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Abstract: Excessive nitrate loading from agricultural runoff leads to substantial environmental and
economic harm, and although hydrological models are used to mitigate these effects, the influence of
various satellite precipitation products (SPPs) on nitrate load simulations is often overlooked. This
study addresses this research gap by evaluating the impacts of using different satellite precipitation
products—ERA5, IMERG, and gridMET—on flow and nitrate load simulations with the Soil and
Water Assessment Tool Plus (SWAT+), using the Tar-Pamlico watershed as a case study. Although
agricultural activities are higher in the summer, this study found the lowest nitrate load during
this season due to reduced runoff. In contrast, the nitrate load was higher in the winter because of
increased runoff, highlighting the dominance of water flow in driving riverine nitrate load. This
study found that although IMERG predicts the highest annual average flow (120 m3/s in Pamlico
Sound), it unexpectedly results in the lowest annual average nitrate load (1750 metric tons/year). In
contrast, gridMET estimates significantly higher annual average nitrate loads (3850 metric tons/year).
This discrepancy underscores the crucial impact of rainfall datasets on nitrate transport predictions
and highlights how the choice of dataset can significantly influence nitrate load simulations.

Keywords: rainfall datasets; hydrological modeling; nitrate; coastal watershed; water quality;
discharge; agriculture; simulation; eutrophication; Soil and Water Assessment Tool Plus (SWAT+)

1. Introduction

Understanding hydrological and nutrient dynamics is vital for effective environmental
management and sustainable water resources, particularly in coastal watersheds vulnerable
to nutrient pollution [1–4]. Accurate modeling of rainfall and nitrate transport is crucial
for predicting water flow and nutrient movement through river systems, helping maintain
ecosystem health. Nitrate runoff, often driven by agriculture and urbanization, leads to
issues like eutrophication, algal blooms, and hypoxia, which degrade water quality and
threaten biodiversity [5–8]. Reliable rainfall datasets are essential for precise hydrological
modeling [9], as they directly influence assessments of flow variations and nutrient loading
across watersheds. Enhanced models can inform water resource management strategies,
guiding efforts to mitigate pollution, protect ecosystems, and ensure long-term water
sustainability [1,9].

Tapas et al., 2024a [10] highlight the importance of updated policies for the Tar-
Pamlico watershed, emphasizing its vulnerability to nitrate runoff and the need for adaptive
management strategies. The Tar-Pamlico basin, a major coastal watershed in eastern North
Carolina, drains into the Pamlico Sound, the largest U.S. lagoon on the east coast. Covering
over 6400 square miles, the basin spans from the upper Piedmont to the coastal plain,
encompassing diverse land uses—agricultural, urban, and forest [10–15]. Ecologically,
it supports rich habitats and species [10], while serving as a critical water source for
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communities and industries [16]. Due to its susceptibility to nitrate runoff, the Tar-Pamlico
basin is a significant case study for understanding the interaction between rainfall, runoff,
and nutrient transport [10]. This complexity makes it ideal for investigating hydrological
dynamics and informing water management strategies [10,17].

Nutrient pollution, particularly from nitrate runoff caused by agricultural activities,
urban development, and wastewater discharge, is a major challenge in watersheds like
the Tar-Pamlico. Excess nitrate can trigger algal blooms, which deplete oxygen where
aquatic life cannot thrive [10,17]. This eutrophication process not only disrupts ecosystems
but also threatens drinking water supplies, biodiversity, and recreational and commercial
fishing [18]. Accurate modeling of nitrate transport is therefore critical for predicting these
impacts and developing effective pollution mitigation strategies [10].

Rainfall plays a central role in hydrological studies, as it drives surface runoff and
influences the movement of water and nutrients through river systems [19]. High-quality
rainfall datasets are essential for modeling these processes, helping predict flow fluctua-
tions, nutrient loading, and the risk of flooding or drought [20]. Inconsistent rainfall data
can result in flawed models, undermining predictions of water availability and nutrient
pollution, which in turn hampers effective water resource management and ecosystem
protection [21].

