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Abstract: We consider two alternative procedures which can be used to control the evolution of a
generic finite-dimensional quantum system, one hinging upon a strong continuous coupling with a
control potential and the other based on the application of frequently repeated pulses onto the system.
Despite the practical and conceptual difference between them, they lead to the same dynamics,
characterised by a partitioning of the Hilbert space into sectors among which transitions are inhibited
by dynamical superselection rules.

Keywords: quantum control; dynamical decoupling; quantum zeno effect; adiabatic evolution

1. Introduction

Coinsider a quantum system with a finite dimensional Hilbert space H , whose evolution U(t) =
e−itH is generated by the Hamiltonian H. We are interested in some protocols which dynamically
induce a partition of H into superselection sectors Hµ = PµH , in the sense that if the system is
initially in some state belonging to one of the superselection sectors, i.e: |ψ〉 ∈ Hµ, it will remain in
that sector during its evolution |ψ(t)〉 ∈Hµ, as shown pictorially in Figure 1. More precisely, given a
complete set of orthogonal projections {Pµ} satisfying

m

∑
µ=1

Pµ = I, PµPν = δµνPµ = δµνP†
µ , (1)

we want to engineer an effective dynamics generated by the block-diagonal Hamiltonian

HZ =
m

∑
µ=1

Pµ HPµ. (2)

This evolution is a manifestation of a Quantum Zeno Dynamics (QZD), a generalisation of the quantum
Zeno effect [1], consisting in the freezing of the state of a quantum system when it is subject to
frequent measurements aimed at ascertaining if it is still in its initial state. In the case of non-selective
measurements onto multi-dimensional subspaces Hµ = PµH a non-trivial evolution can take place
inside each subspace, generated by the Hamiltonian (2), with Pµ being the measurement projections.
In this context the superselection sectors Hµ are called quantum Zeno subspaces (QZSs) [2].
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Figure 1. A pictorial representation of the partitioning of the Hilbert space H into QZSs Hµ = PµH .
If the system is in a given QZS at the initial time t0, it will evolve coherently in this subspace and will
never make a transition to the other QZSs.

2. Strong Continuous Coupling

The first protocol consists in adding to the Hamiltonian H a strong coupling to a control potential
V, so that the dynamics is generated by a total Hamiltonian HK = H + KV, where K > 0 is the
coupling strength. As K grows to infinity, the evolution generated by HK is equivalent to a QZD,
with the QZSs determined by the eigenprojections of the control potential V. Such result is expressed
formally in Theorem 1, where we also bound the error between the actual evolution of the system and
the controlled evolution when K is large but finite.

Theorem 1. Let H and V be Hermitian operators acting on a finite dimensional space H , with V having the
spectral decomposition

V =
m

∑
µ=1

λµPµ. (3)

Then, defining HZ as in Equation (2), we have

e−it(H+KV) = e−itKVe−itHZ +O
(

1
K

)
, (4)

as K → ∞. (Here and in the following the notation O(x) will stand for an operator A(x) depending on the
real parameter x such that ‖A(x)‖ 6 C |x| for x sufficiently small and nonvanishing, and for some positive
constant C).

The proof of the theorem makes use of an adiabatic theorem [3–5].

3. Pulsed Decoupling

The second protocol consists in the application of periodic pulses to the system, implemented
by an instantaneous unitary transformation Ukick applied to the evolving state at time intervals t/n,
as shown in Figure 2a. The idea at the basis of this procedure—and of the proof of Theorem 2—can
be understood by looking at each step as an effective “rotation” of the Hamiltonian (see Figure 2b),
so that the global effect over the whole time interval (0, t) is to average out of the Hamiltonian the
off-diagonal part with respect to the eigenprojections of the unitary kick [3,6]. Such result is expressed
formally in Theorem 2.

Theorem 2. Let H be a Hermitian operator on a finite dimensional Hilbert space H , and let Ukick be a unitary
operator with the spectral decomposition

Ukick =
m

∑
µ=1

e−iλµ Pµ. (5)
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Then, by defining HZ as in Equation (2), we have(
Ukicke−i t

n H
)n

= Un
kicke−itHZ +O

(
1
n

)
, (6)

as n→ ∞.

0
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e−i t
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e−i t

n H

n
e−i t

n H
t
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(a) Pulsed evolution

H0

Ukick

H1

UkickH2

(b) The Hamiltonian is
effectively rotated at each kick

Figure 2. (a) Alternating free evolutions of duration t/n with instantaneous unitary kicks Ukick (b)
is equivalent to a sequence of infinitesimal evolutions of duration t/n generated by Hamiltonians
H` = U†`

kickHU`
kick rotated at each step by the unitary kick.

4. Example: Four-Level System

As a particular example, consider a 4-level system, where H = C4, and a Hamiltonian H inducing
Rabi transitions between adjacent levels (this scheme is very similar to that implemented in [7]):

H =
4

∑
k=1

Ωk(|k〉〈k + 1|+ |k + 1〉〈k|). (7)

|4〉

|3〉

|2〉

|1〉
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Ω2
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Figure 3. Effect of the strong coupling between states |3〉 and |4〉. The other two QZSs have not been
highlighted in the figure since they are made of linear combinations of states |3〉 and |4〉.

Such Hamiltonian will determine a time oscillation of the populations (see Figure 4a)
Pk(t) =

∣∣〈k|e−itH |1〉
∣∣2. Using Theorem 1, we can show now that it is possible to decouple levels |1〉

and |2〉 from |3〉 and |4〉 with a strong coupling between |3〉 and |4〉:

KV = K(|3〉〈4|+ |4〉〈3|). (8)

The eigenprojections of this potential are P0 = |1〉〈1|+ |2〉〈2| and P± = 1
2 (|3〉 ± |4〉) (〈3| ± 〈4|), so that

the Zeno Hamiltonian, HZ = P0HP0 + P+HP+ + P−HP−, is block-diagonal with respect to the QZSs

H1 = span{|1〉, |2〉}, H+ = span{|3〉+ |4〉}, H− = span{|3〉 − |4〉}. (9)

The situation is pictorially represented in Figure 3. Figure 4b shows the behaviour of occupation
probabilities Pk(t) in the strong coupling regime: we can see oscillations between states |1〉 and |2〉
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which belong to the same QZS, but the probability of a transition towards the states |3〉 and |4〉 vanishes
since they do not belong to the initial QZS. The same result can be obtained by using instead the
protocol considered in Theorem 2, with e.g. the unitary kick

Ukick = e−iλ(|3〉〈4|+|4〉〈3|). (10)

(a) K = 0 (b) K = 100 Ω

Figure 4. Populations Pk with Ω1 = Ω2 = Ω3 ≡ Ω without control potential (a) and with the control
potential turned on with K = 100Ω (b).

In this example we have considered a particular Hamiltonian H generating the evolution of
the system to be controlled. Note however that there are no assumptions on the structure of the
Hamiltonian in our theorems, which are therefore valid in completely general situations, as long as we
consider finite dimensional quantum systems.
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