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Abstract: Climate change and anthropogenic nitrogen addition alter the soil physico-
chemical properties and microbial activity in oligotrophic forest soil. Unbalanced and
non-selective nitrogen fertilizer application is lost as gas emissions (N2O, NO) and also
contributed to eutrophication through NO3

− leachate. Similarly, NO3
− infiltrates and con-

taminated drinking water sources lead to human thyroid dysfunction. In order to protect
depleting timber growth due to nitrogen deficiency and increasing ecological concerns
from nitrogen misapplication, we reviewed the effects of different synthetic nitrogen forms
and levels on the biogeochemical process. In this review, we focused on the most recent
findings from research articles, review articles, and meta-analyses on forest soil and also
followed the complementary insights from agricultural soil so that we may be able to
highlight how these observations contribute to the understanding of the forest soil nitrogen
cycle. Firstly, we elaborated the role of nitrification and denitrification in the nitrogen
transformation process. Secondly, we discussed the effect of different nitrogen forms and
levels on nitrification and denitrification functional gene abundances. Thirdly, we analyzed
the possible effect of gene abundances on the nitrogen conversion process. Finally, we
revealed that different forms and levels of synthetic nitrogen not only alter the nitrogen
conversion pathways by increasing the gene abundances through substrate availability but
also shift the gene dominance, thereby modifying soil physicochemical properties, such as
pH. This collectively changes the conditions, which are critical for gene expression potential
involved in the nitrogen conversion process. These findings may create a direction for
sustainable and eco-friendly fertilizer application in nitrogen-deficient soil.

Keywords: synthetic nitrogen; gene abundances; ecological niche; nitrogen transformation;
forest soil

1. Introduction
Nitrogen is an essential nutrient that is abundant as N2 in the atmosphere [1]. Despite

the high content of nitrogen in the atmosphere, it is limited in an available form [2]. The
human input of synthetic nitrogen has increased over the past decades to enhance the yield
of crops and timber production; however, this increase has been miscalculated and caused
unintended consequences and contributed to climate change as air pollution through the
emission of N2O gas [3].

Globally, N2O emissions due to N addition are 2.2–3.7 TgNyear-1 from forest soil [4,5].
Forest trees are commercial timber trees that need nitrogen for vegetative growth [6],
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but balanced nitrogen utilization for forest trees has become a challenge due to climate
change [7]. Nitrification and denitrification are the main processes that perform nitrogen
transformation in the soil, and for the nitrogen transformation pathway, different functional
genes are the responsible drivers of the nitrification and denitrification processes [8,9]. The
nitrification process comprises two parts: the first part is ammonia oxidation driven by
the AOA (amoA) and AOB (amoA) genes [10]; and the second part is nitrite oxidation,
which is led by NOB as nitrobacter or nitrospira [11]. In acidic soil, nitrospira outcompetes
nitrobacter and is the most affected by the changing soil pH [12].

Previously, different studies have focused on the inorganic nitrogen addition effect on
nitrification functional gene abundances but at a small level [13,14]. For instance, Carey et al.
(2016) demonstrated AOA (amoA) abundance increases due to a low level of NH4

+ nitrogen
application [15]. Similarly, Dong et al. described that low NH4

+ increases AOA (amoA)
abundances [16]. Xu et al. (2022) described that CO(NH2)2 at a high level of application
increases AOB (amoA) abundances and decreases AOA (amoA) abundances [17]. AOA and
AOB (amoA) separately have a limited capacity to reflect the impact of each form and level
of nitrogen addition on ammonia oxidation due to ecological niche differentiation [15].