This study compares three prominent rainfall datasets—ERA5, IMERG, and gridMET—
each essential for hydrological and environmental modeling. ERA5 is a global reanalysis
dataset offering high-resolution climate and hydrological data [9]. IMERG, part of the
NASA GPM mission, provides high-resolution satellite-based precipitation data, useful for
capturing extreme weather events [22]. GridMET focuses on the continental U.S., offering
high-resolution data for studies related to evapotranspiration, drought, and agricultural
impacts [23]. Tapas et al. (2024) found that gridMET had the highest correlation with
observed rainfall, followed by IMERG, while ERA5 performed weaker at daily scales [9].
This study extends the analysis to a monthly scale to assess how these datasets influence
flow and nitrate transport predictions, providing insights into their broader hydrological
modeling performance.

Current rainfall datasets exhibit gaps and inconsistencies that can affect hydrological
models, especially for monthly scale nitrate transport predictions. Satellite datasets like
IMERG may capture short-term rainfall events well but can overestimate monthly totals,
inflating predictions of flow and nitrate runoff [24]. In contrast, reanalysis of datasets
like ERA5 may underrepresent localized rainfall patterns, leading to underestimates of
flow and nutrient loads [25]. Addressing these inconsistencies is critical for improving the
accuracy of hydrological models and refining nutrient management strategies.

This study aims to enhance our understanding of hydrological and nutrient dynamics
by comparing the performance of ERA5, IMERG, and gridMET in predicting flow and
nitrate transport in the Tar-Pamlico basin. Specifically, it analyzes seasonal rainfall estimates
from these datasets and their influence on flow variation and nitrate loading across five
sub-watersheds, including the Upper Tar, Fishing Creek, Lower Tar, Pamlico, and Pamlico
Sound. By exploring the impact of different rainfall inputs on the flow–nitrate relationship,
this study offers valuable insights into the spatial and temporal distribution of nitrate loads,
which can improve hydrological modeling and inform water management strategies.

Understanding the flow–nitrate relationship is crucial for predicting nutrient loading
and its environmental impacts [10]. Accurate models enable researchers to identify critical
periods of nutrient runoff, which often coincide with seasonal rainfall and agricultural
practices. By improving these models, especially in capturing flow dynamics across various
sub-watersheds, scientists can make more precise predictions about nitrate loading into
downstream ecosystems. This improved understanding is essential for developing effec-
tive water management strategies to reduce nutrient pollution, prevent algal blooms and
hypoxia, and protect water quality. Improved models can help policymakers and environ-
mental managers devise more targeted approaches to nutrient management, conservation,



Nitrogen 2024, 5 1017

and sustainable agricultural practices, ensuring healthier ecosystems and resilient water
resources [1,10].

2. Materials and Methods
2.1. Study Area

The Tar-Pamlico watershed, located in eastern North Carolina (Figure 1), spans over
6400 square miles and is a significant hydrological region that extends from the hills
of the Piedmont to the flat, flood-prone coastal plain [10,26]. The Tar River originates
in the Piedmont region of North Carolina, is named after the historical tar industry in
the area and changes its name to the Pamlico River as it widens near Washington, NC,
due to its transition from a freshwater river to a tidal estuary influenced by the Pamlico
Sound [10,26,27]. The region’s diverse land uses—agricultural, urban, and forested— and
current issues with excessive nitrate loadings [10,15] make it a key area for studying the
impacts of nitrate pollution, largely driven by agricultural runoff [10]. Nitrate transport,
exacerbated by heavy rainfall and flooding, poses a threat to water quality and contributes
to eutrophication in the Pamlico Sound. With its varied geography, including elevated, clay-
rich soils in the Piedmont and permeable sandy soils in the coastal plain, the watershed
exhibits complex hydrological processes, making it an ideal setting for examining the
interplay between rainfall, flow, and nutrient loading [10,26].
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Figure 1. Elevation map of the study area watershed in eastern North Carolina, USA, showing
elevation categories from <10 m to >150 m. The inset map provides the geographic location of the
watershed within the broader southeastern U.S. region.

2.2. Rainfall Datasets

The study compares three prominent rainfall datasets—ERA5, IMERG, and gridMET—
to evaluate their performance in hydrological modeling and rainfall analysis [9]1. ERA5,
a global reanalysis product from the European Centre for Medium-Range Weather Fore-
casts (ECMWF), provides high-resolution hourly data derived from a 4D-var integration
approach, covering atmospheric, land, and sea-state parameters [28]. GridMET, specifically
tailored for the continental U.S., merges PRISM’s spatial detail with NLDAS-2′s temporal
precision to deliver daily meteorological data, including precipitation, at a 0.04◦ resolu-
tion. IMERG, part of NASA’s Global Precipitation Measurement (GPM) mission, offers
high-resolution precipitation estimates by combining data from passive microwave sensors,
infrared sensors, and radar with a 0.1◦ spatial and 30-min temporal resolution [9]. This
study adopts a novel approach by investigating how the selection of the above-mentioned
SPPs influences riverine nitrate transport simulations in a coastal agricultural watershed,
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providing critical insights into the impact of rainfall variability on hydrological flow and
nutrient dynamics.

