiy Bzgiw% (r=1) - Pejo)+(n+1)e; BZEZH”*U% (r—2)
with the initial conditions
et = By 00y 0 = B e, (0 =1 Tl = Bo 1y (<) = Bl g, (1) = 0.

Sincefor2 <iz <ip—1,2<1ip <i,2<i;p <N,

fie)  _ i) €i(2) (0)
ey Teiy ey tei, 61(2)+0613
%i(2)
(o
i) +Oe,3
)
Uei(Z)_e%
o
= Pegy
and for2 <i, <i;—1,3<i; <N,
L’il Cfil
L) _ _ i) ”11 26, ey +3e;
2e, 6’12 ei e
Ceiry) Ceia)

1 2 Gty
(Ceil +2e;, ) Cgi(z) Ceil +3ei,

SUBRY)
(CL’,(2> )
[’il L’,‘1
Ceil +33; + CL’,1 +Ze,»2 qei(z)
= — o
Ce,(z)
B’l Ciy Ciy Ciy
ei +3ei, B, ( )(O) + Ceil +2e, Bei(z) (1)
= — o
Cfi(z) eiy +0ej, (O)
e,l
1(2)
eiy
e, eiy +0¢j,

’
7}7611 +2e,-2 ’
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(note that the coefficient C2 ! is possible only if N > 3 and, of course, the appearance of

this coefficient here and snmlar others in the following steps depends on the number N),
and for2 <i; <N,

( €iy )2_ iy i

2e11 “3e;, €2e;, Cae;,

NG
n
2

_ 3 _ 2
Ce;, (Cfil C3e;, C5e; + 252311 C3e;, Cde;, C3€,-1 Cej) C4el-1 ngil C5e;, )

(Ceil C3e; — C%eil )?
ey + Cae;, (qeil + ‘72611) * Cae) (%l Q2e;) — Pzefl)
Cae;, + Coe;, ey, Bogi1 (0)
Cse;, Bae;, (0) + Cae, Baey (1) + €3¢, Ba, (2)
Cae;, Be; (0) + e, Be (1)

UZeil

Te;,

/
- _p3€i]’

we put pe,, = Péi<3), 2<i3<ip—1,2<ip<i,2 <101 < N;pe o, =
1
Thus,

/
peil +2€i2 4

N .
E pei le
He o E)+ i1=2 i 1 ( 1)‘51‘1,1'2}9 Zi Z

e - e; 1141
! + Ge;, Ziy + ZiIPeil (21) + 2 ' (2)“11“12

i
1+q€ le +212F€ Z1)+ Z(_l lzl3p€ ZZZZZ3RC ( )
i3=2

Step 3.4: We obtain

N i
Pe; Ziy
L(z) ~ F (z :
(2) ~ Fey(21) 11; i (— )ll 2Pein Zzlzlz
1+Qe, Zj; - lepell(zl) Z — ) Dig,i 3p \ZiyZi
ei(3)%ir %i3

ir=
1+q3 1Ziy + Ziy Foy (z1) + 2 R (z )
1 €i(3)

where foreach2 < i3 <1i,2<i; <ij,and 2 <i; <N,

.
R (@)=} g (15)
|k|>0
k;j=0, i3+1<j<N

is reciprocal to the R, (z). The coefficients of (15) are calculated as follows

€i(2)

e |Z Cr+e,2
=1 elz Z3
where Co( = 1; moreover, ck = 0, if there exists an index j such that 1 < j < N and
k] <0.

The further construction of the multidimensional A-fraction with independent vari-
ables (3) consists of gradually applying steps similar to Steps 2.1-2.4 to all formal multiple
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€i(k) _ (k)
Uei(k)+”eik+1 - ZO Cei<k)+(2n+1—r)
r—

power series in the denominators of the ending partial quotients of the finite branches of
the branched continued fraction.

