Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images †
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.1.1. Study Site
2.1.2. Intra-Plot Yield Data
2.1.3. Optical Satellite Images
2.2. Methods
3. Results
3.1. Multi-Temporal Estimation of Yields
3.2. Mapping of Yields at the Intra-Plot Spatial Scale
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations or FAO. Available online: http://faostat.fao.org/ (accessed on 25 February 2019).
- Agreste. Available online: http://agreste.agriculture.gouv.fr/ (accessed on 25 February 2019).
- Fieuzal, R.; Baup, F. Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite data. Int. J. Remote Sens. 2016, 37, 2780–2809. [Google Scholar] [CrossRef]
- Marais Sicre, C.; Inglada, J.; Fieuzal, R.; Baup, F.; Valero, S.; Cros, J.; Huc, M.; Demarez, V. Early detection of summer crops using high spatio-temporal resolution optical images time series. Remote Sens. 2016, 8, 591. [Google Scholar] [CrossRef]
- Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 157–166. [Google Scholar] [CrossRef]
- Fieuzal, R.; Marais Sicre, C.; Baup, F. Estimation of sunflower yield using a simplified agrometeorological model controlled by optical and SAR satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5412–5422. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bushong, J.T.; Mullock, J.L.; Miller, E.C.; Raun, W.R.; Klatt, A.R.; Arnall, D.B. Development of an in-season estimate of yield potential utilizing optical crop sensors and soil moisture data for winter wheat. Precis. Agric. 2016, 17, 451–469. [Google Scholar] [CrossRef]
- Sharma, L.K.; Franzen, D.W. Use of corn height to improve the relationship between active opticals sensor readings and yield estimates. Precis. Agric. 2014, 15, 331–345. [Google Scholar] [CrossRef]
- Yin, X.; Hayes, R.M.; McClure, M.A.; Savoy, H.J. Assessment of plant biomass and nitrogen nutrition with plant height in early-to mid-season corn. J. Sci. Food Agric. 2012, 92, 2611–2617. [Google Scholar] [CrossRef] [PubMed]
- Meier, U. Stades Phénologiques des Mono- et Dico-tylédones Cultivées. Centre Fédéral de Recherches Biologiques pour l’Agriculture et les Forêts. 2001. Available online: www.agroedieurope.fr/ref/doc/BBCH.pdf (accessed on 25 February 2019).
- Fieuzal, R.; Baup, F. Forecast of wheat yield throughout the agricultural season using optical and radar satellite images. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 147–156. [Google Scholar] [CrossRef]
- Fieuzal, R.; Marais-Sicre, C.; Baup, F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 14–23. [Google Scholar] [CrossRef]
Years | 2016 | 2017 | |
---|---|---|---|
Satellites | Sentinel-2 | Landsat-8 | Sentinel-2 |
Dates (M-D) | 05-21; 06-20 | 04-15; 06-09; 07-04 | 04-06; 05-06; 05-16 |
07-10; 07-30 | 08-12; 09-06; 09-13 | 05-26; 06-05; 06-25 | |
07-05; 08-04; 08-14 | |||
08-24; 09-13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fieuzal, R.; Bustillo, V.; Collado, D.; Dedieu, G. Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images. Proceedings 2019, 18, 7. https://doi.org/10.3390/ECRS-3-06203
Fieuzal R, Bustillo V, Collado D, Dedieu G. Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images. Proceedings. 2019; 18(1):7. https://doi.org/10.3390/ECRS-3-06203
Chicago/Turabian StyleFieuzal, Remy, Vincent Bustillo, David Collado, and Gerard Dedieu. 2019. "Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images" Proceedings 18, no. 1: 7. https://doi.org/10.3390/ECRS-3-06203
APA StyleFieuzal, R., Bustillo, V., Collado, D., & Dedieu, G. (2019). Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images. Proceedings, 18(1), 7. https://doi.org/10.3390/ECRS-3-06203