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Abstract: Improper urban spatial structure can lead to problems such as traffic congestion,
long commuting times, and diseconomies of scale. Evaluating the efficiency of urban spatial
structure is an important means to enhance the sustainable development of cities. The
fractal method has been widely used in the identification and efficiency evaluation of urban
spatial structure due to its sufficient characterization of urban complexity. However, the
identification of urban fractal structures has expanded from monofractal structures to multi-
fractal structures, while the efficiency evaluation of urban fractal structures remains limited
to the single-dimensional efficiency evaluations of single fractals, seriously affecting the re-
liability of urban fractal structure evaluation. Therefore, this study identifies and evaluates
urban spatial structure within the unified framework of multifractal analysis. Specifically, a
classification-based multifractal method is introduced to identify the multifractal structure
of 290 cities in China. An iterative application of the geographic detector method is used to
evaluate the comprehensive energy-economic efficiency of urban multifractal structures.
The results indicate that the 290 Chinese cities include 6 typical multifractal structures. The
explanatory power of these six typical multifractal structures for urban energy-economic
efficiency is 16.27%. The advantageous multifractal structures of cities that achieve higher
energy-economic efficiency rates satisfy a cubic polynomial form. By comparing them with
the advantageous multifractal structures, the main problems affecting the efficiency of
urban multifractal structures in the other five types of cities are shown to include overly
strong or weak concentration capacity of high-level centers, weak hierarchical structures
among centers, and the spreading of low-level centers.

Keywords: multifractal structure; energy-economic efficiency; nighttime light; Chinese cities

1. Introduction
Currently, about half of the global population, approximately 3.5 billion people, live

in cities. By 2030, nearly 60% of the world’s population, around 5 billion people, will reside
in urban areas. As the second most populous country in the world, China’s urbanization
rate reached 66% in 2023, with over 900 million people living in cities. These populations
engage in a range of socio-economic activities in cities, consuming enormous amounts of
energy. In 2023, the global energy distribution included oil (29.61%), coal (25.07%), natural
gas (22.03%), biomass (6.21%), nuclear (3.75%), hydro (6.32%), wind (3.07%), solar (1.93%),
biofuels (0.66%), and other alternative energy sources (1.35%). This energy usage led to
emissions of around 37.55 GTCO2, representing a 1.1% rise from 2022 and being roughly
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60% higher than the CO2 emissions that were recorded in 1990. The spatial structure of a
city affects the efficiency of socio-economic activities. An improper spatial structure can
lead to traffic congestion, long commuting times, and economies of scale, thereby increasing
the energy consumption, reducing the economic output, and impacting urban sustainable
development [1,2]. Therefore, assessing the energy-economic efficiency of urban spatial
structures is an important means to enhance the level of urban sustainable development.

Accurately quantifying the urban spatial structure is a prerequisite for conducting
energy-economic efficiency assessments of the urban spatial structure. Existing research has
depicted urban spatial structure from perspectives such as the spatial concentration of ur-
ban elements [3,4], the spatial centralization of urban elements towards the CBD [5–7], and
the fractal structure of the urban hierarchy [8–11]. In comparison, fractal structures exhibit
the self-similarity of urban hierarchical systems, clearly depicting the spatial complexity
and livingness of cities [12–14]. A large body of research also emphasizes the importance of
urban fractal structures for better understanding the livingness of urban spatial structures,
urban spatial order, and the efficiency of urban metabolism [15–17]. Existing methods for
characterizing urban fractal structures include monofractal methods and multifractal methods.
Among them, the monofractal method belongs to global models and uses global parameters
to characterize urban self-similarity, including geometric fractal dimension, network fractal
dimension, flow fractal dimension, the Ht index, etc. [18–22]. The multifractal method belongs
to local models, considering the different growth probabilities of urban elements in various
locations, thereby potentially presenting heterogeneous self-similar structures [23–25]. Tra-
ditional moment-based multifractal methods can fully capture the fractal heterogeneity of
urban space. However, it lacks an explicit mapping relationship with geographic space,
making the hierarchical relationship between the multifractal structure and the urban center
unclear. To enhance the spatial display and interpretability of the multifractal structure,
Tan et al. [26] proposed modeling the density relationship between urban plots and sur-
rounding areas using the slope coefficient from a local perspective and then identifying
typical spatial organization patterns through cluster analysis. Wang et al. [27] identified
the urban hierarchy system by classifying urban elements according to density and then
hierarchically identifying the multifractal structure of urban elements, referred to as the
classification-based multifractal method. In contrast, the classification-based multifractal
method directly depicts the multifractal structure of the urban hierarchy system, with clear
spatial meanings of the multifractal parameters.

