Probability Estimation of Change Maps Using Spectral Similarity †
Abstract
:1. Introduction
2. Experiments
2.1. Study Area and Data Set
2.2. Adopted Methodology
2.2.1. Step 1
2.2.2. Step 2
2.2.3. Step 3
2.2.4. Step 4
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
References
- Sadeghi, V.; Ahmadi, F.F.; Ebadi, H. A new fuzzy measurement approach for automatic change detection using remotely sensed images. Meas. 2018, 127, 1–14. [Google Scholar] [CrossRef]
- Liu, S.; Bruzzone, L.; Bovolo, F.; Du, P. Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images. IEEE Transactions on Geoscience Remote Sensing 2016, 54, 2733–2748. [Google Scholar] [CrossRef]
- Meola, J.; Eismann, M.T.; Moses, R.L.; Ash, J.N. Detecting Changes in Hyperspectral Imagery Using a Model-Based Approach. IEEE transactions on geoscience remote sensing 2011, 49, 2647–2661. [Google Scholar] [CrossRef]
- Shah-Hosseini, R.; Homayouni, S.; Safari, A. Environmental monitoring based on automatic change detection from remotely sensed data: kernel-based approach. J. Appl. Remote. Sens. 2015, 9, 95992. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data. International journal of remote sensing 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Hasanlou, M.; Seydi, S.T. Hyperspectral Change Detection: An Experimental Comparative Study. International journal of remote sensing 2018, 39, 7029–7083. [Google Scholar] [CrossRef]
- Ertürk, A.; Plaza, A. Informative Change Detection by Unmixing for Hyperspectral Images. IEEE Geoscience Remote Sensing Letters 2015, 12, 1252–1256. [Google Scholar] [CrossRef]
- Bioucas-Dias, J. A variable splitting augmented Lagrangian approach to linear spectral unmixing. 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 2009.
- Heinz, D.; Chang, C.-I.; Althouse, M.L. "Fully constrained least-squares based linear unmixing [hyperspectral image classification]." IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293). Vol. 2. IEEE, 1999. 1999. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. AIP Conference Proceedings 1993, 283, 192–201. [Google Scholar]
- Coefficient, W.J.P.C. Encyclopedia of Systems Biology. Springer: New York, NY, USA, 2013. [Google Scholar]
- Clarke, K.R.; Somerfield, P.J.; Chapman, M.G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Boil. Ecol. 2006, 330, 55–80. [Google Scholar] [CrossRef]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The Jeffries–Matusita Distance for the Case of Complex Wishart Distribution as a Separability Criterion for Fully Polarimetric Sar Data. Int. J. Remote. Sens. 2014, 35, 6859–6873. [Google Scholar]
- Renza, D.; Martinez, E.; Molina, I.; L., D.M.B. Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Adv. Space Res. 2017, 59, 2019–2031. [Google Scholar] [CrossRef]
- Júnior, O.A.C.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A.T. A New Approach to Change Vector Analysis Using Distance and Similarity Measures. Remote. Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef]
- Ramos, J.F.; Renza, D.; L., D.M.B. Evaluation of spectral similarity indices in unsupervised change detection approaches. DYNA 2018, 85, 117–126. [Google Scholar] [CrossRef]
Method | OA (%) | κ | FPR | MCC |
---|---|---|---|---|
PCA | 96.20 | 0.8835 | 0.0583 | 0.8845 |
ICA | 88.68 | 0.6504 | 0.2425 | 0.6516 |
CE | 96.54 | 0.8909 | 0.0672 | 0.8912 |
MLE | 87.83 | 0.5874 | 0.3856 | 0.5900 |
ED | 96.15 | 0.8852 | 0 | 0.8911 |
Final BCM | 97.00 | 0.9055 | 0.0527 | 0.9059 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafarzadeh, H.; Hasanlou, M. Probability Estimation of Change Maps Using Spectral Similarity. Proceedings 2019, 18, 8. https://doi.org/10.3390/ECRS-3-06183
Jafarzadeh H, Hasanlou M. Probability Estimation of Change Maps Using Spectral Similarity. Proceedings. 2019; 18(1):8. https://doi.org/10.3390/ECRS-3-06183
Chicago/Turabian StyleJafarzadeh, Hamid, and Mahdi Hasanlou. 2019. "Probability Estimation of Change Maps Using Spectral Similarity" Proceedings 18, no. 1: 8. https://doi.org/10.3390/ECRS-3-06183
APA StyleJafarzadeh, H., & Hasanlou, M. (2019). Probability Estimation of Change Maps Using Spectral Similarity. Proceedings, 18(1), 8. https://doi.org/10.3390/ECRS-3-06183