As a result, computing the coefficients cf(il, k| > 1, ki=0,i1+1<j<N,and
2 < i3 < N, using the recurrence formula (13), and the coefficients ci(k), k| > 1, kj =
0, ik +1<j<Nk>22<i, < ip-p,and 1 <p < k, using the recurrence formula

Ko, o

Cik) Ci(k) Y1y

O = P TR (16)
|r[=1 Cir_ iy

where cf)’(k) = 1; moreover, ci(” = 0 if there exists an index j, 1 < j < N, such that k]- <0,
provided thatfor1 <7y < Nandn >1

He, (1) #0, (17)

where Hel.1 (n) is as defined in (8), and provided that for each 1 < iy < i —1,2 <ip <
z'p,l,l <p<kk>landn>1

i =0, H/® (n)#£0, (18)

e Cifigy1

where Hs:,ikzlﬂ (n) is defined by

Ci(k) Ci(k) Ci(k)
ik 1 N TR Cig Tk 4y
€ik) €i(k) €ik)
e; . . . . e ) ]
e%(kv) (n) — elk+261k+l ezk+3€lk+] Elk+(n+1)elk+l
k41
Ci(k) Ci(k) Ci(k)
eik+n€ik+l eik+(n+l)eik+l @ik+(21’l—1)6,'k+1

For the formal multiple power series (5), we obtain the multidimensional A-fraction with
independent variables (3), where the pe,,, and ge,,, forall ;) € €, k > 1is defined by the
following formulas:

Uneil

P(n+1)e,l = W: q(n+1)e,-l = T(nfl)e,-l — Tney, s (19)
i

where1 <i; < N,n >0, and e, Tney, » 1 > —1, are defined by (9)—(11),

Ci(k)
e, +ne;
_ i(k) T _ . Gik) _ k)
Cpr Ci) r Meygg+(n+l)e = Te,-(k)+(nfl)eik+1 Tejgo+neiy, 7 (20)
eigry+(n=1)ej

Pejj+(n+1)

where2 <i, <i, 1, 1<p<k1<i <i—-Lk>1n>0,

n
Ci(k) Ci(k) Ci(k) o Ci(k) Ci(k)
B“f(k)+”eik+1 (r), Tgi(k)+”eik+1 o-ef(k)Jr”eikH N ;) Cei(k)+(2n+2_r)eik+l Bei(k)+"eik+1 (r),

Cigyq
andforl1 <r<n+1,

Ci(k)

B (r—2)

— Rtk ( _1) —
- Bgi(k)+ngik+] (7’) + qei(k)+(n+l)e,vk+l Bei(k)+”€ik+1 (T 1) pei(k)+(1’l+1)€ik+1 ei(k)+(”_1)€ik+1

with the initial conditions
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=1, 7%, =B® (-1) =B, (n+1)=0.

2 _ ptiER)
Gi2) "% i) T06 0) = B€i<2>+(”+1)% (0) Ci@)"Ciy e t(n—1)ey (2)tneiy

Thus, we have constructed the recurrence algorithm for computing the coefficients
of the multidimensional A-fraction with independent variables (3) in terms of the formal
multiple power series (5).

3.2. Multidimensional A-Fraction with Independent Variables

Let us show that the constructed in Subsection 3.1 the multidimensional A-fraction
with independent variables (3) corresponds at z = 0 to the formal multiple power series (5).

Using formulas (13), (16), (19), and (20), we curtail (4) for n > 1.

Note that according to the described above algorithm for ¢y and for all ¢;() such that
2<iy < ip_l, 1 < p <k and k > 1, the continued fraction

Pel-<k)+elzl

Fey (z1) =
i(k) pei(k)+261z%

14+ 4ge. 46,21 —
k)Tel 2
o Peigry+3e1%1

1+ Jejqr)+2e121 — 1+ Qo) +30,71—

corresponds at the origin to the formal power series

e

_ ety _r

Peyy (z1) = Z Cej+re1 21
r=1

and the order of correspondence is v, = 2n + 1. It follows that for ep and for each ¢;() such
that2 <i, <i, 1,1<p< k, k > 1 and for n > 2 the finite continued fraction

Pe,—<k)+e1 Z1

2
pe,‘(k) +2¢127

1+ qei(k>+2€121 - .

1+ pei(k)+3] Z1 — )
_ Pej)+ne; 21
1+ q€i<k)+1’l€] 21

has formal power series expansion
(n) Zzn €t 2n+1
— ! r n+
Pei(k) (Zl) - ] Ceik+relzl + O(zl )'
r=

where cfgl = Cr forl <r <2mandn > 1, O(zij ) is a symbolic mark for some formal
power series, whose minimal degree of terms is not less than p, p > 3.
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Now, for n = 1, we have

N Pe;, Ziy

fi(z) =)

=1 T+ ge;, zi)

N Ce,-l Zil

I
=11+ cglz,1

Ei
- l—l—Z:celzl2

121

C
Zcel Ziy 1+Z

117 12 1

0z, +0(2)

ZC@ le+ Zzll Zcﬁ‘ le—i-O( )

11 = 11 =1 lz 1

Z cz +0(2%),

Ik|=

where O(z?) is a symbolic mark for some formal multiple power series, whose minimal
degree of homogeneous terms is not less than p, p > 2. Since

Z az+0(2%) — Y az*=0/(2?),

k[=1 k[>1

where O'(z”) is a symbolic mark for some formal multiple power series, whose minimal
degree of homogeneous terms is not less than p, p > 3, then f1(z) ~ L(z) and the order of
correspondence is v = 3.