For example, a study by Rutting et al. (2021) described that a low to high level of NH4
+

addition shifted the ammonia oxidation dominance from AOA (amoA) to AOB (amoA) [10],
and in the case of an extreme condition, AOA (amoA) outcompeted AOB (amoA) in
abundance [18]. Similarly, the denitrification functional genes, mainly nirS and nirK, are
functionally the same but ecologically belong to different niches [19] that are responsible
for the rate-limiting step [20] of denitrification [21,22]. Although the study described
that organic nitrogen increases the denitrification functional gene abundances due to the
carbon content, which may be utilized by the denitrifier as a substrate [23]. For instance,
few studies have elaborated that only organic nitrogen or a mix with inorganic nitrogen
increase the nirS, nirK, and nosZ abundances [14]. Similarly, You et al. (2022) described in a
meta-analysis that nitrogen addition only increased the AOA and AOB (amoA) abundances
in forest soil and the denitrification gene abundances were unaffected [13,24]. Some studies
also described that the inorganic nitrogen NO3

− form increases the abundances of the nirS
and nirK genes [25], but it is also under debate whether NO3

− effect is a substrate for the
denitrifier or the denitrification process because the role of NO3

− is yet unexplored. For
instance, a study by Saleh-Lakha et al. (2009) described that as the NO3

− concentration
increases, the nirS and nosZ abundances increase [26], but Xu et al. (2021) described that the
denitrification rate increases as the NO3

− level increases and the denitrifier abundances are
not related to the denitrification rate [25]. Under the contradictions of the genes’ abundances
and their activity rates, this indicates a possible role of nitrogen fertilizer as an abiotic factor
besides the substrate. Therefore, it is necessary to further explore the inorganic nitrogen
effect on the nitrification and denitrification gene abundances on a transcriptional basis
and their reflecting effect on the nitrogen conversion process in forest soil.

We aim to study the following unsolved questions in the coming sections of this
review: 1, whether nitrogen addition changes the key gene abundances of nitrification
and denitrification, thereby effecting the nitrogen conversion process; 2, whether different
forms of nitrogen addition have different effects; and 3, whether the effect is related to the
level of nitrogen added.

2. Nitrification
Nitrification is the primary step in the nitrogen cycle, which is the pathway of N

availability and loss. The nitrification process is divided into two types: 1. autotrophic
nitrification; and 2. heterotrophic nitrification, in which autotrophic nitrification is mainly
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carried out by ammonium oxidizing bacteria (AOB), ammonium oxidizing archea (AOA),
and nitrite oxidizing bacteria (NOB) [27].

Autotrophic nitrification contributed to 54.6 to 96.9% of the nitrification [28]; however,
the combined contribution of autotrophic and heterotrophic nitrification in forest soil is
yet unexplored.

The main ammonium transfer pathway is autotrophic nitrification in forest soil [29],
rather than heterotrophic nitrification due to the fast process. But some studies have
elaborated that AOB (amoA), which is a main player of autotrophic nitrification and
has affinity for NH4

+ as a substrate, is not activated in forest soil nitrification [30] and
is suppressed in acidic conditions [31]. Meanwhile, it is described in other studies that
synthetic N fertilization addition increased the abundances of AOB (amoA) in forest soil
more efficiently as compared with AOA (amoA) [28]. The genes shift its pathway by
changing the form and level of nitrogen addition according to its distinct ecological niche;
therefore, the exact role of genes in autotrophic nitrification is crucial to understand the
nitrifier pathway under synthetic nitrogen application [32].

3. Denitrification
Denitrification occurs in anaerobic conditions and uses NO3

− nitrogen as a substrate
source causing NO3

− reduction as NO2, NO, N2O, and N2 are driven by the functional genes
narG/napA, nirK/nirS, norB, and nosZ, respectively [31]. Hallin et al. (2009) described that
the denitrification functional gene abundances are not likely correlated with denitrification
activity due to the inhibitory effect of low- or high-level nitrogen addition [33]. While in
contrast to this, Ouyang et al. (2018) described that N addition increases the denitrification
functional gene abundances and activity consequently [14]. Organic sources are very crucial
to explain the denitrifying abundances and denitrification activity.