Evaluating the efficiency of existing urban fractal structures primarily focuses on
assessing the efficiency of monofractal structures. The main evaluation methods include
the allometric growth method and statistical analysis. The allometric growth method
is used to assess the relationship between urban monofractal structures and natural or
socio-economic indicators. For example, Lu and Tang [28] measured urban accessibility
using the fractal dimension of the transportation network and evaluated the allometric
growth relationship between fractal dimensions and the urban population. Lan et al. [29]
established the allometric growth relationships between the fractal dimension of Hong
Kong’s road network structure and socio-economic indicators such as the urban popu-
lation, GDP, and CO2 emissions. They found an inverse allometric growth relationship
between the structural fractal dimension of the road network and the area of cultivated
and agricultural land. Lan et al. [30] measured the allometric growth relationships between
the fractal dimension of urban subway networks and the urban economy, population,
and environment. The statistical analysis method is often used to evaluate the impact
of monofractal land use structures on the urban environment and ecology. For example,
Xu et al. [31] used the perimeter–radius fractal dimension to measure the adjacency and
landscape fragmentation among different land use patches. They applied the geographical
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detector method to analyze its impact on regional carbon sequestration. The results showed
that as the spatial structure of land use transitioned from complex to simple, the influence
of landscape characteristics on regional carbon sequestration gradually decreased. Lu
and Liu [18] used a boundary dimension to characterize the complexity of urban land use
boundaries as one of the indicators describing the urban morphology. They established a
geographically weighted regression model to evaluate the impact of the urban morphology
on air quality, revealing that fractal dimensions had no significant impact on air quality. In
summary, few studies have conducted efficiency evaluations of urban multifractal struc-
tures. Moreover, existing evaluations of urban fractal structures primarily focus on single
dimensions such as the economy, energy, or the environment, lacking a comprehensive
multidimensional efficiency assessment.

Therefore, this study introduces a classification-based multifractal method to charac-
terize the multifractal structures of 290 cities in China. From the input–output perspective,
energy-economic composite indicators are constructed to evaluate the efficiency of ur-
ban multifractal structures. The geographical detector method is iteratively applied to
assess the comprehensive energy-economic efficiency of urban multifractal structures,
identifying advantageous multifractal structures with higher energy-economic efficiency.
Furthermore, spatial structure issues affecting the overall urban energy-economic efficiency
are diagnosed.

2. Materials and Methods
2.1. Study Area and Data

There are 293 prefecture-level cities in China, and based on data availability, this study
evaluates the urban multifractal structure and energy-economic efficiency of 290 prefecture-
level cities, which are close to the entire sample of cities. The concept of prefecture-level
cities is an administrative region, and urban socio-economic activities mainly occur in the
physical area of these cities. Therefore, the study area is the physical area of 290 prefecture-
level cities in China. The key to the identification of urban physical areas is the threshold
determination of urban and non-urban areas. Cao et al. [32] proposed a percolation-based
method to optimize urban and non-urban thresholds by considering the critical nature of
urban systems. Taking nighttime lighting (NTL) as an example, when extracting the urban
area, if the threshold of urban and non-urban division is less than the 3DN value, a giant
cluster quickly forms. Therefore, the 3DN value is the optimal threshold. Based on Cao’s
results, areas with an NTL brightness greater than 3 and a cluster size greater than 20 km2

were identified as urban physical areas.
The NTL brightness data were used to study the multifractal structures of Chinese

cities. The NTL brightness records the composite information under the interaction of
urban socio-economic activities, which is an ideal data source for effectively portraying
urban spatial structures [33], and Li et al. [34] also pointed out that nighttime light re-
flects the spatial distribution of the migrant population, which is more reflective of the
real urban spatial structure. Some studies have also shown that urban nighttime lighting
represents fractal and multifractal spatial structures [15,35]. Chen et al. [36] developed
an auto-encoder model including convolutional neural networks to integrate Defense
Meteorological Satellite Program-Operational LinescanSystem (DMSP-OLS) NTL and Na-
tional Polar-orbiting Partnership-Visible infrared Imaging Radiometer (NPP-VIIRS) NTL
data and generated an extended time series of global annual NPP-VIIRS-like NTL data
(https://doi.org/10.7910/DVN/YGIVCD). In this study, the multifractal structures of
Chinese cities were modeled using NPP-VIIRS-like NTL data for 2019, which was chosen
to avoid the impact of the COVID-19 pandemic.