2.3. Hydrological Model

This study utilized the SWAT+ model for the Tar-Pamlico River Basin, developed
by Tapas et al., 2024a, 2024b [10,15], and simulated with the above-mentioned SPPs [9]—
ERA5, IMERG, and gridMET. Tapas et al. [10] developed and optimized SWAT+ (v2.3.3) to
simulate hydrological processes, including flow dynamics and nitrate transport, within the
Tar-Pamlico basin (Figure 2). The model incorporated comprehensive environmental data,
including elevation (USGS), land cover (NLCD), soil data (SSURGO), rainfall (IMERG),
temperature, wastewater treatment plant data, and agricultural land use-land management
data. The model was rigorously calibrated to optimize monthly flow and nitrate loads,
with a focus on agricultural nitrate loss, a limiting nutrient for the Tar-Pamlico watershed.
Additionally, the model was enhanced through soft-calibration calibration, accurately
simulating crop yields, denitrification, and nitrate export at the Hydrological Response
Unit (HRU) level. Cross-validation for monthly flow across multiple locations confirmed the
model’s robustness, making it an effective tool for evaluating how varying rainfall datasets
influence nitrate transport and water management in the Tar-Pamlico watershed [10].
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2.4. Flow–Nitrate Relationship Analysis Across Subbasins and Seasons

This study examines the impact of different rainfall datasets on the flow–nitrate dy-
namics across five subbasins (HUC-8) within the Tar-Pamlico River Basin, including Upper
Tar, Fishing Creek, Lower Tar, Pamlico, and Pamlico Sound (Figure S1, Supplementary
Information). Using the SWAT+ model, monthly flow and nitrate transport are simulated
under varying rainfall inputs from ERA5, IMERG, and gridMET datasets. The analysis fo-
cuses on key seasons, such as spring, which is characterized by high flow and nitrate loads
due to increased precipitation and agricultural activity, and summer, where reduced rainfall
leads to lower flow and nitrate transport. By comparing the flow–nitrate relationship across
these subbasins, the study evaluates how different rainfall datasets influence nutrient
transport and helps refine strategies for managing nitrate pollution in coastal watersheds2.

3. Results and Discussion
3.1. Overview of Rainfall Datasets (ERA5, IMERG, and gridMET)

Figure 3 illustrates the average seasonal rainfall data for Greenville, NC, derived
from three SPPs—ERA5, gridMET, and IMERG [9]. These datasets have the following
distinct characteristics: ERA5 is a high-resolution reanalysis dataset from satellite and
in situ observations, gridMET combines meteorological and satellite inputs for the U.S.,
and IMERG, from the GPM mission, provides near-global, high-resolution satellite-based
precipitation estimates [9]. The seasonal analysis, based on average values from January
2001 to December 2019, shows that in the fall, ERA5 reports 320 mm of rainfall, gridMET
records 336 mm, and IMERG observes 326 mm. For spring, ERA5 reports 282 mm, gridMET
305 mm, and IMERG 316 mm. Summer exhibits the highest rainfall across all datasets, with
ERA5 recording 392 mm, gridMET 428 mm, and IMERG 443 mm (Figure 3). In winter, ERA5
reports 257 mm, gridMET 256 mm, and IMERG 285 mm. This comparison highlights that
the summer season has the highest rainfall, and the datasets show consistent agreement,
especially during winter, reflecting the robustness of multi-source rainfall measurements.
North Carolina experiences the highest rainfall in summer due to frequent thunderstorms,
convective activity, and occasional tropical storms from the Atlantic hurricane season [29].
In spring and fall, rainfall is moderate, influenced by frontal systems and seasonal transi-
tions. Winter has the lowest rainfall, as colder temperatures limit moisture availability and
reduce the occurrence of heavy precipitation [30]. It is worth noting that Tapas et al. [9]
found that gridMET performed the best in accurately representing rainfall patterns in
Greenville when compared with the observed rainfall data, followed closely by IMERG,
while ERA5 exhibited the weakest performance. However, in an extensive analysis of
rainfall datasets for flow simulation, Tapas et al. [9] determined that IMERG performed the
best in simulating daily flow, followed by ERA5 and gridMET, when compared to USGS
flow station data (02084000) at Greenville, NC.
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3.2. Flow Variation Across Locations and Rainfall Datasets