Cellulose and lignin are two abundant organic resources on earth that describe the
decomposition status of carbon compounds [29]. Some studies have described that synthetic
N addition decreased the litter decomposition rate in temperate forest by reducing the
ligninolytic enzyme activity [29,30]. For instance, litter decomposition is slowed down by
NH4

+ addition, while CO(NH2)2 does not have an effect on litter decomposition. Similarly,
conifer leaf litter is more affected by N addition than broad leaf litter, which shows that
decomposition is mainly affected according to the type of organic litter and applied nitrogen
form [31]. Previous studies have discussed that high NH4

+ nitrogen availability will favor
AOB (amoA) dominance, while high carbon availability will favor AOA (amoA) ammonia
oxidizer dominance in ammonia oxidation [34]. In this context, besides the AOA and AOB
change by altering C/N%, applied synthetic N also has an effect on the denitrification
process in two ways, either through the available form of NO3

− as a denitrification substrate
or by carbon content availability (if C/N% is low), which is a denitrifier substrate [35,36].

4. Different Synthetic Nitrogen Forms and Levels Effect on Functional
Gene Abundances

Different forms and levels of synthetic nitrogen NH4
+, CO(NH2)2, and NO3

− affect
gene abundances differently due to the gene substrate affinity.

4.1. Low- and High-Level (NH4
+) Nitrogen Effect on Functional Gene Abundances

Ammonia oxidation in forest has become complex due to ammonia oxidizers ecological
niche differentiation [9]. Che et al. (2015) and Lin et al. (2021) observed that AOB (amoA)
has increased abundances in acidic soil [37,38], while Gubry-Ranjin et al. (2011) and Zhang
et al. (2012) elaborated that AOA (amoA) has increased abundances in acidic soil [39,40].
The NH3

+ level has long been considered as a key factor in the shift of AOA (amoA)



Nitrogen 2025, 6, 4 4 of 14

and AOB (amoA) abundances [41,42]. Previous studies have discussed that a high NH4
+

nitrogen addition will increase the AOB (amoA) abundances, while low NH4
+ will influence

the AOA (amoA) abundances [15,43]. Similarly, Sterngren et al. (2015) also concluded
that AOA (amoA) is active in ammonia oxidation in poor NH4

+ nitrogen concentration
conditions and the input of high NH4

+nitrogen favors AOB (amoA) abundances [34]. Not
only does the level of nitrogen differentiate the AOA (amoA) and AOB (amoA) abundances
but the NH4

+ form of nitrogen also affects them differently. For instance, a trial was
conducted to analyze the effect of the N fertilizer form. AOA and AOB (amoA) abundances
were analyzed, which resulted in more abundances of AOA (amoA) over AOB (amoA)
in unfertilized soil (CK) treatment but after NH4

+ fertilizer application, AOA (amoA)
abundances decreased by AOB (amoA), and upon amino acid addition, AOA (amoA) again
dominated [34].

Similarly, a microcosm experiment was conducted that analyzed the low- and high-
level NH4

+ effect on ammonia oxidizer abundances and the respective nitrogen conversion
process using the 15 N-Tracer model method for quantifying gene abundances by Rutting
et al. (2021) [10].

According to Figure 1, low- and high-level NH4
+ addition shifted the nitrogen trans-

formation pathway. Figure 1 reflects the gene affinity to form and level correlated with
the nitrogen conversion process. In contrast to the study [10] results, another study was
conducted in which the genes AOA (amoA) were insensitive to the fertilization effect
over ecological niche conditions. A recent field trial elaborated that despite high NH4

+

application, AOA (amoA) dominated over AOB (amoA), which was an analysis using the
MPN method [44] as compared with the 15N-Trace model method used in experiment [10].
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Figure 1. Above arrow indicates the contribution of ammonia oxidizers AOA (amoA) in gross
nitrification with a low NH4

+ level, while below arrow describes the AOB (amoA) dominated effect
on gross nitrification at a high NH4

+ level [10].