https://doi.org/10.7910/DVN/YGIVCD
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Regarding the energy-economic indicators that were used to optimize the urban
spatial structure, a total of three indicators were selected: GDP, GDP per capita, and
GDP per unit of electricity consumption (Figure 1). Here, GDP represents the size of the
economy, GDP per capita represents the living standard, and GDP per unit of electricity
consumption represents the energy utilization efficiency of economic development. The
basic data that were needed to generate the three indicators include the GDP, population,
and electricity consumption of the urban physical area. The GDP data were generated from
the grid GDP data from the Resource and Environment Science and Data Center (https:
//www.resdc.cn/, accessed on 25 January 2025) [37]; the population data were generated
from the Landscan grid population data, released by Oak Ridge National Laboratory (https:
//landscan.ornl.gov/, accessed on 25 January 2025) [38]; and the electricity consumption
data were estimated from Wang et al.’s [35] model.
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Figure 1. Study area and data.

2.2. Methods

Figure 2 shows the research technology roadmap of this study. The identification and
optimization of urban multifractal structures mainly includes three modules: a quantitative
representation of the urban multifractal structure, typical characteristics, and a performance
evaluation. The methods used in each module are described in the following.

(1) The CMFA method: identifying urban multifractal structures

This study uses the CMFA method to quantify the multifractal structure of urban
nighttime lights. Traditional multifractal analysis methods implicitly highlight different
density zones by changing the statistical moments of urban elements. Therefore, although
the multifractal spectrum portrays the heterogeneous scaling structure of the urban local
area, the mapping relationship between the local geographical space and the scaling
characteristics is unclear; that is, the points on the multifractal spectrum lack geographic
information. When the multifractal spectrum indicates the existence of anomalies in the
multifractal structure of a city, the lack of geographic information makes it impossible to
target the areas with anomalous structures and thus cannot directly guide the optimization
of the urban spatial structure. The CMFA method remedies this deficiency: this is achieved
by dividing the urban area into several subregions with different density classes and then

https://www.resdc.cn/
https://www.resdc.cn/
https://landscan.ornl.gov/
https://landscan.ornl.gov/
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constructing fractal indicators to portray the density–form characteristics of each subregion,
specifically the singularity exponent (αsi ) reflecting the agglomeration degree of different
density zones and the fractal dimension ( f (αsi )) reflecting the concentration degree of
different density zones:

µsi
(ε) =

∑x µx,si (ε)

N(αsi , ε)
∼ εαsi , (1)

N(αsi , ε) ∼ ε− f (αsi ), (2)

Here, si is the subregion with a different socio-economic density. µsi
(ε) is the average

density of subregion si at scale ε. µx,si (ε) is the density at location x within subregion si at
scale ε. N(αsi , ε) is the space that is occupied by subregion si at scale ε. αsi is the singularity
exponent, which describes the power-law relationship between the average density of
subregion si and the observed scale ε, uncovering the density agglomeration degree. f (αsi )

is the fractal dimension, which portrays the power-law relationship between the space that
is occupied by subregion si and the observed scale ε, representing the space-filling capacity.
The singularity exponent and fractal dimension reflect the self-similarity of the density
and form in different subregions of the city. The pairs of singularity exponents and fractal
dimensions in different subregions are called the multifractal spectrum, representing the
urban multifractal structure.
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Figure 3 simulates several socio-economic densities of urban spatial distributions
to understand the relationship between the multifractal spectrum, taking into account
the geographic mapping and the urban density–form distribution. It is assumed that
the socio-economic density within the simulated city has a 3-level structure, which are
high-density, medium-density, and low-density zones. Figure 3A,B have the same socio-
economic densities, but the spatial distribution patterns of density are different: for the
same density zone, the former is distributed in a more decentralized manner, and the
latter is distributed in a more centralized manner. Figure 3B,C have the same spatial
distribution patterns for different levels of density zones, but the socio-economic densities
of the high-density zones are different, and the latter is denser than the former.
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Figure 3D compares the fractal dimensions of the three socio-economic density distri-
butions. Since the distribution patterns of Figure 3B,C are the same, the fractal dimensions
of the different density zones of both are also the same, indicating the same centralization
degree of different density zones. The spatial distribution of the different density zones in
Figure 3A is more decentralized, and different density zones occupy more space at different
scales than in Figure 3B, so their fractal dimension is also larger.