The annual average flow values (Figure 4) from January 2003 to December 2019 reveal
that IMERG consistently predicts the highest flow rates across all locations, with Pamlico
Sound showing 120 m3/s, Pamlico 112 m3/s, and Lower Tar 70 m3/s3. ERA5 generally
predicts moderate flows, while gridMET tends to estimate the lowest values, particularly
in the Upper Tar, where it records only 18 m3/s compared to IMERG’s 27 m3/s. This
trend highlights the variability in flow predictions based on the rainfall dataset used,
which is critical for accurate hydrological modeling and water resource management
in the Tar-Pamlico watershed. Additionally, since SWAT+ is a one-dimensional flow
model that does not account for backflow, this study is less confident about the results at
Pamlico Sound, where such dynamics could significantly influence flow behavior. The
complex hydrodynamics of estuarine environments, such as Pamlico Sound, often involve
bidirectional flows driven by tides, winds, and other coastal processes, which are not
captured by SWAT+ [10]. As a result, the simplified flow assumptions of SWAT+ may lead
to inaccuracies in these areas. To improve confidence in flow predictions, especially in
regions prone to backflows and other dynamic water movements, it may be necessary to
rely on more advanced hydrodynamic models that can simulate multidimensional flow
patterns. These models would provide a more comprehensive understanding of water
exchanges and interactions, particularly in coastal or estuarine environments like Pamlico
Sound [13].
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Figure 4. Annual average flow values (m3/s) from 2003 to 2019 at five locations in the Tar-Pamlico
watershed, comparing predictions from three rainfall datasets: ERA5, IMERG, and gridMET [IMERG
consistently predicts higher flows across all locations, with gridMET generally estimating the lowest
values]. As SWAT+ does not account for backflows, the flow values at Pamlico and Pamlico Sound
may be overestimated compared to actual conditions, where backflow could reduce overall flow rates.

The flow maps (Figure 5) for ERA5, gridMET, and IMERG show a consistent pattern
of increasing flow downstream, particularly in the Pamlico and Pamlico Sound regions.
IMERG predicts the highest flow rates across the watershed, especially in the downstream
areas, while ERA5 and gridMET show lower flow estimates, particularly in upstream
subbasins. Each location shows distinct flow patterns, with variances across both geography
and rainfall datasets, which are important for understanding regional hydrology and water
resource management.
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Figure 5. Streamflow comparison for the study area using ERA5, gridMET, and IMERG datasets [The
maps depict spatial variations in streamflow (m3/s) across subbasins, with flow categorized into
five classes, highlighting differences in streamflow estimates among the datasets].

This research analyzed the variation in seasonal flow across five regions in the Tar-
Pamlico watershed—Upper Tar, Fishing Creek, Lower Tar, Pamlico, and Pamlico Sound—
using the IMERG rainfall dataset, as the model was calibrated with this dataset to minimize
the number of variables. This study used the most downstream SWAT+ channels to analyze
flow values from each corresponding HUC-8 sub-watershed4. Flow variation across these
locations reveals distinct spatial patterns, with downstream areas like Pamlico Sound
consistently exhibiting the highest flow values, while upstream regions such as the Upper
Tar and Fishing Creek show significantly lower flow rates.

Seasonal flow variations are key to understanding hydrological dynamics, particularly
nitrate loading [10]; even with summer’s high rainfall, flow rates peak in Winter and Spring,
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when cooler temperatures and lower evapotranspiration allow more water to move through
the system. For example, flow in the Upper Tar River reaches 38 m3/s in Winter, while
Pamlico Sound peaks at 155 m3/s. Higher flow rates during these seasons might elevate
nutrient runoff, especially nitrate, posing a risk for eutrophication downstream [10,15].
Spring follows closely, with flows driven by late winter and early spring rains. Pamlico
averages 119 m3/s, while Fishing Creek averages 64 m3/s. Spring flows coincide with
agricultural runoff, increasing nitrate levels and pollution risks.

