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Abstract: To handle and manage battery degradation in electric vehicles (EVs), various
capacity estimation methods have been proposed and can mainly be divided into traditional
modeling methods and data-driven methods. For realistic conditions, data-driven methods
take the advantage of simple application. However, state-of-the-art machine learning
(ML) algorithms are still kinds of black-box models; thus, the algorithms do not have a
strong ability to describe the inner reactions or degradation information of batteries. Due
to a lack of interpretability, machine learning may not learn the degradation principle
correctly and may need to depend on big data quality. In this paper, we propose a physics–
informed recurrent neural network (PIRNN) with a fractional–order gradient for fast battery
degradation estimation in running EVs to provide a physics–informed neural network
that can make algorithms learn battery degradation mechanisms. Incremental capacity
analysis (ICA) was conducted to extract aging characteristics, which could be selected as
the inputs of the algorithm. The fractional–order gradient descent (FOGD) method was
also applied to improve the training convergence and embedding of battery information
during backpropagation; then, the recurrent neural network was selected as the main body
of the algorithm. A battery dataset with fast degradation from ten EVs with a total of 5697
charging snippets were constructed to validate the performance of the proposed algorithm.
Experimental results show that the proposed PIRNN with ICA and the FOGD method
could control the relative error within 5% for most snippets of the ten EVs. The algorithm
could even achieve a stable estimation accuracy (relative error < 3%) during three-quarters
of a battery’s lifetime, while for a battery with dramatic degradation, it was difficult to
maintain such high accuracy during the whole battery lifetime.

Keywords: physics–informed machine learning; fractional–order gradient; battery degradation;
incremental capacity analysis; backpropagation

1. Introduction
As the most commonly used energy supply for electric vehicles (EVs), the durability

of lithium–ion batteries (LIBs) is a key concern for the intelligent management of batter-
ies [1,2]. Batteries degrade according to dynamic operation conditions and environmental
conditions during their lifetime; thus, capacity estimation methods for LIBs have been
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widely designed recently [3,4]. Currently, researchers have proposed kinds of methods for
the estimation of the state of charge (SOC) [5], state of health (SOH) [6,7], and remaining
useful life (RUL) [8] by various model-based methods and data-driven methods [9–11].
Data–driven methods include statistical methods such as entropy, correlation, and wavelet
transform [12,13] and kinds of machine learning (ML) methods such as regression mod-
els, neural networks(NNs), reinforcement learning, and even transfer learning [14–16].
Machine learning (ML) is gradually applied to battery capacity estimation and degrada-
tion prediction in an intelligent way to make an algorithm learn the battery degradation
path [17]. Among ML algorithms, NNs are a widely investigated and easily employed type
for estimating the battery capacity of EVs [18], such as recurrent neural networks (RNNs),
long short-term memory (LSTM) [7], and gated recurrent units (GRUs) [19]. Recently,
researchers have proposed several innovative ML methods for EVs and hybrid electric
vehicles (HEVs), such as optimal energy management strategies [20], supervised ML for
battery health performance [21], deep learning for seasonal EV forecasting models [22],
and so on.

For the convergence of the loss function and weight updates of NNs, the first-order
optimal method (series of gradient descent) and second-order optimal method (series of
the Hessian matrix) are developed during backpropagation processes. The calculation of
the Hessian matrix may use heavy computing resources and storage; thus, its application is
limited or replaced by the quasi-Newton method [23,24]. The series of gradient descent (GD)
method is currently the main used optimal method, and the basic GD method is improved
in several well-known GD methods, such as stochastic gradient descent (SGD), mini batch
gradient descent, GD with momentum, the Nesterov accelerated gradient (NAG), adaptive
gradient (Adagrad), adaptive moment estimation (Adam), and so on [25,26]. Moreover,
researchers have proposed more innovative gradient-based methods, such as smoothed
functional algorithms with a norm-limited update vector [27], grafting gradient descent [28],
normalized simultaneous perturbation stochastic approximation (SPSA)[29], the Gaussian–
Stein variational gradient descent [30], and so on. While research on GD is a thriving
direction and includes a large number of methods, this paper focuses on the fractional–
order information of batteries combined with GD methods; thus, the basic GD method is
selected in this study.