Figure 3E compares the singularity exponents of the three-level socio-economic density
distributions, although the socio-economic densities of Figure 3A,B are the same, but the
centralized distribution of form has a pulling effect on the average density gradient between
levels, so the singularity exponents of Figure 3A,B are closer but not exactly the same, and
the singularity of the former is slightly greater than that of the latter. The high-density
zones of Figure 3C have higher socio-economic densities than that of Figure 3B. The density
gradient of Figure 3C between different levels is greater, so their singularity exponents
are smaller for high-density zones and greater for low-density zones. This indicates that
the socio-economic agglomeration of high-density zones in Figure 3C is greater than that
in Figure 3B.

(2) Geodetector: Optimizing the urban spatial structures

The geodetector method was used to measure the correlation between the urban
spatial structures and energy-economic performance (GDP, GDP per capita, and GDP per
unit of electricity consumption). The basic idea of a geodetector is to assume that the study
area is divided into L strata, and if the sum of the variances of the variables in each stratum
is less than the total regional variance, it indicates that there is spatial heterogeneity in the
variables, meaning that the variables are significantly different between strata [39].

Here, in order to determine the optimized urban spatial structure, the 290 urban spatial
structures were classified into 2 to 10 classes using the kmeans algorithm. A geodetector
was iteratively used to detect the correlation between urban spatial structures and energy-
economic indicators.
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Specifically, the factor detector was used to detect the spatial heterogeneity of the
variable Y (the energy-economic indicator) on the classification variable x (the clustering of
the multifractal spectra).

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (3)

where h = 1, . . ., and L is the stratum of variable x; Nh and N are the number of cities
belonging to the stratum h and the total quantity; and σ2

h and σ2 are the variance of variable
Y belonging to the stratum h and the total quantity. q is within the range of [0–1]. The larger
the value of q is, the more significant the spatial heterogeneity is.

The risk detector was used to determine whether the mean values of the attributes
were significantly different between strata and was tested with the t-statistic.

tyh−1−yh−2
=

Yh=1 − Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

]1/2 (4)

where Yh represents the mean value of attributes (GDP, GDP per capita, or GDP per unit of
electricity consumption) within stratum h; nh is the number of cities belonging to stratum h;
and Var represents the variance.

(3) Uncertainty of the results

The major sources of uncertainty are related to the most important parameters in
identifying and classifying the multifractal structures of cities [40]:

(a) The GVF threshold
The key to the identification of multifractal spectra is to determine the hierarchical

number of urban areas. In order to ensure that different cities are classified equally, a
uniform GVF is used to determine the hierarchical number of cities. The GVF threshold
is a source of uncertainty when identifying the multifractal structure of cities. This study
used the following conditions to evaluate the impact of different GVF thresholds on the
classification results in order to determine an appropriate threshold: if the classified number
was increased and the GVF did not change much, meaning that the improvement degree of
the classification effect was limited, then the increase in the classified number should be
stopped. The improvement degree (ID) is defined as follows:

ID =
(GVFi+1 − GVFi)

GVFi
× 100% (5)

where i represents the classified number.
(b) The number of classes
The number of classes is a source of uncertainty in identifying typical multifractal

structures, which affects their energy-economic efficiency evaluation. This study evaluated
the energy-economic efficiency of typical multifractal structures from 2 to 10 classes and
determined the appropriate number of classes.