For n = 2 we can write

N .
2 Pe; Zi
fz<z>:F§O><zl>+>: =
gz +Z( L P
i~y = 1+qei(2) ip
N Ct’ilzil

i1=2 ul leziz
1+ ce’1 zj, + Z
=11+ Cgl
N Ce: Zi
_ p@ 8’1 1
= Py (z1) + 2
=2 c i) Zi,

1+ ct'1 zj, + Z (2)

1+Z

N Ce. Zj
_ p(@ "l
- PEO (Zl) + Z ; ; CSZ']
n= e; 1 e; 2 Ei(z)Jr(.’,‘
3 2
1 +C€i1 Zip + Z C€i22>zflzfz I+ Z e i +0(z")
=1 =1 Ceyp)
Ce; Zl‘1

Z1 + Z -
h=2q 4 E ce 'zi, + Z Zi, Z ctlzlsz,3 + Z Zi, Z Ziy Z c, —e,-1 zi, +0(2%)

ir=1 i3=1 iz=1 ig=1

2 Cex Ziy ( Z Ziy 2 Zi3 le 213 (Z4)>
ir=1 ’1 ir=1  i3=1 "il ip=1 i3=1  iy=1 il

2 czX 4+ 0(2%).

[l]=1
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Since
Z az"+0(2°) - Y ozt =0/(2°),
k=1 [k|>1

then f>(z) ~ L(z) and v, = 5.
Next, let n > 3 be an arbitrary natural number. Then we obtain

Pei, Ziy
2 = Zl+z1+ + 2, BV (21) +
Zj Zj z . . ;
i1=2 LIel i i ey 1 . [ (—1)(51,,—1/“1 Pei(,l)zinflzin

oy
igl 1+4e
CE,' Zil
= P( ") Z1) + : i
( ) ig Cezb) zilziz
1+Ce le—|—lepg 1 Zl +Zl (n—2)
ir—2 +Ce zl2 + 2, Py (z1) + ; Ci(n1)
+ f Cein—yin fn—1%in
e
in=1 1 + Cfif,,n>zi;1
N Co. Zi
_ pm i
=Py (21) + ) =) :
=214+ Cel zi, +zi, Pe, (z1) + ) €i(n-1)
1 .. Ip—1 e; _1in inflzin
+ZZ in
n 1+ Z Celn+1 ina1
iny1=1
N Ce; Zj
" i 1

1
i1=2 1 + Ce le + lepe(ln )(Zl) + l(” 1)

Ci(n—1) . ln 1/in, ’n+1 2
T+ Z Cel 11y,zln 1Z 1+ Z €i Zln+1 +O(Z )

in=1 int1=1 6 11,,

Continuing this process on the final step, we obtain
N Ce; Zj
— (n) €, ~11

le (Z) o PEO (Zl) + Z lZn 12 12n 1 )
i1=2 i 2n—1
1 + Z Cgt ZZZ + + Z ZZZ Z ZZZn 1 Z C Zn 3' ZiZn + O(Z " )
ir=1 ir=1 ipp—1=1 ipp=1

From this we have

i i in—2 1 Ceo
fu(z) :Pe( ") (z1) + Z Ce;\ Ziy <1+ Ly et Yoz ) oz, 1‘Z c( zi,, + O(2? ))

i1= €iy ir=1 im-1=1 ip=1 "%

2n
Z Cka + O(Z2n+1).
|k|=1

Since

Z CkZ —|—O 2n+l Z CkZ 21’l+1)’
k=1 =1

fu(z) ~ L(z) and v, = 2n + 1.
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At last, from the arbitrariness of 7, it follows that f,,(z) ~ L(z) for all n > 1 and that
the order of correspondence is v, = 2n + 1. It follows that A(f,) and L(z) agree for all
homogeneous terms up to and including degree 2n. Since

Iim v, = lim 2n+1 = +oo,
n—-+oo n—-+oo
the multidimensional A-fraction with independent variables (3) corresponds at z = 0 to

the formal multiple power series (5).
Thus, the following theorem is true.