With careful preprocessing and excellent calculation support, ML algorithms can
achieve perfect performance in capacity estimation accuracy at the lab level. However,
in realistic situations, these kinds of algorithms cannot develop their advantages due
to limited data quality [31]. With unstable and dynamic operation conditions, battery
degradation may vary from that at the lab level and cannot be predicted by pre-trained
algorithms at the lab level [18]. Hence, it is necessary to make ML learn to learn battery
mechanisms. In this way, an algorithm can understand the inner reactions during battery
degradation from the aspect of first principles. In the previous literature, physics–informed
machine learning (PIML) has been proposed to solve problems related to objects with
physical laws [32]. PIML can encode a physical law of a predicted object into observa-
tional bias, inductive bias, and learning bias [32–34]; thus, it combines the advantages of
model-based models and data-driven algorithms [35]. Informed by battery knowledge
from batteries’ physical laws, the neural network can be enhanced from different aspects,
such as the state’s feedback, the loss function, and the gradient in backpropagation, for
application to LIBs [36–38]. Hence, battery information needs to find a way to be embed-
ded into algorithms, and fractional calculus needs to come out. Fractional calculus (FC)
was firstly applied to LIBs to enhance nonlinear fractional–order (FO) modeling [39–42].
The reflection of the diffusion dynamics of battery modeling was described by introducing
a fractional–order element called the Warburg element [43,44]. Then, fractional–order
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methods, such as the FO extended Kalman filter (EKF) [45] and FO unscented Kalman
filter (UKF) [46], were proposed for the estimation of battery states. Moreover, to process
time–series data and their characteristics, the fractional–order recurrent neural network
(FORNN), fractional–order state feedback, and the fractional–order gradient have also
been investigated theoretically [37,47,48]. Since the fractional–order gradient can introduce
history gradient data to improve the local optimum problem, the basic GD method was
upgraded to the fractional–order gradient descent (FOGD) method, which can be applied
to RNNs to express battery degradation information in time series.

In this paper, a physics–informed method is proposed to enhance algorithm inter-
pretability. Incremental capacity analysis (ICA) is also conducted to extract degradation
characteristics as the inputs for machine learning. Then, since the fractional–order element
(constant phase element, CPE) can reflect the charge transfer reaction in the mid-frequency
and solid diffusion dynamics in the low frequency of LIBs [43,44], a fractional–order gradi-
ent descent (FOGD) method is added to improve the convergence of the algorithm during
training. To process the time–series battery data, the main body of the algorithm is chosen
to be an RNN. It should be noted that the main body of the algorithm proposed in this
paper is not limited to an RNN, and other suitable ML algorithms can be applied, such as
LSTM, GRUs, or even meta-learning. Similarly, the FOGD method proposed in this paper
can be extended to other kinds of GD methods, such as SGD, GD with momentum, and so
on.

Here are the several main contributions of this paper.

• A physics–informed recurrent neural network (PIRNN) with ICA and FOGD methods
is proposed for capacity estimation in LIBs with fast degradation. The peak magni-
tudes of the IC curves are extracted as input characteristics for the neural network,
and a fractional–order gradient is applied to the backpropagation process.

• The proposed PIRNN can learn the battery information of running EVs during training
convergence and achieve stable capacity estimation accuracy (relative error < 3%)
using a LiFePO4 battery dataset over three-quarters of a lifetime. This demonstrates
that the proposed PIRNN can be applied to realistic batteries from running EVs and
hold its accuracy.

• A battery dataset with fast degradation is constructed based on ten running EVs
covering the years 2018–2022 and with over a 40,000 km mileage. The dataset contains
5697 charging snippets and covers almost the whole battery lifetime, which can be the
validation dataset for kinds of machine learning algorithms.

2. Preliminary
2.1. Fractional–Order Calculus and Derivative

This paper applies a fractional–order derivative in Caputo’s definition [41] to construct
a fractional–order gradient descent method, and the Caputo definition can be presented as

CDα
t f (t) =

1
Γ(n − α)

t∫
t0

f (n)(τ)

(t − τ)α−n+1 dτ, t > t0 (1)

where CDα
x represents the fractional operator in the Caputo definition, α ∈ (n − 1, n), and

Γ(·) is the gamma function.
If f (x) is smooth with a finite fractional–order derivative, the Caputo derivative in

Equation (1) can be discretized as

C
x0

Dα
x f (x) =

∞

∑
i=n

f (i)(x0)

Γ(i + 1 − α)
(x − x0)

i−α (2)
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In (2), if f (x) = (x − x0)
λ, (2) can be deduced as follows [49]:

C
x0

Dα
x(x − x0)

λ =
Γ(λ + 1)

Γ(λ − α + 1)
(x − x0)

λ−α, (3)

where λ − α + 1 > 0.
Equation (2) is a discrete form and Equation (3) is a simple form for a quadratic

function. We employ the Caputo derivative for the backpropagation of the neural network
to calculate the fractional–order gradient in this paper.

2.2. Fractional–Order Gradient

The integer–order gradient of a smooth convex function, f (x), is usually presented as
∇ f (x), which is the iteration direction for the optimal point search. The discretized form of
the gradient method can be presented as

xk+1 = xk − ρ∇ f (xk), (4)

where k is the iteration step and xk is the discrete value in step k.
The factional-order derivative introduces a fractional order, α, to Equation (4) for

complex systems and nonlinear characteristics. With the Caputo definition, the fractional–
order gradient can be presented as

xk+1 = xk − ρ∇C
xk−1

Dα
xk

f (x), (5)

where 0 < α < 1. The convergence of the fractional–order gradient in (5) depends on the
fractional order α and initial value x0. If the Caputo definition is calculated by the discrete
Equation (2), (5) can converge to the global extreme point x∗. In this paper, fractional–order
gradients are applied to the gradient descent method for the backpropagation of the neural
network. Hence, the fractional–order characteristics of LIBs are analyzed and encoded into
the network design with batteries’ physical information.