There may be two possibilities for AOA (amoA) dominance despite high NH4
+ addi-

tion: one is a sample site containing organic cattle manure irrigated soil with wet conditions,
which favors the AOA (amoA) niche [45], containing high NH3

+ that is an AOA (amoA)
substrate [42] over AOB (amoA) [46]; secondly, the gene abundances were measured using
the MPN (Most Probable Number) method in this experiment, which is less efficient in
identifying relative abundances [40,47]. Therefore, in experiment [44], it was indicated that
AOA (amoA) abundances correlated with nitrification potential may be due to the overall
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gene AOA (amoA) expression in this ecological niche and, in these conditions, high NH4
+

was acting as a non-limiting factor.
For further elaboration, we analyzed the results of gene abundances using a standard

analytical tool (qPCR) by the low and high NH4
+ addition effect in Table 1.

Table 1. NH4
+ fertilizer effect on ammonia oxidizers and denitrifier abundances.

Fertilizer Level Functional Genes Sources
Low NH4

+ AOB ↑, AOA ↓ [37]
High NH4

+ AOB ↑ [27]
Low NH4

+ AOA ↑ [48,49]
High NH4

+ nirS ↓, nirK ↓, nosZ ↓, AOB ↑ [50,51]
Low NH4

+ AOA ↑ [10]
High NH4

+ AOB ↑ [52]
Low NH4

+ AOB ↑, AOA ↓ [43]
High NH4

+ AOB ↑, AOA ↓ [53,54]
Low NH4

+ AOB ↑ [55]
High NH4

+ AOB ↑ [56,57]
Low NH4

+ AOA ↑ [58,59]
High NH4

+ AOB ↑, AOA ↓ [10,49]
Low NH4

+ AOB ↑ [60]
High NH4

+ AOA ↓, AOB ↑, nirS ↓, nirK ↓ and nosZ ↓ [54,61]
Low NH4

+ AOA ↑ [62]
High NH4

+ ↓ nirS ↓ nirK ↓ nosZ [33]
Low NH4

+ AOA ↑ [49,63]
High NH4

+ AOB ↑, AOA ↓ [64,65]
↑: Increase; ↓: Decrease; AOA: Ammonia oxidizing archea; AOB: Ammonia oxidizing bacteria.

According to Table 1, gene abundances/copy numbers increase correlating with the
form and level of NH4

+ application as a substrate for AOA and AOB (amoA) and an abiotic
agent for nirS, nirK, and nosZ, changing the soil pH.

4.2. Low- and High-Level CO(NH2)2 Nitrogen Effect on Functional Gene Abundances

Many past studies have concerned the role of CO(NH2)2 application in N2O emission.
CO(NH2)2 hydrolysis is a set stage in nitrifier denitrification [66]. Some studies have
described that CO(NH2)2 causes more N2O emission as compared with NH4

+ [67,68] and
it is also described that N2O emission from AOA (amoA) is less than AOB (amoA)-derived
ammonia oxidation because AOA (amoA) lacks homologous NO reductase [69]. A study
was conducted in 2022, in which AOB (amoA) abundances increased due to CO (NH2)2

addition in acidic soil [52] and AOA (amoA) abundances increased in both acidic and
alkaline soil [70]. Abdo et al. (2022) described that CO(NH2)2 addition increased AOA
(amoA) and AOB (amoA) abundances by low and high levels, respectively [71]. Similarly,
Tan et al. (2013) described that high CO(NH2)2 increases the AOB (amoA) abundances,
while low CO(NH2)2 increased the AOA (amoA) abundances [72]. The effect of low and
high levels of CO(NH2)2 addition on gene abundances (quantified using qPCR) from
previous studies is discussed in Table 2.
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Table 2. CO(NH2)2 fertilizer effect on ammonia oxidizers and denitrifier abundance.