Theorem 3. The multidimensional A-fraction with independent variables (3) corresponds at z = 0
to the given formal multiple power series (5) if and only if the conditions (17) for 1 < i < N,
n > 1, and the conditions (18) for 1 < g1 <ixy —1,2<ip <ip 1,1 <p<kk>1n=>1
are satisfied.

It follows from Theorems 1 and 2 in [29] that the conditions for the existence of the
generalized Gragg’s algorithm are the same as for the algorithm in [29]. However, this
algorithm provides a more convenient numerical procedure for computing the coefficients
of multidimensional A-fractions with independent variables corresponding to a formal
multiple power series.

3.3. Multidimensional J-Fraction with Independent Variables

Let us consider the formal multiple power series

Li(w)= ) %, (21)
" Iklzzlwk

where ¢ € C, k > 1, and the multidimensional J-fraction with independent variables

N .
5 S . N— , 22)
i1=1 1 (_1) e pf,'(z)
Gy + Wi + ) RSO
PN U™ Py
e; i — T
(2) 2 = %(3) + wi3+'

where Peiwr Geiry and ei(k) € &, k > 1 are complex numbers, herewith Pei #0, €i(k) € &,
k>1.

The following theorem summarizes the connections between multidimensional A-
and J-fractions with independent variables (see also [29], Theorem 3). Its proof is a simple
application of Theorem 1.

Theorem 4. Let f,(z) (f,;(w)) denote the nth approximants, respectively, of the multidimensional
A-fraction with independent variables (3) (multidimensional [-fraction with independent variables
(22)), where z; = 1/w; and 1 < i < N. In addition, let the multidimensional A-fraction with
independent variables (3) corresponds to the formal multiple power series (5) at z = 0. Then

(A) For any natural n, the equality f,(z) = f;i(w) is true.
(B) The formal expansion of the nth approximant f,:(w) in the multiple power series at w = o
has the form

2n (n)

C C
W)=Y S+ Y X, oaxi,
K=1 " k21 W
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where c( " ¢ C, |k| > 2n + 1, and hence, the multidimensional J-fraction with independent
Uariables (22) corresponds at w = oo to the formal multiple power series (21).

It follows from Theorem 3 that the generalized Gragg’s algorithm can also be used
for computing the coefficients of multidimensional J-fractions with independent variables
corresponding to a formal multiple power series.

4. Applications

In this section, we will give some applications of the above constructed algorithm.
The function of two variables

22 ) (23)

= t t
f(2) = arctan(z) + arc an(l Tz arctan(z;)

has a formal double power series at origin given by

00 ( 1)k+1 r+1

Y s\ 2r—1
Lz =) 2 1+Z 27_1 (ZZsH(Zéki)l 2%— 1)) L@

k=1

Applying the recurrence algorithm constructed in Section 3, we obtain the following.
Step 1.1: We have

L(z) = EOO Cy 2o (1o iz — 224 1adny 42223 2 4 Lo
_k,lzk—1 2 122 7 32 T 32182 T 415 T AR T 52
15 242 5 1 ¢
_gzlzz 52122 3 22122 lez — ?ZZ + R I

Steps 1.2 and 1.3: By formula (19), we obtain (see also Table 1)

k—1)2
( ) k>2, qwo=4q0x=0 k=>0.

PLo=Po1 =1, Pro = Pox = T(k=3)(2k—1)" "~

Table 1. Results of algorithm applied to (23) on Steps 1.2 and 1.3 for i; = 1,2.

n pneil qneil O'"Eil Tneil Bneil (0) Bneil (1) Bneil (2)
-1 1 0
0 1 0 1
1 1 0 -1/3 0 1 0
2 -1/3 0 4/45 1/15 1 1/3 1/3
3 —4/15 0

Thus,

L(z) ~ Fy(z1) + 22 (1 — 2129 — %z% + %z?zz + z%z% + 2123 + %zé

ls 2 42 5 1
“5A%2 T 3% 3 22122 2125 — §22—|—... ,
where .
1,021
Fo(z1) = P PR
1_ _P20%
1— P30zt

1—
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Step 1.4: Through the recurrence formula (13), we obtain

where

1 1
R6,1 (z) =1+z120 + 525 — 52320 — 3992~ 5

3
12

5 9 3 45

Step 2.1: We have

Z3

1 1 1
+ fz?zz + fz§z§ + fz%zé + =212,

+ —42
94572

+....

