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Abstract: Order to disorder transitions are important for 2D objects such as oxide films with a 

cellular porous structure, honeycomb, graphene, and Bénard cells in liquid and artificial systems 

consisting of colloid particles on a plane. For instance, solid films of the porous alumina represent 

an almost regular quasicrystal structure (perfect aperiodic quasicrystals discovered in 1991 is not 

implied here). We show that, in this case, the radial distribution function is well described by the 

quasicrystal model, i.e., the smeared hexagonal lattice of the two-dimensional ideal crystal by 

inserting a certain amount of defects into the lattice. Another example is a system of hard disks in a 

plane, which illustrates the order to disorder transitions. It is shown that the coincidence with the 

distribution function, obtained by the solution of the Percus-Yevick equation, is achieved by the 

smoothing of the square lattice and injecting the defects of the vacancy type into it. However, a 

better approximation is reached when the lattice is a result of a mixture of the smoothened square 

and hexagonal lattices. Impurity of the hexagonal lattice is considerable at short distances. 

Dependences of the lattices constants, smoothing widths, and impurity on the filling parameter are 

found. Transition to the order occurs upon an increasing of the hexagonal lattice contribution and 

decreasing of smearing. 

Keywords: order to disorder transitions; 2D objects; radial distribution function; quasicrystal 

model; wavelet; porous aluminium oxide; hard disks in a plane 

 

1. Introduction 

It is well known that for particles on a plane interacting via a certain potential, the existence of 

crystal, i.e., a system with periodicity, is impossible at a nonzero temperature [1–4]. However, there 

exist a number of 2D objects in nature which exhibit crystalline-like ordering. Usually, these objects 

have a non-perfect crystalline structure and a question arises about the transition from order to 

disorder. It is noteworthy that the order–disorder transition was experimentally studied from the 

general point of view in [5], where the destruction of a graphene layer by the electron beam was 

analyzed. A continuous transition from the crystalline state to the glassy state occurred as a result of 

irradiation. At the initial stage of irradiation, individual defects appeared in the lattice. Then, the 

glassy (disordered) regions surrounding crystallites (perfectly oriented regions) emerged. In the 

disordered regions, the destruction of the order initially manifested itself as pentagonal and 

heptagonal cells instead of the hexagonal ones. The area occupied by crystallites decreased with an 

increase in the irradiation dose. 

As it was believed in [5], an experiment confirms the validity of both of the two competing 

theories of the order–disorder transition. They involve, on the one hand, the theory of crystallites [6] 



Proceedings 2018, 2, 1117 2 of 9 

 

(according to which an amorphous substance incorporates crystal-like agglomerates linked by 

disordered regions) and, on the other hand, the theory of random networks (see review [7]), which 

assumes that the order is destroyed throughout the entire volume of a substance, so that the crystal 

lattice transforms into random chains of atoms due to the distortion and breakage of some bonds. 

Thus, it follows from the experiment [5] that single defects are formed at the initial stages. Then, the 

theory of crystallites proves to be valid; further, the theory of random networks starts to work. In 

this study, we propose to take into consideration two mechanisms in order to simulate the radial 

distribution function of 2D systems. The first implies the formation of vacancy-type defects (i.e., the 

absence of atoms in some lattice sites), when the crystal lattice structure is retained. The second 

mechanism corresponds to the destruction of the crystal lattice and is implemented via peak 

broadening in the structure factor and limitation of the peak height at large wave numbers. The 

method of crystal lattice smearing proposed in [8] was used to construct an empirical radial 

distribution function. This method was applied to describe the structure of some simple liquids 

[9–15]. A similar method of smearing of coordination circles was used to describe artificial 2D 

crystals [16,17]. Here, we consider a slightly different method consisting of the random shifting of 

the crystal nodes. 

2. Radial Distribution Function for Porous Aluminum Oxide Layer 

Oxide films with a cellular porous structure are formed upon the electrochemical oxidation 

(anodization) of aluminum and many aluminum alloys in solutions of various acids. The film 

thickness may be as large as several hundreds of micrometers, while the pore radius size is several 

tens of nanometers. Such films have been studied for more than 50 years. They are widely applied as 

anticorrosion, wear-resistant, electro-insulating, and decorative coatings in microelectronic and 

optical devices, membranes, and sensors. Under a combination of certain conditions, including acid 

concentration and type, a film can be grown as an ordered array of cylindrical pores similar to a 2D 

periodic lattice [18–20]. Various theories describing the ordered structure of pores in aluminum 

oxide fabricated by anodization have been proposed [21,22]. However, presently, there is no 

complete understanding of the regularities of ordered structure formation; hence, the radial 

distribution function of pores cannot be calculated theoretically. At the same time, the knowledge of 

the radial distribution function is necessary for optical calculations. For example, the effective 

refractive index of a medium consisting of porous aluminum oxide strongly depends on the radial 

distribution function [23]. The imaginary part of the effective refractive index is particularly 

sensitive to the form of the radial distribution function. As for the experimental determination of the 

radial distribution function using an electron microscope, its accuracy is limited by the finite sizes of 

a sample [24]. Thus, one needs semi-empirical models to describe the radial distribution function of 

pores in porous aluminum oxide. It is reasonable to suggest that the ordered structure of porous 

aluminum oxide is something intermediate between the 2D crystal and amorphous substance. 