3. Battery Dataset and Its Fractional–Order Information
3.1. EV Dataset and Battery Degradation
3.1.1. Battery Capacity

For battery durability, state estimations are quite important, such as the state of charge
(SOC), which can be obtained by a look-up table with open circuit voltage (OCV), and state of
health (SOH), which illustrates the real-time battery charging/discharging ability. The battery
capacity is the basis of the SOH. For realistic data, battery capacity can be calculated as

Qα,β =
∆Ah

∆SOC
=

∫ tβ

tα
I(τ)dτ

SOC(tβ)− SOC(tα)
(6)

where tα and tβ are two separate moments and I(t) is the current during (tα, tβ).
Equation (6) is based on the Ampere-hour integral method and depth of charge (DOC). The
DOC is the SOC change range during charging. The labels used in this paper are deduced
and based on Equation (6) with the calibration of the SOC-OCV curve.

In general, Ni-CO-Mn (NCM) batteries and LiFePO4 (LFP) batteries are the two major
kinds of LIBs used. The available battery in this paper is an LFP battery. A typical
degradation fitting curve of an LFP battery under regular cycles is usually a power-law
function, as shown in Figure 1. It shows a slowed-down degradation when the battery goes
into the late period of its lifetime. However, under the dynamic operation conditions in
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EVs, the data obtained in this paper are for a set of batteries with faster degradation rather
than a slow power function.

Figure 1. Typical degradation curve of LiFePO4 (LFP) battery with mileage increasing.

3.1.2. Battery Dataset with Vehicle Charging Snippets

The dataset used in this paper comes from our co-operation project, which contains
10 EVs named from “EV1” to “EV10” due to VIN privacy protection. Ten EVs numbered
from 1 to 10 were sampled with the operation data of their power battery; then, the battery
capacity was calculated, based on Equation (6) with the calibration of the SOC-OCV curve.
The basic information of the ten EVs (EV1-EV10) is listed in Table 1. The battery cell
used in the ten EVs is a kind of LFP cell with a 130 Ah rated capacity and 14.9 kWh
rated power, and the rated voltage range is from 2.5 V to 3.65 V. The battery pack of the
EV contains 36 cells connected in series. Due to the privacy protection, we could only
obtain the basic rated parameter and OCV-SOC map of this LFP cell provided by our
co-operation company. The driving cycles of the ten EVs are mostly urban operating
conditions with various drivers instead of experimentally designed conditions. Since
dynamic operation conditions result in fluctuant vehicle data, charging snippets from the
EVs were selected, and data preprocessing was conducted to filter stable data to construct
the battery dataset used in this paper. From Table 1, we see that the time range of the
filtered battery dataset covers from 2018 to 2022 and the vehicle mileage varies from 87 to
52,992 km, which contain a long enough period and enough mileage for representing an
aging LFP battery. The charging snippets were filtered by the SOC upper limit (>80%) and
lower limit (<40%) so that the depth of charge (DOC) could be larger than 40%; then, the
battery degradation characteristics could be deduced from the voltage curves. Although a
tough filter condition was applied, the obtained snippets were enough to construct a battery
dataset for degradation.

Table 1. Battery datatset extracted from charging snippets of ten vehicles.

EV No. Snippets Amount Time Range Mileage Range (km) SOH Range (Ah)

EV1 698 18 September 2018–28 Febraury 2022 8730–52,992 124.9076–97.9608
EV2 290 11 October 2018–29 March 2022 87–21,987 131.0177–115.6695
EV3 660 22 September 2018–28 Febraury 2022 4400–47,461 128.4828–102.3552
EV7 571 10 December 2018–31 January 2022 7605–43,792 123.3471–105.1326
EV5 633 19 September 2018–16 September 2021 8355–46,569 120.4993–105.9154
EV6 562 18 September 2018-2 March 2022 8395–45,933 122.0545–107.6695
EV7 650 18 September 2018–1 March 2022 7725–46,737 115.7236–108.9408
EV8 487 18 September 2018–31 January 2022 8165–40,186 123.4687–88.0738
EV9 590 18 September 2018–20 July 2021 7660–45,148 121.3203–107.3435
EV10 556 18 September 2018–20 December 2021 8538–44,569 119.3115–110.6705
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We could not obtain all the accurate capacity labels from standard capacity test, since
these realistic running vehicles are possessed by customers. Hence, based on Equation (6),
Figure 2 shows the calculated capacities used as labels in this paper, and the rated capacity of
this battery pack in these ten EVs is 130 Ah. Compared to Figure 1, the battery degradation
shown in Figure 2 presents faster trends during the battery lifetime. Based on the obtained
data, this may be caused by the chemical composition of this type of LFP battery or caused
by the dynamic operation conditions. The fast degradation mentioned in this paper
produces the aging curves shown in Figure 2, which are different from the general power-
law trend. It should be noted that we do not discuss the specific capacity plunge (dramatic
capacity decrease) in this paper, although it can be observed that EV8 in Figure 2 holds
an abnormal aging curve with an almost 30% degradation. The battery capacity plunge is
another worthy investigation topic in our other works, and our work in this paper is the
employment of the PIRNN with a physics–informed method with this dataset containing
ten EVs.