3. Results and Discussions
3.1. Multifractal Structures of 290 Cities

Figure 4 shows the scatter plot of the GVF and ID in 290 urban physical areas, which
can be fitted with a cubic polynomial curve (R2 = 0.89). When the GVF is small, increasing
the GVF can improve the ID; when the GVF increases to 0.8, which is the first turning point
of the cubic polynomial curve, and continues to increase, the overall improvement in the
ID is also larger, but with a decreasing trend; after the GVF increases to about 0.88, which
is the second turning point of the cubic polynomial curve, and continues to increase, the
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overall improvement of the ID is smaller. Therefore, the GVF threshold for the hierarchical
number of urban areas was set to 0.88.
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The results indicate that the number of hierarchical levels in the 290 urban physical
areas includes two levels (41 areas, 14.14%), three levels (232 areas, 80%), and four levels
(17 areas, 5.86%). There is a significant relationship between the number of levels and the
size of the urban physical areas (Figure 5c): for cities with two levels, the height of the
box plot is low, indicating that the size of the urban physical areas within this category is
generally low, with an average area of 100.54 km2; for cities with three levels, the average
size of the physical areas is 330.75 km2, but there are a number of outlying points comprising
20 cities; for cities with four levels, the height of the box plot is greater, indicating that the
size of the urban physical areas within this category varies considerably, but the overall
size is larger, with an average area of up to 1833.68 km2.
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Figure 5b shows the average multifractal spectra of cities with different numbers of
levels, where the average multifractal spectra of urban polycentric spatial organizations
with four levels are distributed between (1.42, 0.96) and (2.12, 1.48); the average multifractal
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spectra of urban polycentric spatial organizations with three levels are distributed between
(2.03, 1.38) and (1.58, 1.15); and the average multifractal spectra of urban polycentric spatial
organizations with two levels are distributed between (1.95, 1.39) and (1.54, 1.35). On
average, the higher the number of hierarchical levels is, the greater the heterogeneity of the
density and morphological distribution are.

3.2. The Typical Multifractal Structures of the 290 Cities

The bidirectional Hausdorff distance was chosen to calculate the similarity of the
multifractal spectra of the 290 cities. Then, the kmeans algorithm was used to classify
the 290 multifractal spectra into several typical classes to reflect the typical multifractal
structures. Table 1 shows the q statistic values of GDP, GDP per capita, and GDP per unit
of electricity consumption under different classifications of the multifractal spectra.

Table 1. q statistics of three indicators under 2–10 classes of multifractal spectra.

For GDP

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

q statistic 4.22% 8.10% 8.08% 7.62% 10.51%
p value 0.000 0.000 0.000 0.000 0.000

7 Classes 8 Classes 9 Classes 10 Classes

q statistic 10.02% 10.02% 12.52% 13.62%
p value 0.000 0.000 0.000 0.000

For GDP Per Capita

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

q statistic 5.70% 14.75% 18.16% 17.34% 23.51%
p value 0.000 0.000 0.000 0.000 0.000

7 Classes 8 Classes 9 Classes 10 Classes

q statistic 21.00% 21.28% 24.05% 21.11%
p value 0.000 0.000 0.000 0.000

For GDP Per Unit of Electricity Consumption

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

q statistic 4.08% 10.87% 12.93% 11.29% 17.15%
p value 0.000 0.000 0.000 0.000 0.000

7 Classes 8 Classes 9 Classes 10 Classes

q statistic 15.38% 15.46% 17.02% 17.17%
p value 0.000 0.000 0.000 0.000

Regarding the spatial heterogeneity of GDP under different classifications of mul-
tifractal spectra, the q values were statistically significant at all clustering numbers. In
terms of the magnitude of the q value, the explanatory power of the spectral features under
two classes was the weakest for a GDP of 4.22%; the explanatory power of the spectral
features under three, four, and five classes was close to about 8%; the explanatory power of
the spectral features under six, seven, and eight classes was close to about 10%; and the
explanatory power of the spectral features under nine and ten classes was close to and the
largest at about 13%. The explanatory power did not increase much from six to nine classes.
Therefore, six was the best-classified number for the GDP effect, with an explanatory power
of 10.51%.

Regarding the spatial heterogeneity of GDP per capita under different classifications
of the multifractal spectra, the q values were also statistically significant at all clustering
numbers. The q value was smallest under two classes at 5.70%; the q value continued
to increase from three classes to six classes, reaching 23.51% for six classes and changing
slowly beyond six classes. Therefore, six was also the best-classified number for the GDP
per capita effect, with an explanatory power of 23.51%.
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Regarding the spatial heterogeneity of GDP per unit of electricity consumption under
different classifications of the multifractal spectra, the q values were also statistically
significant at all clustering numbers. The q value increased gradually as the clustering
number increased until six classes. Therefore, six was also the best-classified number for
the GDP per unit of electricity consumption effect, with an explanatory power of 17.15%.