Therefore, it is meaningful to study porous aluminum oxide from the viewpoint of general 

principles of the order–disorder transition [25,26]. 

Let us first analyze a real sample of porous aluminum oxide in order to understand the form of 

the radial distribution function that should be sought after. In practice, there is generally a 

photograph of the sample, which can be analyzed by statistical methods [24]. In this study, we used 

the electron microscopy image obtained in [27] and shown in Figure 1a. There are computer 

programs for determining the centers of cylindrical holes [24], which analyze the contrast of pixels. 

However, we plotted the pore centers manually. The average distance between pores in the sample 

was in the order of 100 nm [27]. To avoid edge effects and, at the same time, to have an opportunity 

to calculate the radial correlation function at somewhat larger distances, we increased the sample 

area by parallel translations along the coordinate axes and diagonals (Figure 1b). Although this 

increase in the area gave rise to a certain error, it allowed increasing the distance at which the 

correlation function can be calculated. Then, using a computer program, we counted the number of 

pores between the circles of radii   and d   (including the pores of the extended sample) in 

the neighborhood of each selected pore of the initial sample. Such a calculation was performed for 
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each pore of the initial sample, and then the average value was found. A binary distribution function 

of the pore density distribution was calculated by the formula 

  
(a) (b) 

Figure 1. (a) Photograph of the sample of the porous aluminum oxide layer from Ref. [8]. Circles 

around pore centers are plotted; (b) Array of pore centers obtained by a parallel translation of the 

pore centers in the initial array along the coordinate axes and the diagonals of the sample. The region 

containing pore centers in the starting sample is selected by a rectangle. 
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where N  is the number of pores in the region between the circles of radii   and ,d   

whereas N  is the number of pores in the sample. The correction factor /( 1)N N   in (1) takes into 

account the fact that the selected pore cannot be situated within its environment. The radial 

distribution function ( )W   related to the function ( )g   by the expression 0( ) ( ) /W g n   is 

usually used, where 0n  is the average surface density of pores in the sample. Thus, the calculation 

of the radial distribution function is similar to the calculation in the Monte Carlo method, except for 

the fact that the sample in the Monte Carlo method is generated, while the method at hand deals 

with an experimental sample. As a result, the radial distribution function was obtained. However, 

the statistical uncertainty and the error due to edge effects restrict the direct use of this function for 

optical calculations, since they give rise to errors in the calculation of integrals. At the same time, this 

accuracy is quite sufficient to construct an empirical distribution function by comparison with the 

experimental one. A further objective of our study was to derive a smooth empirical distribution 

function, which could be used in optical calculations. A starting point of our approach is the binary 

distribution function of particles for an ideal 2D crystal with a certain hexagonal lattice, shown in 

Figure 2a. The crystal structure is described, e.g., in [16,25,26]. The two-particle distribution function 

g(r) is a sum of the Dirac delta-function terms: 
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where (2) ( )ρ  represents a two-dimensional delta-function by Dirac, and 
iρ  represents the 

position vectors of particles in an ideal lattice. The particles are situated in the nodes of the 

crystalline lattice. Summation in Formula (2) is performed over all the particles, except one, being in 

an origin of coordinates. As we have one particle per a cell, an average density of the particles in an 

ideal crystal is easily calculated: 
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 where S  is the area of a crystal cell; a  is 
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a lattice constant, i.e., diameter of a circle inscribed into the cell, as it is shown in Figure 2; and m  is 

the number of edges of a cell. 

 

(a) (b) (c) 

Figure 2. The two-dimensional lattices: hexagonal (a), square (b), triangular (c). 

The correlation function is denoted as 0( ) ( ) K g nρ ρ . To proceed from order (an ideal 

crystal) to disorder, we suggest the formation of the defects of the vacancy type at the first stage. 