Summer, despite the highest rainfall, experiences the lowest flows due to high evap-
otranspiration. During Summer, the flow at the Upper Tar River drops to 13 m3/s, and
Pamlico Sound to 89 m3/s. These low flows limit nutrient transport but can increase local
concentrations, highlighting the need for careful water quality management [31]. Fall sees
a moderate flow recovery, with the Lower Tar averaging 57 m3/s, as consistent rainfall
replenishes the watershed post-summer; though lower than Winter or Spring, Fall flows
are essential for recharging aquatic systems.

Geographically, Pamlico Sound consistently exhibits the highest flow, serving as the
watershed’s final receiving body, peaking at 155 m3/s during Winter. In contrast, upstream
regions like Upper Tar and Fishing Creek maintain lower flow rates throughout the year
due to smaller drainage areas. This analysis emphasizes the importance of seasonal flow
patterns in hydrological models for predicting nutrient transport and addressing water
quality issues in the Tar-Pamlico basin [10,31]5.

Figure 6 represents the seasonal analysis of flow data in Washington, NC, for the
three rainfall datasets (ERA5, IMERG, and gridMET), revealing clear seasonal trends and
variations across the datasets. A time series plot of the datasets illustrates the seasonal
dynamics (Figure 6), with IMERG depicted in blue, clearly showing its tendency to yield
higher flow rates. Meanwhile, ERA5 and gridMET follow different patterns but with
noticeable variability across the seasons. Typically, the higher flow values occur during
spring and winter, while the lower values are observed during fall and summer. Inter-
estingly, IMERG appears to consistently provide higher flow values compared to ERA5
and gridMET, particularly during peak flow seasons like spring and winter. This pattern
suggests that the model with IMERG data might be more sensitive to heavy rainfall events
or that it captures more intense precipitation data, contributing to elevated flow rates. On
the other hand, gridMET, while generally lower than ERA5 and IMERG, tends to stabilize
the flow values, showing a more conservative estimate that might reflect a model focused
on long-term average rainfall (Figure 6).
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In summary, the seasonal flow analysis based on these rainfall datasets shows a strong
relationship between seasonal rainfall patterns and flow dynamics in Washington, NC.
Each dataset provides unique insights into the hydrological responses to different rainfall
models, with IMERG consistently capturing higher rainfall-driven flows, while gridMET
presents a more moderated view. This seasonal variability highlights the importance
of considering multiple rainfall datasets when analyzing water flow for planning and
management purposes [10,30–35].

3.3. Nitrate Load Variation Across Locations and Seasons

The annual average nitrate load values (Figure 7) reveal a consistent pattern where
IMERG generally predicts lower nitrate loads across all locations, while ERA5 and gridMET
consistently estimate the highest nitrate loads across most locations and seasons6. Pamlico
Sound exhibits the highest nitrate load across all datasets, with gridMET estimating ap-
proximately 3850 metric tons/year, followed by ERA5 at 3750 metric tons/year and IMERG
at around 1750 metric tons/year. This trend continues in other regions, such as Pamlico,
where gridMET and ERA5 estimate a load of around 3410 and 3400 metric tons/year, re-
spectively, compared to IMERG’s 1580 metric tons/year. These differences can be attributed
to the fact that the SWAT+ model was calibrated using IMERG data [10], which may lead
to more conservative estimates of nitrate transport compared to other datasets, particularly
in regions with more variable or extreme rainfall patterns [30]7.
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Figure 7. Annual average nitrate load (metric tons/year) across five sub-watersheds in the Tar-
Pamlico Basin, comparing predictions from three rainfall datasets: ERA5, IMERG, and gridMET
[gridMET consistently estimates the highest nitrate loads, while IMERG predicts significantly lower
values across all locations].