Figure 2. The battery capacity labels in battery dataset of the ten EVs.

3.2. Fractional–Order Information of Battery
3.2.1. Fractional–Order Equivalent Circuit Model

An electrochemical model with partial differential equations (PDEs) can describe the
physical laws of LIBs at the microscopic particle level, such as lithium ion concentrations,
potential distributions, and interface Bulter–Volmer kinetics; however, the particle-level
reactions are coupled with each other and can hardly be used by NNs [50]. Compared to
electrochemical models, equivalent circuit models (ECMs) can describe the main electrical
reactions with decoupled equations and simpler structures, which contain enough physical
battery information for NNs. The fractional–order constant phase element (CPE), also
called the Warburg element [51,52], is introduced due to the fractional–order capacitance
of LIBs in low frequencies [41]. The voltage–current relationship in the time domain and
impedance in the frequency domain of the CPE are presented as i(t) = CCPE

dαu(t)
dtα , 0 < α < 1, t ≥ 0

ZCPE(s) =
U(s)
I(s) = 1

CCPE ·sα = 1
CCPE(jω)α

, (7)

where ZCPE is the complex impedance, CCPE is the capacity coefficient, j is the imaginary unit,
α is the fractional order related to capacitance dispersion, and ω is the angular frequency.

The battery EIS mainly contains three parts, that is, a high-frequency inductive tail, a
mid-frequency reaction, and low-frequency diffusion dynamics. By employing the CPE
to describe the fractional–order characteristics of the solid diffusion dynamics in the low-
frequency range [43], a fractional–order model (FOM) can be deduced. The fractional–order
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Partnership for a New Generation of Vehicles (PNGV) model is a typical second-order
FOM, as shown in Figure 3, and it is widely used due to its full-scale reflection of LIB
dynamics in all frequencies.

Figure 3. The fractional–order PNGV model of LIBs for physical battery information embedded
in the PIRNN.

The state–space model (SSM) of the fractional–order PNGV model is [43] dUCp
dt

dα1 UCPE1
dtα1

 =

[
− 1

R1Cp
0

0 0

][
UCp

UCPE1

]
+

 1
Cp

1
CCPE1

I,

Ut = [ 1 1 ]

[
UCp

UCPE1

]
+ Rohm I + E,

(8)

where UCPE1 and UCp are the voltages of the Warburg element CPE1 and Cp; CCPE1 and Cp

are the capacitance of CPE1 and Cp; α1 is the fractional order of CPE1; E is the open circuit
voltage (OCV); Ut is the terminal voltage; and I is the current. Based on the SSM of the
fractional–order PNGV model in Equation (8), the impedance of LIBs can be presented as

Z = Rohm + ZARC + ZWarburg = Rohm +
Rct

RctCps + 1
+

1
C1sα1

(9)

where Rohm is the ohmic resistance in high-frequency ranges, the RC tank ZARC (Rct and
Cp) is the double-layer effects and charge-transfer reactions in the mid-frequency range,
and ZWarburg (CPE1) is the solid diffusion dynamics (fractional–order characteristic) in the
low–frequency range, respectively. The fractional–order PNGV model shown in this section
will be transferred into physical battery information embedded into a neural network in
this paper.

3.2.2. Incremental Capacity Analysis

To solve the capacity estimation of EVs with the degradation shown in Figure 2, only
common used variables, such as current, voltage, and the SOC, are not enough. Inner
knowledge of battery degradation should be further investigated. Incremental capacity
analysis is always applied in the electrochemical modeling and capacity loss of LIBs. ICA
is the change trends of charge quantity in the cell voltage, which means the cell’s ability to
store charge quantity in every certain voltage period. Since the working voltage range of a
cell is certain, the ability of quantity storage illustrates the available capacity.

Before the calculation of ICA, a cell inside the EV pack should have been selected
to fetch the corresponding cell voltage to extract the ICA. However, the EV battery pack
contains 36 cells. Hence, we statistically analyzed the maximum–voltage cell and the
minimum–voltage cell marked by the battery management system (BMS) of the ten vehicles,
and part of the maximum and minimum cell results of EV1 and EV7 are shown in Figure 4.
To ensure the integration of the voltage plateau in the LFP cell and the corresponding peaks
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in the IC curves, the cell with the maximum voltage in every EV was selected because this
cell may have been the first one to reach the charging cut–off voltage.

Figure 4. The accumulated time distribution of the maximum–voltage cell marked by the battery
management system (BMS) during all charging snippets of (a,c) EV1 and (b,d) EV7.