Low CO(NH2)2 AOB ↑, AOA ↓ [67,73]
Moderate CO(NH2)2 ↑ AOB, ↑ nirS, ↑ nirK [74]

High CO(NH2)2 AOB ↑, AOA ↓ [73,75]
Low CO(NH2)2 AOB ↑,AOA ↓ [76]
High CO(NH2)2 AOB ↑, nirS ↑, nirK ↑ [74]

Low CO(NH2)2
AOA (amoA) ↓, narG ↓,

nosZ ↓ [77]

High CO(NH2)2
AOA (amoA) ↓, narG ↓,
nosZ ↓, AOB (amoA) ↑ [77,78]

Low CO(NH2)2
AOA (amoA) ↑, AOB

(amoA) ↓ [79]

High CO(NH2)2
nirS ↓, nirK ↑, nosZ ↑, AOB

↑ [80]

Low CO(NH2)2
AOA (amoA) ↑, AOB ↑

(amoA) [81]

High CO(NH2)2 nirK ↑ [82]
Abbreviations and symbols as Table 1.

CO(NH2)2 low and high levels impacted and shifted the ammonia oxidizers pathway
as a substrate factor. Although a previous meta-analysis study stated that only nitrogen
application affects ammonia oxidizer abundances and left the denitrifier unaffected [13],
but it may be a reflection of the nitrogen form effect only as a substrate factor for the
denitrifier. Rather than as a denitrifier substrate, low and high CO(NH2)2 has a significant
distinct effect on the nirK and nirS pathways by changing the soil condition and affinity of
the NO3

− substrate [25].
A study was conducted in Hebei province, China in 2017. This study indicated that a

high level of CO(NH2)2 fertilizer application increases the nirK gene abundances while the
nirS gene decreases [80], and the nirK gene is also correlated with the denitrification rate
(Figure 2).
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Figure 2. Abundance of (A) cu-type nitrite reductase gene and (B) cd1-type nitrite reductase gene
represented in letters under different levels of CO(NH2)2 addition. CK (control), LN (low N level),
MN (medium N level), and HN (high N level) reflect the N levels of 0, 75, 150, and 225 N ha−1 yr−1,
respectively [80].

Do fertilizer-induced changes in soil physicochemical properties reflect denitrification
process alteration thereby affecting gene activity? According to this experiment, nirS
and nirK expression changes due to low and high levels of CO(NH2)2 addition. We
may observe that in all the treatments, the nirS gene abundances/copy number increase
in alkaline soil (8.5 pH) but the CO(NH2)2 form and levels shift the soil composition
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in favor of nirK gene expression. The results of this experiment indicated that despite
the gene abundances, changes in the fertilizer application levels may shift the nitrogen
conversion potential by altering the soil physicochemical properties and gene substrate
level. Therefore, the gradient factor in nirS and nirK changes collectively increases the total
NO3

− concentration [83,84], which is directly related to the denitrifier abundances and the
denitrification and soil pH is not limiting factor due to denitrification potential relevance
with nirK activity [85]. It indicated that gene activity and substrate concentration may more
important factor for denitrification and nirS and nirK distinction than soil pH.

Following this study result, we compared the distinction of nirS and nirK in transcribed
abundances for further elaboration.

A long-term experiment conducted in 2022 in north-east China [77] described the low
and high CO(NH2)2 fertilizer effect on the genes’ transcribed abundances (Table 3), this
experiment was 29 years as compared with a previous short-term experiment [80].

Table 3. CO(NH2)2 fertilizer effect on denitrifier abundances and soil physicochemical properties [77].

Treatments Nitrite Reductase
(Genes) Soil pH SOC (g kg−1) C/N NH4

+

(mg kg−1)
NO3−

(mg kg−1)
TN

(g kg−1)
CK nirS ↑, nirK ↓ 5.97 7.39 9.82 0.64 6.19 0.75
LCF nirK ↑, nirS ↓ 5.31 7.25 9.39 1.23 21.29 0.77
HCF nirK ↓, nirS ↓ 5.16 7.04 9.11 1.65 22.12 0.77
CMF nirK ↓, nirS ↓ 5.86 8.40 9.28 1.30 15.71 0.89

CK: control; LCF: low N chemical fertilizer; HCF: high N chemical fertilizer; CMF: chemical+ manure fertilizer.