In the case of the Lower Tar, ERA5 and gridMET produce similar trends, with gridMET
being slightly lower at 1680 metric tons/year and ERA5 at 1710 metric tons/year, while
IMERG predicts significantly lower values at 915 metric tons/year. This pattern demon-
strates the dataset variability and the significant role of rainfall inputs in influencing nitrate
transport estimates. The lower nitrate load predicted by IMERG can be attributed to the
calibration of the SWAT+ model using IMERG rainfall data [10], which tends to represent
lower or more diffuse rainfall patterns. Although IMERG produces higher flow predictions,
its lower nitrate load may be due to the calibration of nitrate-related parameters in the
SWAT+ model, which was optimized for IMERG’s rainfall characteristics. This calibration
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might have altered the model’s sensitivity to nutrient transport processes, leading to re-
duced nitrate loads despite higher flows [10]. These differences highlight the importance
of selecting appropriate rainfall datasets for hydrological modeling, as the choice can
substantially affect nitrate load predictions [9,29–31,36–43].

The annual average nitrate load maps (Figure 8) for ERA5, gridMET, and IMERG reveal
distinct patterns in nitrate transport across the Tar-Pamlico watershed, with significant
variability between the datasets. ERA5 and gridMET predict the highest nitrate loads
in the downstream subbasins, particularly in the Pamlico and Pamlico Sound regions8,
where the nitrate loads exceed 3000 metric tons per year. GridMET shows a more extensive
area in the highest nitrate load class (>3000 metric tons/year), while ERA5 also shows
large downstream regions with high nitrate transport. IMERG, on the other hand, predicts
significantly lower nitrate loads across most of the watershed, with only limited areas in
the Pamlico Sound exceeding 1700 metric tons/year9.
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This study analyzed the variation in the average seasonal nitrate load across five
regions in the Tar-Pamlico watershed—Upper Tar, Fishing Creek, Lower Tar, Pamlico,
and Pamlico Sound—using IMERG rainfall datasets, and the model was calibrated to
capture nitrate transport dynamics effectively across varying seasonal conditions using
IMERG dataset [10]. The seasonal analysis of nitrate load across regions reveals clear
temporal patterns, driven largely by the interaction of rainfall intensity, flow dynamics, and
agricultural runoff. Winter and spring consistently exhibit the highest nitrate loads across
all locations, while summer and fall generally see a reduction in monthly nitrate loads.
These seasonal trends are crucial for understanding how nutrient runoff varies throughout
the year and for identifying critical periods for water management policies.

During the winter months (December to February), despite lower rainfall, nitrate loads
are relatively high across the watershed, particularly in downstream areas like Pamlico
Sound. This season’s reduced evapotranspiration allows more water to remain in the
system, leading to higher flows and greater nitrate transport. For example, Pamlico Sound
experiences an average nitrate load of 347,000 kg NO3-N during winter. The high flow
volumes during this period flush nitrates from agricultural fields and urban landscapes
into the river system, resulting in elevated nutrient loads downstream [10,15].

Spring (March to May) also has higher nitrate transport, coinciding with increased
rainfall and agricultural activities. The combination of spring rains and fertilizer application
contributes to significant nitrate runoff, with downstream regions like Pamlico Sound
showing the highest average nitrate load of 404,000 kg NO3-N. This is a critical time for
nutrient management, as the high runoff rates can exacerbate pollution risks, particularly
in sensitive aquatic environments. Upstream regions, such as Fishing Creek and Lower Tar,
also exhibit high nitrate loads during spring, reflecting the cumulative nutrient transport
through the watershed.

In contrast, summer (June to August) sees a marked decrease in nitrate loads across
all locations, despite high rainfall. This reduction can be attributed to higher evapotran-
spiration rates, which limit the amount of water available for runoff. Nitrate transport
diminishes significantly, with Pamlico Sound experiencing an average load of 244,000 kg
NO3-N, down from the spring peak. However, localized nitrate concentrations may in-
crease due to reduced dilution, necessitating careful monitoring of water quality during
the summer months10.

Fall (September to November) brings a moderate recovery in nitrate loads as flow
increases, particularly in downstream regions. Pamlico and Pamlico Sound, for example,
averaged 301,000 kg NO3-N and 320,000 kg NO3-N, respectively, during this period. Fall
represents a transition period where rainfall helps recharge the watershed, preparing for
the higher flow volumes of the upcoming winter months.

Figure 9 represents the time series of monthly nitrate load in Washington, NC, for
the three rainfall datasets (ERA5, IMERG, and gridMET), illustrating clear trends and
variations across the datasets, with IMERG in dark blue, indicating a tendency to predict
lower nitrate loads across all seasons. Meanwhile, ERA5 and gridMET follow different
patterns, showing noticeable variability across seasons.