During its whole lifetime, EV7 contains totally 650 charging snippets in different
DOCs, as shown in Figure 5, which contains enough degradation information for algorithm
learning. To present the ICA relationship with battery degradation clearly, 55 snippets
ranked from 1 to 55 according to the cycling increase were extracted from the 650 snippets
by every 12 snippets with data preprocessing. Figure 6a,b are the charging voltage curves
extracted from the selected LFP cell of EV7 and the corresponding IC curves, respectively.
To highlight the ICA effects, only the two plateau regions of the LFP cell are plotted in
Figure 6a, and the peaks in the IC curves shown in Figure 6b can be more clear. Figure 6a
presents the shift in the voltage curves to the left region of the figure, and the lengths of the
two plateau regions decrease with a cycling increase. Hence, the lengths of the two plateau
regions are related to the battery degradation, and they can act as an indicator for RNN
training. Then, the voltage plateau is transferred to the IC curves, as shown in Figure 6b,
which demonstrates that the peaks’ magnitude in the IC curves decreases when the battery
cycle increases. Hence, this work chooses the two peaks’ magnitude as the inputs of the
proposed algorithm.
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Figure 5. The 650 charging voltage curves of the selected LFP cell (the cell with maximum voltage) in
EV7 with degradation.

Figure 6. The extracted voltage curves and incremental capacity (IC) curves of the selected LFP cell in
EV7 during charging with degradation. (a) The extracted charging voltage curves with two extracted
plateau regions; (b) the IC curves.
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4. Physics–Informed Fractional–Order Recurrent Neural Network for
Battery Degradation

The flowchart and framework for the whole structure of the PIRNN is shown in
Figure 7. For battery degradation estimation, ICA with degradation information and a
fractional–order gradient were both applied to a neural network, resulting in a physics–
informed algorithm. The ICA inputs, network structure, and fractional–order gradient
descent(FOGD) method will be introduced in the following sections, respectively.

Figure 7. The flowchart and framework of the proposed PIRNN for fast battery degradation.

4.1. Physics–Informed Input with ICA Characteristics

The ICA curves of the ten EVs were extracted from the battery voltage curves, and part
of the ICA curves are shown in Figure 8. For the LFP battery, the position and the length of
the two plateau regions in the voltage curve shift when the battery cycles increase. From the
battery mechanism aspect, the two plateau regions in the voltage curve correspond to the
two peaks in the IC curves, which demonstrates the change in the loss of lithium inventory
(LLI) or loss of active material (LAM) with battery aging. Hence, the length of the two
plateau regions related to the battery degradation can be transferred to the magnitude
of the two peaks, which are called the peak1 magnitude and peak2 magnitude in the
following section, as marked in Figure 8. Although different cells may have different IC
curves, as shown in Figure 8, the trends related to battery degradation are similar, and thus
normalization was applied for every cell before they were input into the network.

4.2. Physics–Informed Structure of RNN

Besides the ICA characteristic, a physics–informed algorithm could be achieved from
the structure aspect. The RNN in Figure 9 contains an input layer with m neurons, the
hidden layers (h1, . . . , hp−1, hp, . . . , hl) with np(p = 1, 2, . . . , l) neurons, and an output layer
with q neurons, respectively. Suppose that the training data are (xi, ui), i = 1, 2, . . . , N,
where xi = (xi1, xi2, . . . , xim)

T is the input and ui = (ui1, ui2, . . . , uiq)
T is the ideal output.

The vectors xi and ui are presented as x and u in the following context. In the chain structure
of the RNN, Wp and bp are the weight and bias matrix connecting the (p − 1)th hidden
layer to the pth hidden layer, Whp is the weight for the memory updates of the pth hidden
layer, g(x) is the activation function, and L(g(x), u) is the loss function. Within the pre–set
maximum epochs, the RNN went through forward propagation and backpropagation
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with the training dataset. The forward propagation starting from the input layer can be
presented as {

ap(x) = Wphp−1(x) + bp,
hp(x) = g(ap(x)), p = 1, 2, . . . , l

(10)

where ap(x) and hp(x) are the input and the output of the pth hidden layer, respectively.
The weights Wp and Whp and bias bp can be updated from the output layer to the hidden
layers, and it always makes the weights Wp = Whp in real applications. The loss function
L(g(x), u) applied in this paper (also called the performance function) was selected as the
mean square error (MSE), which is calculated as

L(g(x), u) =
1

Ndata
∑Ndata

i=1 (ui(xi, ti)− ûi)
2 (11)

where Ndata is the battery data amount and ûi is the actual labels of the battery capacity.

Figure 8. The IC curves and characteristics extracted from the IC curves of EV1, EV3, and EV6.
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Figure 9. The structure of the proposed fractional–order recurrent neural network.