In summary, when the clustering number of the multifractal spectra is six, the ex-
planatory power of the clustering results for all three indicators is maximized. This means
that the multifractal structures of the 290 cities have six typical features. The explanatory
power of these six typical features for GDP, GDP per capita, and GDP per unit of electricity
consumption is 10.51%, 23.51%, and 17.15%, respectively. On average, the explanatory
power of the six typical multifractal structures on the energy-economic efficiency is 16.27%.

3.3. The Optimized Multifractal Structures of the 290 Cities

Table 2 shows the results of the risk detector between the multifractal structures and
three indicators of energy-economic efficiency (GDP; GDP per capita, named as GDP_POP;
and GDP per unit of electricity consumption, named as GDP_EC). As the results show,
there is a significant difference (Y) in the mean values of the three indicators among the six
typical multifractal structures, which indicates that the six typical multifractal structures
have different energy-economic efficiencies. The larger the values of the three indicators are,
the higher the energy-economic efficiency of the multifractal structure is. Figure 6 shows
the mean values of three energy-economic efficiency indicators for cities with six typical
multifractal structures. It can be seen that the mean values of the three indicators within
the multifractal structure of class 4 are significantly higher than the other five multifractal
structures. Therefore, the multifractal structure of class 4 is the optimized multifractal
structure, and the corresponding spectrum is the favorable spectrum. Conversely, although
the three energy-economic efficiency indicators of class 5 of the multifractal structure are the
lowest, only GDP per capita is significantly different from the other five types of structures,
and the mean values of GDP and GDP_EC are not significantly different from the mean
values of one or more types of structures, so its spectrum does not have a significant
disadvantage and is not considered a harmful spectrum.

Table 2. Risk detection for 6 typical multifractal structures.

GDP 1 2 3 4 5 6

1
2 N
3 N Y
4 Y Y Y
5 N Y Y Y
6 N Y Y Y Y

GDP per capita 1 2 3 4 5 6

1
2 N
3 N Y
4 Y Y Y
5 Y Y Y Y
6 N N Y Y Y

GDP per unit of electricity consumption 1 2 3 4 5 6

1
2 N
3 N Y
4 Y Y Y
5 N Y Y Y
6 N N Y Y Y
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Figure 6. Mean values of 3 indicators in the 6 typical multifractal structures.

Figure 7a shows the feature points of the favorable spectrum. Using the interquartile
range (IQR) to define outliers, quartiles are points in the dataset that are divided into
four equal parts using three segmentation points, known as the first quartile (Q1), second
quartile (Q2), and third quartile (Q3). The IQR refers to the distance between Q3 and Q1. If
a data point is less than Q1 − 1.5IQR or greater than Q3 + 1.5IQR, then the data point is
considered an outlier (blue dots in Figure 7a). The outliers are removed from the feature
map, and the retained feature points are shown as orange dots. Figure 7b fits the feature
curve of the retained feature points and generates the favorable spectrum. It conforms to a
quadratic polynomial equation (R2: 0.78):

f = −1.38α2 + 5.54α − 4.04 (α ∈ [1.248, 2.104]), (6)

where α is the singularity exponent, and f is the fractal dimension. The values of α are
within the range of 1.248 and 2.104.
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In summary, the favorable spectrum curve that was obtained in this study has good
energy-economic efficiency. In the context of sustainable urban development and urban
renewal, the favorable spectrum provides quantifiable indicators for optimizing urban
spatial structures, which can support the intelligent optimization of cities.

3.4. Suggestions for Optimizing Urban Multifractal Structures

Figure 8 shows the multifractal spectrum of six typical urban multifractal structures.
The left endpoint of the multifractal spectrum reflects the concentration capacity of high-
level central areas and their degree of space-filling. Compared with class 4, high-level
central areas in class 2 have a stronger concentration capacity but a weaker degree of
space-filling, indicating that resources are over-concentrated in a smaller area and that
central areas should be strengthened and expanded.
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Higher-ranking central regions in class 6 have greater concentration capacity and a greater
degree of space-filling, indicating that resources are over-concentrated in a larger region and
should be radiated to neighboring regions to drive integrated regional development.