Despite the high carbon content and soil pH, nirK and nirS are insensitive to expression
as compared with CK but the denitrification potential continues to increase and reached
highest at (CMF) treatment which directed to unidentify genes pathways may be con-
tributing to denitrification besides nirS and nirK. Low and high NO3

− remained constant
where nirS gene expressed under low and nirK in high NO3

− level. Previously, different
studies reflected (nirS) affinity to lower NO3

− level and complete anaerobic condition
as compared to nirK [86,87]. NH4

+-based CO(NH2)2 fertilizer performs as a substrate of
ammonia oxidation and impacts the nirS and nirK abundances by increasing the NO3

−

concentration. But it is necessary to further explore the nitrite reducers’ gene expression
behavior under the effect of non-organic synthetic nitrogen fertilizer application to know
whether low and high NO3

− differently affect the nirS and nirK abundances and by doing
so, whether this shifts the nitrite reduction pathway [88].

4.3. Low- and High-Level (NO3
−) Nitrogen Effect on Functional Gene Abundances

In previous studies, it has been described that the denitrification functional genes are
affected by NO3

− application, in which the nirK gene increases in both fluctuating aerobic
and anaerobic conditions, while nirS is increased only under anaerobic conditions [89,90].
nirS and nirK denitrification functional genes belong to different ecological niches [91];
therefore, the NO3

− effect on the nirS and nirK gene abundances depends on the source
of nitrogen addition and the content of carbon available [92]. While in some studies, it
is elaborated that water-filled pour spaces (WFPS) and soil organic carbon are the main
reason for denitrifying gene abundances, rather than only inorganic NO3

− addition [35]. A
study described that the nirS gene may be active in anaerobic conditions without NO3

−

for a short time [26], as some studies have also described that there is not necessarily a
correlation between the denitrification functional gene abundances and inorganic NO3

−

addition [93]. But in the denitrification process, NO3
− is a required entity for the denitrifier

to complete denitrification as a better substitute of atmospheric O2 [94,95]. NO3
− is highly
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mobile and reactive, which causes concerning effects; therefore, for its application, in order
to avoid nitrogen cycle waste, we need a balanced approach [96].

To understand the low and high NO3
− effect on nirS and nirK is crucial because

the nirK gene is less prevalent in organisms that can completely reduce nitrite to dini-
trogen [97,98] as compared with nirS [89]. Barta et al. (2010) experimented that NO3

−

increased the nirK gene abundances as compared with nirS [99]. A in situ experiment
conducted in terrestrial forest soil (2017) explained that high NO3

− decreases the nirS
gene abundances [100]. Another study was also consistent regarding the nirK increase and
nirS decrease upon the application of KNO3 [101]. Similarly, in drought conditions, NO3

−

application will affect the denitrifier, which decreases the nirS abundances and leaves
nirK and nosZ unaffected [35]. A study conducted with low and high levels of NO3

−

addition and NH4
+ addition to analyze the effect on nirS and nirK abundances and the

denitrification process is discussed in Table 4 [25].

Table 4. nirS and nirK abundance responses to NH4
+ and NO3

− fertilizer.

Nitrate (Low) 10–30 kg N ha−1yr−1 nirS ↑, nirK ↓
Nitrate (High) ≥30 kg N ha−1yr−1 nirK ↑

Ammonium (Low) ≤30 kg N ha−1yr−1 nirS ↑, nirK ↓
Ammonium (High) ≥30–50 kg N ha−1yr−11 nirS ↑, nirK ↓

(≥): high or equal; (≤): low or equal.