L(Zl,Zz) ~ Fo(Zl) + P> 1)k+1

(

1+2; Z 2_]{72%]‘*1 +

k=1 -1

where

4 1
Ro2(z) =1—2z12p — EZ% + gz?zz + 2323 +

Steps 2.2 and 2.3: By formula (20), we obtain (see also Table 2)

12
leg +

7

Rop(z)

44
—z%+....

(n—1)>2
Pl,l = 1/ pn,l = - (271 — 3) (27’1 — 1)/ n 2 2/ Qn,l = O/ n 2 0.
Table 2. Results of algorithm applied to (23) on Steps 2.2 and 2.3.

n Pna qna On,1 Tn,1 By1(0)  Bua(1)  Bua(2)
-1 1 0

0 1 0 1

1 1 0 -1/3 0 1 0

2 -1/3 0 4/45 1/15 1 1/3 1/3
3 —4/15 0

Thus,

22

L(z) ~ Fo(z1) +

where .
1,121
Fi(z1) = P
1 —

1

Step 2.4: Through the recurrence formula (16), we obtain

Z3

-
P2,1%y

2
_ P31
1—

2
Z
1+ 25F(z1) + 2 Rop(2)

L(z) ~ Fo(z1) +

14+2zF (Zl) +

z§/3

Rf),z(z)
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where

4 1 4 44
Rio(z) =14+ z120+ =2 — Sz3z0 — —2123 — ﬁzé

15 3 15 +...

And so on; at the end, we will obtain the corresponding two-dimensional A-fraction
with independent variables of the form

Z
Fo(z1) + s : (25)
14+ 2zF(z1) + Poz 2_ )
1+ 2zF(z1) + %
where fork > 0
z1 (n—1)
F(z) = — > | = pon = — . n>2.
k(=) 1 paxzs Pk = Pon (2n—3)(2n—1)

2
1_ P35

1—

In addition, we note that (25) converges in the domains

V3 V6 1
D = {Z S (C2 : |Zl| < 7, |Zz| < T, |lez| < g
and -

D= {z € C?: |arg(z)| < 5 k= 1,2},

which follows from [35] and [36] (Theorem 5), respectively. Hence, it represents a single-
valued branch of the analytic function (23) in the domain O 9.

In Figure la-b, we can see the so-called “fork property” for a branched continued
fraction with positive elements (see [33]). That is, the plots of the values of even (odd) ap-
proximations of (25) approach from below (above) the plot of the function (23). Figure 2a—-d
shows the plots, where the tenth approximant of (25) guarantees certain truncation error
bounds for function (23).

(a) @—2nd, B—(23), B—3rd (b) M—4th, B—(23), B—5th
Figure 1. The plots of values of the nth approximants of (25).
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-203x102

(0) (d)
Figure 2. The plots where the tenth approximant of (25) guarantees certain truncation error bounds
for (23).

The numerical illustration of (24) and (25) is given in the Table 3. Here, we can see
that the fifth approximant of (25) is eventually a better approximation to (23) than the fifth

partial sum of (24) is.

Table 3. Relative error of fifth partial sum and fifth approximant.

z (23) (24) (25)
(0.8, —0.7) —-1.1185 3.7401 x 107! 1.0841 x 104
(—0.1,—0.1) —0.1984 1.3790 x 10~ 1.7449 x 10712

(0.5,—0.7) —0.3396 2.0795 x 103 1.4715 x 1073
(—0.9,0.1) —0.6253 2.7472 x 1072 1.3940 x 1074
(0.2,0.3) 0.4734 22374 x 107° 1.7797 x 1078
(0.1,0.8) 0.7373 2.0631 x 1072 3.5972 x 107>
(0.9,0.9) 1.2297 2.4591 2.8455 x 10~
(2,4) 1.7422 2.9054 x 10> 2.3425 x 1072
(5,10) 1.9697 1.0147 x 1077 0.3417 x 10!
(—8,10) —2.0853 2.0193 x 103 0.9356 x 10~

Finally, consider the following function of two variables

¥'(z) = ¢'(z21) + ¢/ (22 + lP’(Zl))