4.3. Fractional–Order Gradient Descent Method

The fractional–order gradient descent (FOGD) method was proposed in our previous
work [37]. Here, we present the results of the fractional–order gradient method, and further
deduction processes can be found in [37]. Instead of integer–order gradients, the FOGD
method employs fractional–order gradients with the loss function and weights updates.
The FOGD for the updates of the weight Wp is presented as

Wk+1
p = Wk

p − η ·W0
p

Dα
Wk

p
L(g(x), y)

= Wk
p − η · ∂αL(g(x), y)

∂
(

Wk
p

)α
(12)

Based on ap(x) = Wphp−1(x) + bp in Equation (10) and the chain rule, Equation (12)
is deduced as

Wk+1
p = Wk

p − η · ∂L(g(x), y)
∂ak

p(x)
·

∂αak
p(x)

∂
(

Wk
p

)α (13)

where ∂L(g(x), y)/∂(Wk
p)

α is the fractional–order gradient of the weight Wp of the loss func-
tion L(g(x), y) and η is the learning rate (iteration step size). In Equation (13), the gradient
of the input ak

p(x) to the loss function (∂L(g(x), y)/∂ak
p(x)) can be obtained by



∂L(g(x), y)
∂hk

p(x)
= Wk

p+1
∂L(g(x), y)
∂ak

p+1(x)

∂L(g(x), y)
∂ak

p(x)
=

∂L(g(x), y)
∂hk

p(x)
· g′(ak

p(x))

= Wk
p+1

∂L(g(x), y)
∂ak

p+1(x)
· g′(ak

p(x))

(14)

where ∂L(g(x), y)/∂hk
p(x) and ∂L(g(x), y)/∂ak

p(x) are the gradients of the output hk
p(x)

and the input ak
p(x) of the pth hidden layer, respectively. ∂αak

p(x)/∂(Wk
p)

α can be calculated
by Equation (2). Hence, combining Equation (14) and the discrete Caputo definition in
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Equation (2), the fractional–order gradients of the weight Wp of the loss function L(g(x), y)
can be deduced as

∂αL(g(x), y)
∂(Wk

p)
α

=
hk

p−1(x)

Γ(2 − α)
· ∂L(g(x), y)

∂ak
p(x)

(
Wk

p − W0
p

)1−α
(15)

where W0
p is the initial value of the weight Wp. Taking Equation (15) into Equation (13), we

can obtain the FOGD method for backpropagation as

Wk+1
p = Wk

p − η ·
hk

p−1(x)

Γ(2 − α)
· ∂L(g(x), y)

∂ak
p(x)

(
Wk

p − W0
p

)1−α
(16)

where α is a fractional order that may be related to battery knowledge and sensitive to the
training results. Equation Equation (16) is the basic equation of the FOGD method to update
weights in the backpropagation process. With an updated equation (16), the procedure of
the PIRNN with the maximum epoch (Emax) can be concluded as follows.

• Step 1: perform initialization, with W0
p , p = 1, 2, . . . , l, b0

p, the learning rate lr, the
fractional order α, and so on.

• Step 2: obtain the battery dataset, and then preprocess the data (including extraction
of inputs such as ICA magnitude) and divide the battery data into training, validating,
and testing data.

• Step 3: perform the feedforward process, in a discrete form, with data flows in the
PIRNN from the input layer to output layer, and then calculate the MSE (msek).

• Step 4: perform the backpropagation process, starting from the output layer, to calcu-
late the gradients between layers, and then update the weight Wp and bias bp with
(16).

• Step 5: Perform validation. Check if msek satisfies the target value or if the maximum
epoch Emax is arrived at. If so, go to step 6; if not, go to step 3 and epoch = epoch + 1.

• Step 6: If msek satisfies the target value of the loss function msek
re f , the training process

is completed, and capacity estimation and analysis should be conducted. Otherwise, if
the maximum epoch Emax is arrived at, adjust the parameters and redo the procedure.

5. Algorithm Verification and Experimental Results
5.1. Experimental Setup

Experiments were conducted to demonstrate the effects of the proposed algorithm.
The dataset with the labels of the ten EVs shown in Figure 2 was applied and divided into
a training dataset, validation dataset, and testing dataset. The ten EVs contained a large
amount of charging snippets in various DOC ranges, which were filtered into 5697 snippets,
as shown in Table 1. A DOC histogram of the 5697 snippets is shown in Figure 10, which
demonstrates that the dataset had high quality for network training, validation, and testing.
Then, the 5697 snippets were divided into training, validation, and testing snippets in
the ratio 0.8:0.05:0.15. With the partition of training, validation, and testing datasets, eight
of the ten EVs (EV1–EV8) acted as the training dataset, almost half of EV9’s data were
selected as the validation dataset, and the other half of EV9 and EV10 acted as the testing
dataset. The selection of this partition was mainly according to the data length of the ten
EVs in a time sequence, because 80% of the 5697 snippets were nearly the battery data of
EV1–EV8, and we tended to make all EVs separate from each other. A large part (80%) of
the EV snippets were considered training data to offer as many various battery degradation
types of EVs as possible during the training process. Then, the algorithm could learn
enough battery information for further testing estimation. Every snippet corresponded
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to a battery capacity value of an EV. Hence, the 15% testing part included 854 snippets
of EVs, corresponding to 854 capacity points, which were enough for testing estimation.
The validation part only needed a small section of data for the gradient threshold, and
thus the validation section only took up 5%. Considering the ICA part, the inputs of the
proposed algorithm were selected, as shown in Table 2.