All three datasets—ERA5, IMERG, and gridMET—display significant variability in
nitrate loads across the seasons. Typically, nitrate loads peak during winter and spring,
coinciding with periods of lower evapotranspiration and higher runoff. In contrast, lower
nitrate loads are observed during the summer and fall, even with increased agricultural
activities. This implies that environmental factors, such as runoff and evapotranspiration,
have a greater influence on nitrate loads than agricultural practices alone. Throughout
most observed periods, IMERG consistently shows lower nitrate loads, with ERA5 showing
higher nitrate loads. This pattern indicates that the ERA5 dataset may be more responsive
to heavy rainfall events, which drive greater nitrate runoff.
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3.4. Flow–Nitrate Relationship

In this study, the flow–nitrate relationship reveals some surprising dynamics across
the Tar-Pamlico watershed, driven by the use of different rainfall datasets—IMERG, ERA5,
and gridMET. IMERG predicts higher rainfall and runoff and surprisingly estimates lower
nitrate loads compared to ERA5 and gridMET11. This counterintuitive result can be
attributed to the calibration of the SWAT+ model for the IMERG dataset, where the nitrate-
related parameters were adjusted to align with IMERG’s rainfall characteristics, potentially
leading to reduced sensitivity in nitrate transport predictions [10,15]. Seasonal variations
also play a crucial role, with winter showing the highest runoff and nitrate loads due to
low evapotranspiration, despite having less rainfall than summer. In contrast, summer
experiences higher rainfall but lower runoff and nitrate transport, as much of the water is
lost to evapotranspiration. ERA5, despite predicting lower rainfall, estimates higher nitrate
loads, suggesting it may capture more intense nitrate runoff events. GridMET, which
predicts the lowest runoff, still shows substantial nitrate loads, particularly in winter.

These findings emphasize the complex and sometimes surprising interactions between
flow and nitrate transport, where dataset selection and model calibration can significantly
affect predictions, especially during critical periods such as winter (high runoff and nitrate
load) and fall (low nitrate load). This variability underscores the importance of considering
multiple rainfall datasets when evaluating nitrate loads for nutrient management and water
quality planning [10,31,44–52].

4. Limitations and Future Research Directions

A key limitation of this study is that the SWAT+ model was only calibrated and
validated using the IMERG rainfall dataset, which may introduce bias in comparisons with
ERA5 and gridMET. Since the model is optimized for IMERG’s characteristics, it could
lead to underestimation or overestimation of flow and nitrate transport when using other
datasets. Future research should focus on multi-dataset calibration and validation to reduce
these biases and provide a more accurate comparison. Additionally, using finer temporal
scales (e.g., daily or hourly) and incorporating local gauge or high-resolution satellite data
could further improve hydrological predictions.
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5. Conclusions

This study has provided a thorough comparative analysis of three rainfall datasets—
ERA5, IMERG, and gridMET—in simulating monthly river flow and monthly nitrate load
within the Tar-Pamlico watershed using the SWAT+ model. The results reveal significant
variability in both flow and nitrate load predictions, demonstrating the complex interactions
between rainfall, runoff, and nutrient transport in a coastal agricultural watershed. IMERG
consistently predicts higher rainfall and runoff, while gridMET and ERA5 present more
conservative rainfall estimates but higher nitrate loads, especially in downstream regions
like Pamlico Sound. These variations underscore the importance of selecting appropriate
rainfall datasets for hydrological modeling, as each dataset characteristic can significantly
influence predictions of nutrient transport and environmental impacts.

Seasonal dynamics play a critical role in nitrate transport, with winter showing higher
runoff and nitrate loads due to lower evapotranspiration and increased water retention
in the system, despite receiving less rainfall compared to summer. Conversely, summer
exhibits higher rainfall but lower runoff and nitrate load due to higher evapotranspiration
rates, which limit water flow and nutrient movement. Seasonal dynamics suggest that
flow drives nitrate load more than agricultural activities. Despite lower farming activity in
winter, higher runoff and water retention lead to increased nitrate loads, indicating that
water movement is the primary factor in transporting nitrates load rather than agricultural
inputs alone.