In this experiment, NO3
− nitrogen affected the gene abundances by increasing at a

specific rate until the threshold level (30 kg N ha−1yr−1) and above this level of concentra-
tion (>30 kg N ha−1yr−1), it decreases the gene abundances but denitrification continues
to increases. According to this experiment, the NO3

− level is more linked to denitrifier
abundances than the denitrification process. Similarly, a study was conducted to find the
low- and high-level effect of NO3

− on the denitrifying gene abundances and denitrification
activity in culture media. In this experiment, the nirS, norB, and nosZ abundances were
investigated upon the application of different NO3

−concentrations (0, 10, 100, and 1000
mg of KNO3/L) for a short-term analysis with a duration of 0, 2, 4, 6, 8, and 24 h. Genes
quantified using qRT-PCR in this experiment were compared with previous studies [25]
and Table 5, which used qPCR for the gene quantification (DNA copies).

Table 5. NO3
− fertilizer effect on (NIR) gene abundances.

Low Level NO3
− nirS ↑ [36]

High Level NO3
− nirK ↑ [99]

Low Level NO3
− nirS ↑ [102,103]

High Level NO3
− nirK ↑, nirS ↓ [101]

Low Level NO3
− nirS ↓ [35]

High Level NO3
− nirK ↑, nirS ↓ [80,104]

This experiment concluded that the denitrifier gene abundances and denitrification
activity are not equally correlated because denitrification continues to occur at a high level
of NO3

−addition (1000 mg of KNO3/L) [26] indicated the consistency with study [25] and
at 2 h with 0 mg of KNO3 /liter, nirS and norB will remain expressed under complete
anaerobic conditions, which shows NO3

− level insensitivity toward nirS nitrite reductase
gene abundances. For further elaboration, we compared the denitrifier gene abundances
using a qPCR analysis.

A study by Wittorf et al. (2018) elaborated that the main distinct factor between
nirS and nirK is O2 availability, as in oxic conditions nirK was correlated to NO3

− high
level while in anoxic condition nirS gene was expressed regardless of NO3

− level [89].
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Consistently, another study by Sarrenheimo et al. (2015) described that in high NO3
− levels,

nirK abundances increases, while at a low level, nirS dominated in complete anaerobic
condition in the lake [105]. Xie et al. (2014) stated that the nirK gene correlated with
NO3

− concentration and nirS deviated [84]. A study by Cantarel et al. (2021) disclosed
that low and high NO3

− addition increases nirK gene abundances as compared with
nirS [106]. According to Pold et el. (2024), nirS-dominated pathways lead to complete
denitrification [107], while nirK gene pathways related to incomplete denitrification [97].
Although, by interpreting different studies regarding the effect of different forms and levels
on nirS and nirK abundances, we cannot neglect the influence of each factor but we can
understand the niche of the genes toward the level of NO3

− application and the correlated
effect on the denitrification process.

5. Conclusions and Future Directions
In this review, we studied the different synthetic nitrogen forms and levels impacted

as substrate factor, thereby affecting the nitrogen transformation pathway and similarly as
abiotic factors according to applied level. As discussed, many studies focused on the N
addition effect on gene abundances (population size) of nitrification and denitrification,
while the genes’ ecological response and niches study remained unexplored. We found
that short-term experiment results are quite opposite to long-term experiments, which
indicates significant climatic effects on the nitrogen conversion process. This is why gene
niches are more important to define gene activity in dynamic soil rather than the size of
the population, which indeed may contribute to the pre-expression potential reference
point in cropping soil or stable soil. Therefore, it is an urgent call that, in future, the focus
should shift from the broader N effect to a microbial gene substrate level, which may offer
better insight on gene nitrogen transformation pathways. Additionally, it is necessary to
consider long-term in situ trials and microbial activities should be examined through a
holistic approach, i.e., a metagenomic analysis in order to understand the unidentified
pathways of nitrogen transformation in oligotrophic forest soil.
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