Figure 10. The histogram of the DOC of all inputs.

Table 2. The inputs of the proposed algorithm.

No. 1 2 3 4 5 6

Type average
current

start
SOC

end
SOC

DOC start
voltage

end
voltage

No. 7 8 9 10 11 12

Type mileage Ah quantity start
temperature

end
temperature

peak1
magnitude

peak2
magnitude

Besides the inputs, the algorithm parameters were pre–tuned for training performance.
Here are the determined parameters of the proposed PIRNN, as shown in the following
Table 3. The main tuning parameters of the FOGD method were the learning rate lr and the
fractional order α.

Table 3. Algorithm parameters for training, validation, and testing.

Name Value Name Value

state delays in PIRNN 1:2 hidden layer size 8
performance function MSE maximum epoch 3000
train function FOGD train–validation–test 0.8:0.05:0.15
learning rate lr 0.0001 training goal 1
fractional order α 0.8 validation times 50

5.2. Estimation Results for Battery Degradation

We took the variables in Table 2 as the inputs, the parameters in Table 3 as the network
parameters, and the capacity values as the output of the proposed algorithm; the estimation
results are presented in this section. Figure 11 is the training process with the validation
dataset, and the loss of the testing dataset is also shown in Figure 11. Since battery
degradation is a key state changing with time, the training dataset, validation dataset,
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and testing dataset are plotted in a “pseudo” time–series sequence for the algorithm
learning. The loss function is the MSE of the outputs, that is, the capacity estimation values.
Figure 11 proves that the proposed algorithm could converge smoothly and rapidly with the
fractional–order gradient method, and the loss could decrease into a small value (<10) less
than 1/10 of the value of the loss in the beginning (180), which proves that the proposed
PIRNN algorithm could learn the battery aging information with the fractional–order
gradient decrease.

Figure 11. The training process of the proposed fractional–order recurrent neural network with the
physics–informed method.

Figure 12 presents the estimation outputs of the proposed PIRNN algorithm, and the
estimation results of the ten EVs are presented in a time series accompanied by the capacity
labels shown in Figure 2. For comparison, the results of a conventional RNN with the
GD method and also ICA inputs are presented with the results of the proposed PIRNN
in Figure 12 and the following figures of the error and relative error. All parameters of
the proposed PIRNN and conventional RNN with the GD method are the same except the
fractional order. In the results of Figure 12, since the dataset of the ten EVs was divided
into training–validation–testing as 0.8:0.05:0.15, eight of the ten EVs (EV1–EV8) act as the
training dataset, almost half of EV9’s data is selected as the validation dataset, and the
other half of EV9 and EV10 act as the testing dataset. Generally, the estimation results can
fit most of the capacity of the ten EVs and track the fast degradation path of the LFP battery.

It should be noted that the transient variation in the shift points between every
two EVs should not be taken as the estimation results of the proposed PIRNN algorithm.
For example, the shift point between EV1 and EV2 caused a large capacity change from
98 Ah to 130 Ah, resulting a large amount of noise for the estimation output of the PIRNN
in the beginning of EV2. Every point shown in Figure 12 presents a snippet among the
5697 snippets of the ten EVs, and the time range of every EV curve covers from 2018 to
2022, which is already a long running period. Although it still seems that the estimation
performance of the algorithm in Figure 12 does not hold very well in every part of the
capacity degradation curve, the estimation results can remain stable in most of the battery
lifetime. Specifically, the training performance on EV7 and EV8 was the worst among the
ten EVs, which may have been caused by the capacity change rates of EV7 and EV8, which
varied from the other six training EVs. This also influenced the performance on the testing
dataset, as shown in the right region of Figure 12, and the testing outputs turned out to be
similar to those of the first six EVs.
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Figure 12. The capacity estimation results of the proposed fractional–order recurrent neural network
with the physics–informed method, compared to a conventional RNN with the GD method.

To further illustrate the performance, the estimation errors (output labels) and the relative
errors are also provided in Figures 13 and 14, respectively. The relative errors were calculated
by the absolute values of the output labels/labels, so the relative errors were calculated based
on the battery aging labels rather than the rated capacity, which was a real-time error index.