The weak concentration capacity and high degree of space-filling in the high-level
central areas of class 1 indicate that this type of city lacks a central area that is capable of
concentrating resources, that the distribution of resources is relatively scattered, and that
the integration of resources should be strengthened, and compact development should be
carried out.

The high-ranking central regions of class 5 have a concentration capacity that is close
to that of class 4, but with a higher degree of space-filling. Based on the shape of the
spectrum of class 5, the difference in the space-filling degree between different central
regions is small. The internal hierarchy of the city should be strengthened to create a strong
center to drive the development of the city.

The concentration capacity and degree of space-filling of high-level central areas in
class 3 are closest to those of class 4, but the space-filling capacity of low-ranking central
areas is weaker, indicating that there is sprawl in this class of cities and that the distribution
of resources is not centralized, which affects the energy-economic performance of the urban
space, and that the development of aggregation in low-ranking central areas should be
strengthened to curb the spreading of the cities.

Overall, at the urban scale, the impact of intensive land use on urban energy usage, eco-
nomic effect, carbon emission, and so on has been widely discussed and recognized [41,42].
This study further analyzes the relationship between the complex spatial structure within
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cities and urban energy-economic efficiency. The energy-economic efficiency of urban
multifractal structures is affected by the excessive dispersion or excessive concentration of
resources. Appropriate dispersion can mitigate the agglomeration of diseconomies due to
excessive concentration in a single center [1,43] and can generate higher labor productivity
and reduce carbon emissions, thus promoting the development of a green economy [44,45].
Conversely, excessive dispersion can undermine economies of scale and agglomeration ef-
fects in urban monocenters [46] and generate greater mobility [47], with a loss of productive
efficiency and increased carbon emissions, thus undermining the green economy [45,48].
Therefore, identifying the optimized multifractal structures with higher energy-economic
efficiency is of great significance for the development of a green economy.

3.5. Limitations and Future Directions

This study identified optimized multifractal structures by only evaluating the energy-
economic performances of the multifractal structures. In the context of the high-quality and
sustainable development of towns and cities, a comprehensive performance assessment
of the economic, social, and ecological–environmental aspects of urban spatial structure
should be carried out [44]. Secondly, as a self-organized complex system, the spatial
structure that is formed by cities is in the process of continuous evolution. This study
only recognizes urban spatial structures from a temporal cross-section and analyzes the
performance of urban spatial structures based on the multifractal perspective through a
horizontal comparison between cities. In the future, time series studies can be carried out
based on individual cities to longitudinally analyze the law of the evolution of multifractal
features of urban spatial structures and changes in their performance and summarize
the planning paths for optimal urban development [49,50]. In addition, this study only
evaluated the energy-economic performance of the six structures from the perspective of
spatial correlation using geodetectors. In the future, spatial causal inference methods such
as geographical convergent cross mapping [51] should be drawn on to further analyze the
causal relationship between urban multifractal structures and sustainable development.

4. Conclusions
A classification-based multifractal method was introduced to identify the spatial

structure of 290 Chinese cities. The multifractal structure is a series of scaling exponents,
which has the property of scale invariance and solves the scale-dependence problem of
the traditional measurement index. For the optimization of urban multifractal structures,
the Geodetector method was used iteratively to find the optimized classification with the
highest spatial heterogeneity. The main conclusions are as follows:

(1) There are six typical multifractal structures of the 290 Chinese cities. The explanatory
power of these six typical multifractal structures for GDP, GDP per capita, and GDP
per unit of electricity consumption is 10.51%, 23.51%, and 17.15%, respectively. On
average, the explanatory power of the six typical multifractal structures on the energy-
economic indicators is 16.27%.

(2) The optimized multifractal structure of cities satisfies the following quadratic polyno-
mial equation: f = −1.38α2 + 5.54α − 4.04 (α ∈ [1.248, 2.104]). The spatial structure
performance of a given city can be determined by comparing its multifractal structure
with the optimized multifractal structure. The main structural problems included an
overly strong or weak concentration capacity of high-level centers, weak hierarchical
structures in centers, and the spreading of low-level centers.

In the future, more sustainable development indicators of cities should be used to
identify the optimized multifractal structure.
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