® te~

tz
= t
0 1—e_td +/

exp{ —52) — 5 /0

tZl
———dt »d
1—et } >

where ¢/ (.) is the trigamma function (see [37]).
Using the asymptotic expansion for ¢/(.) given in [37], we find the asymptotic repre-
sentation for (26) as a formal double power series

o B-‘r ) ) _B+ s\ 1
Y'(z) = Z kiﬁz 2t (Z(Z k+1 )) ;2 09, (27)

0 %1
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where |arg(z;)| < 7,i =1,2,and
k—1 +
k B
Bf=1-) — >
k r_0<r>k—r+1' k=0,

are the Bernoulli numbers. Then, by Theorem 3, using the algorithm from Section 3, we
obtain the corresponding two-dimensional J-fraction with independent variables

y Pey (28)
i1=1 al pgi(Z)
ey +zip + Z i

ir=1 Pejs)
Az, Yy ——
feic 2 i3Z::1 Qe;zy T Zi3+'
where
(k—1)*

Per+rey = Pep = 1, r>0, Pkey+rey = Pke, = 4(2k — 3)(2k — 1)/ k >2,r>0,
1
ke +rey = Ykey = X k>1,r>0.

In addition, in [38], it is shown that (28) converges and, hence, represents the analytic
function (26) in the domain
1 T
arg(zk — 2) ’ < 5 —¢ k= 1,2},
where 0 < & < 71/2.

Plots of the values of the nth approximants of the two-dimensional J-fraction with

338—{ze(C2:

independent variables (28) for function (26) are shown in Figure 3a,b. Figure 4a—-d shows
the plots, where the tenth approximant of (28) guarantees certain truncation error bounds
for (26). The numerical illustration of (27) and (28) is given in the Table 4. Here, we have
results similar to the results in the previous example.

Re z, 2.0

Figure 3. The plots of values of the nth approximants of (28).
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- 0000077 - 000203

- 0.000055 000145

imz,

0,00087

0.000011 000029

qqqqqqqq -00225

00175

Imz;

00105

(o) (d)
Figure 4. The plots where the tenth approximant of (28) guarantees certain truncation error bounds
for (26).

Table 4. Relative error of fifth partial sum and fifth approximant.

z (26) (27) (28)
(0.6,0.6) 3.9023 1.1536 x 1072 9.1384 x 107!
(0.9,0.8) 2.3654 8.0419 45692 x 1072
(1.5,1.4) 1.4675 5.5267 x 1072 7.2177 x 104

(2,3) 9.6031 x 107! 1.1374 x 104 4.1428 x 1075
(10.9) 22125 x 107! 5.8012 x 10710 1.0153 x 10~ 11
(20, 40) 7.6553 x 107! 7.1868 x 10714 1.9746 x 101
(50,70) 3.4585 x 102 8.8000 x 10~/ 1.8847 x 10~17
(100,110) 2.0099 x 1072 7.8850 x 101 3.6751 x 10722
(500,1000) 3.0025 x 1073 2.1889 x 10726 1.6536 x 1072

It should be noted that the two-dimensional A-fraction with independent variables
(25) and two-dimensional J-fraction with independent variables (28) are similar to fractals.

The calculations and plots were performed using Wolfram Mathematica software
13.1.0.0 for Linux.

5. Conclusions

This paper concerns the representation of special functions by multidimensional
A- and J-fractions with independent variables. The generalized Gragg’s algorithm is
constructed and theorems are proved that provide necessary and sufficient conditions
such that for a formal multiple power series there exist corresponding multidimensional A-
and /-fractions with independent variables. Explicit formulas for the coefficients of these
branched continued fraction are also given.

The obtained results can be used to construct approximate or exact analytical solutions
to equations describing complex processes, for example, physics, chemistry, and engi-
neering, thus providing a better and more meaningful understanding of the properties of
processes and mechanisms.
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The numerical experiments show, on the one hand, the efficiency of the proposed
generalized Gragg’s algorithm and, on the other, the power and feasibility of the method in
order to numerically approximate special functions from their formal multiple power series.
In addition, they indicate the existence of wider domains of convergence multidimensional
A- and J-fractions with independent variables, and hence, domains of analytical expansion
of special functions. However, the problem of establishing them remains open. In [39,40],
the truncation error bounds for these branched continued fractions were established;
nevertheless, the problem of establishing them also remains open.
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