The study’s findings emphasize the need for environmental modelers to use multiple
rainfall datasets to improve the robustness of hydrological models, particularly in vulnera-
ble regions prone to eutrophication and hypoxia. The variability in predictions suggests
that relying on a single dataset could lead to inaccurate assessments of nutrient pollution
risks, potentially undermining mitigation efforts.
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shed, highlighting key hydrological regions. Subbasin and channel distributions are displayed for
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Notes
1 This study used satellite rainfall data from Tapas et al., 2023 [9], which examined the effects of different autocalibration techniques

and three rainfall datasets—ERA5, IMERG, and gridMET—on daily SWAT+ flow simulations. Building on that work, this study
further evaluates the impact of these rainfall datasets on riverine monthly nitrate load simulations.

2 SWAT+ delineated subbasins by Tapas et al., 2024a [10] and Tapas, 2024b [15]—which were used in this study—and HUC-8
boundaries did not properly align in this study. To address this, the downstream SWAT+ channel overlapping with each

https://www.mdpi.com/article/10.3390/nitrogen5040065/s1
https://www.mdpi.com/article/10.3390/nitrogen5040065/s1
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corresponding HUC-8 boundary was used. Specifically, for the Pamlico Sound HUC-8, the SWAT+ model’s final channel was
located significantly upstream of the actual HUC-8 outlet for Pamlico Sound (Figure S1, Supplementary Information).

3 SWAT+ is a one-dimensional model, which means it does not account for backflows or complex hydrodynamics in downstream
regions, such as the Pamlico and Pamlico Sound [10]. As a result, the model may overestimate flow values in these areas, where
wider channels and tidal influences can significantly impact water movement. Additionally, the lack of observed data in the
most downstream sections limits the ability to properly calibrate and validate the model’s predictions for these regions, further
contributing to potential discrepancies between the simulated and actual flow values [10].

4 The most downstream channel in SWAT+ is located considerably upstream of the Pamlico Sound’s HUC-8 outlet point. This may
result in relatively similar values being predicted for both the Pamlico and Pamlico Sound in this study.

5 SWAT+ is a one-dimensional model, which means it does not account for backflows or complex hydrodynamics in downstream
regions, such as the Pamlico and Pamlico Sound [10]. As a result, the model may overestimate flow values in these areas, where
wider channels and tidal influences can significantly impact water movement. Additionally, the lack of observed data in the
most downstream sections limits the ability to properly calibrate and validate the model’s predictions for these regions, further
contributing to potential discrepancies between the simulated and actual flow values [10].

6 The SWAT+ model developed by Tapas et al. (2024a [10] and 2024b [15]) was originally calibrated using IMERG rainfall data.
In this study, the same SWAT+ model, along with the calibrated parameters for IMERG data, was applied to evaluate nitrate
loads using both gridMET and ERA5 datasets. However, the results could change significantly if the model was recalibrated
specifically for the ERA5 and gridMET datasets, which is beyond the scope of this study.

7 The SWAT+ model developed by Tapas et al. (2024a [10] and 2024b [15]) was originally calibrated using IMERG rainfall data.
In this study, the same SWAT+ model, along with the calibrated parameters for IMERG data, was applied to evaluate nitrate
loads using both gridMET and ERA5 datasets. However, the results could change significantly if the model was recalibrated
specifically for the ERA5 and gridMET datasets, which is beyond the scope of this study.

8 The most downstream channel in SWAT+ is located considerably upstream of the Pamlico Sound’s HUC-8 outlet point. This may
result in relatively similar values being predicted for both the Pamlico and Pamlico Sound in this study.

9 The SWAT+ model developed by Tapas et al. (2024a [10] and 2024b [15]) was originally calibrated using IMERG rainfall data.
In this study, the same SWAT+ model, along with the calibrated parameters for IMERG data, was applied to evaluate nitrate
loads using both gridMET and ERA5 datasets. However, the results could change significantly if the model was recalibrated
specifically for the ERA5 and gridMET datasets, which is beyond the scope of this study.

10 It is important to note that this observation pertains specifically to nitrate load. Nitrate concentrations may exhibit significantly
different patterns, as they can increase with reduced water flow. This study focuses on nitrate load as the model was calibrated
for monthly nitrate load.

11 It is important to note that these values are specific to nitrate load, as the model was calibrated for this variable [10,15], and
nitrate concentration could be entirely different. In fact, nitrate concentrations might be higher in fall and summer due to lower
flows and ongoing agricultural activities, which can result in less dilution of the nitrates present in the water.
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