Generally, the errors and relative errors in Figures 13 and 14 demonstrate that the
proposed algorithm could learn the battery’s physics–informed knowledge and control
the errors within an acceptable range when the dataset held a similar fast degradation
path. The errors of eight of the ten EVs shown in Figure 13 are lower than 5Ah, which is
small enough for a battery pack with a 130Ah rated capacity. First of all, it should be noted
that the shift points between every two EVs bring large and transient changes in the error
values, such as the shift error between EV1 and EV2, EV3 and EV4, or EV8 and EV9, and the
transient change in error should be considered noise rather than the estimation output.
In the other hand, the error curves with shift points also prove that the proposed PIRNN
can hold enough robustness with initial data noise. As shown in Figure 14, the relative
errors of the first six EVs (EV1–EV6) and EV9 during the whole battery lifetime could be
lower than 3%, which is also good enough for capacity estimation. However, in the end of
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the capacity curves of the ten EVs, especially EV5, EV6, and EV10, the proposed algorithm
cannot learn the capacity trends as well as in the early stage, because the time interval
between two snippets in this stage may be more than one month, and the EV battery
may near the end of its lifetime, which makes it harder for algorithm to learn the trends.
Moreover, EV7 and EV8 have batteries with faster degradation paths, and EV8 nearly has a
dramatic drop in the end of its lifetime, so the proposed algorithm cannot catch the sudden
drops by its current FOGD method.

Figure 13. The estimation errors of the proposed fractional–order recurrent neural network with the
physics–informed method, compared to a conventional RNN with the GD method.

Figures 12–14 put the estimation results of the ten EVs together, which aims to show
the general effectiveness of the proposed algorithm. To better illustrate the details, we
extracted single estimation results for every EV from the ten EVs. Figure 15 shows the
detailed results of EV4 in the training dataset, and Figure 16 is the comparison of EV6 in
the training dataset and EV10 in the testing dataset. In Figures 15 and 16, both capacity
estimation outputs and the corresponding relative errors are provided, and the x–axes of
the figures are the snippet numbers in all the 5697 obtained snippets of the ten EVs, so they
do not start at 1. The results of EV4 in Figure 15 show the best fitting of capacity labels
among the ten EVs. This does not mean that there is an over–fitting of EV4 data, because by
comparing Figure 15 with Figure 12, the estimated outputs of the other nine EVs can be
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adjusted by the algorithm and the estimated degradation paths of the other nine EVs are
various from each other. Meanwhile, in Figure 16, it can be observed that the estimated
results in the end stage of the battery pack are not as accurate as those in the early stage.
Thus, we find the critical point when the relative error exceeds 3%, which is also marked in
Figure 16. For EV6 in the training dataset, the critical point happened at the time 9 October
2020, and the capacity label was 110.334 Ah with the SOH = 84.9%. For EV10 in the testing
dataset, the critical point happened at the time 1 October 2020, and the capacity label was
112.179 Ah with the SOH = 86.3%. It can be seen that the estimation errors stayed under 3%
until the battery lifetime reached around 85%; thus, this proves that the proposed algorithm
could hold the estimation accuracy over three–quarters of the battery lifetime.

Figure 14. The relative errors of the proposed fractional–order recurrent neural network with the
physics–informed method, compared to a conventional RNN with the GD method.

In this section, we present the estimation results and analysis of the proposed PIRNN
algorithm for fast battery degradation estimation. The results show that the proposed algo-
rithm could achieve a stable relative error < 3% for most of the ten EVs over three–quarters
of the battery lifetime. The convergence process also showed that the proposed algorithm
could learn the battery information through the IC inputs and FOGD method. However,
the estimation accuracy decreased at the end of the battery lifetime and should be improved
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by embedding further physical information of the battery. Moreover, the performance on
the battery with a dramatic degradation rate should be improved by introducing other
physical inner degradation variables. It should be noted that all ten EVs collected in the
dataset had a battery with fast degradation rather than a power–law trend, which may
already make it harder to conduct capacity estimation in realistic operation conditions.

Figure 15. Detailed estimation and relative error of EV4 in training dataset. (a) EV4 estimation results
with labels. (b) EV4 relative error.

Figure 16. Cont.
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Figure 16. Comparison of training results and testing results with EV6 and EV10. (a) EV6 estimation
and relative error in training dataset. (b) EV10 estimation and relative error in testing data.

6. Conclusions
This paper proposes a physics–informed method for a fractional–order recurrent neu-

ral network to conduct battery capacity estimation, especially for a battery with fast degra-
dation. A characteristic extracted from ICA was firstly applied to enhance the learning of
the battery’s inner information and the algorithm interpretability. And, the fractional–order
gradient descent method was also applied to accelerate the training process of the proposed
algorithm. Hence, a fractional–order recurrent neural network with a physics–informed
method was designed for battery capacity estimation. Specifically, the investigated battery
dataset in this paper was from the LFP batteries of ten EVs with fast degradation, which
is different from typical power–law capacity aging. The proposed algorithm was directly
verified on the realistic sampled data and could realize a relative error < 3% for most of
the ten EVs over three–quarters of the battery lifetime. The results show that the proposed
algorithm could achieve stable performance in the fast degradation estimation when the
batteries held similar degradation trends. The results prove that the research direction of
encoding battery knowledge by the physics–informed method is worthy of investigation.
However, other, more inner physical or even electrochemical variables could be added to en-
hance the physics–informed degree of machine learning. Moreover, other types of machine
learning can also be considered to achieve better performance in further investigations.
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