This means that there exists a probability of the lack of a particle in a node. As a result, the 

distribution function takes the form 
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where ( )g ρ  denotes the distribution function at this first stage, 
0n  is the surface density of the 

particles in a sample, and 
minD  is the distance at which it is known that the distribution function is 

apparently zero. Formula (3) suggests that the correlation function ( )K ρ  of an ideal crystal is 

exponentially restricted at a large   value. Besides, it is taken into account that ( )g ρ  should have 

the correct asymptotic at infinity, where it is equal to 
0n , and should be equal to zero at 

minD  . At 

the second stage, the spreading of a lattice by means of some integral transformation is carried out: 
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where we supposedly have 
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The integral transformation given by Equations (4) and (5) maps a set of the integrable 

functions defined in a two-dimensional region 
minD   into itself. At 

minD  , ( ) 0g ρ , as in (3). 

Normalising factor ( )   is equal to 
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where 
0 ( )I z  is a zero order modified Bessel function of the first kind. The above expression for 

( )   implies that the action of the transformation (4) action to the function equal to some constant 

does not change it. As a result, one comes to 
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We do not consider an orientation order and the loss of it here, but an averaged 
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 over orientation of the vector ρ  (polar coordinates are used) is considered. 

Thus, all the directions are equivalent, and the pare distribution function only depends on distance 

 . The radial distribution function 
0( ) ( ) /W g n   is usually considered. As a result, we come to 

the following formula: 
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where summation is performed not over the nodes, but over coordination circles on which the nodes 

are situated, and 
iN  is the number of nodes laying on each i -the coordination circle. 

The result of the calculation is shown in Figure 3. The following parameters were used:
1/2( ) 0.0877( )   a , 

0 00.965n n , and 
min 0.4D a , 0.2 /  a . One can see that there is a good 

agreement with the experimental radial distribution function obtained by counting the number of 

pores in the sample shown in Figure 1a. 

 

Figure 3. Radial distribution function of pores in porous aluminum oxide: experimental sample [8] 

(solid curve) and our calculation (dashed curve). 

3. Hard Disks in a Plane 

Let us consider a quite different system, namely, hard disk fluid. This system, on the one hand, 

attracts mathematicians and physicists with its simplicity, while, on the other hand, it is a test bed to 

explore the transition from order to disorder, hard disc liquid to hexatic, liquid to hexagonal crystal, 

and the liquid-to-maximally random jammed state [28–32]. The pair distribution function 

characterizes the important features of the system as compressibility and the equation of state 

[33,34]. The limiting case of a distribution function of hard disks under an increasing disk 

concentration is the hexagonal lattice, i.e., a two-dimensional crystal. It is reasonable that at densities 
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close to the maximum, the two-particle distribution function can be described in a frame of the 

quasicrystal model by the smearing of a hexagonal lattice. At lower concentrations of particles, the 

methods of integral equations [35], based on a decoupling of the Bogolubov chain of the equations, 

work well. In particular, the Percus-Yevick integral equation [29,35] is usually used. There question 

arises whether the quasicrystal model works not only in proximity to a crystal, but also at medium 

concentrations? Below, we consider the quasicrystal model in the range of a medium concentration 

of disks. 

Comparison with the Solutions of the Percus-Yevick Equation 

Disk concentration is characterized by the packing fraction 2

0n R  , where R  is a disk 

radius. It is evident that the value of 
min 2D R , because the centers of the two hard disks are 

separated by at least this distance. The value of the lattice constant a  has to depend on  . The 

question of which lattice should be smeared to obtain the correct pair distribution functionarises. It 

turns out to be that the qualitative agreement with the solutions of the Percus-Yevick equation is 

reached if a square lattice is smeared. On the other hand, it is obvious that, under an increasing of the 

disk density, we should come to a hexagonal lattice. To take this into account, we suggest the 

following model: 

2 2

( ) ( )(1 ) ( )      b b

squ gexW W e W e , (8) 

i.e., the radial distribution function is a superposition of the two terms obtained by the spreading of 

the square and hexagonal lattices with the weight functions depending on distance. The functions 

( )squW   and ( )gexW   are calculated by Equation (7). Parameter ( )  , determining the spreading of 

the lattice, depends on distance as ( )    ; that is, the nodes situated further are smeared 

stronger. Results of the comparison with the solutions of the Percus-Yevick equation are shown in 

Figures 4 and 5. It should be noted that the Percus-Yevick equation is not solved analytically for hard 

disks on planes, thus numerical methods were used. It seems very interesting that the “tails” of the 

distribution function shown in Figures 4b and 5b are modeled with a high accuracy. The 

Percus-Yevick equation stops working at a filling parameter of about 0.6, which restricts the present 

consideration. However, it is evident that the parameterization of the radial distribution function 

given by Equation (7) will be useful for higher disk concentrations, where phase transitions occur. 

Table 1 contains all the parameters used in the calculations. For simplicity, we consider that the 

parameters   and  , determining smearing and the amount of defects-vacancies, are the same for 

both lattices; however, constants of the lattices are taken as different. As one can see, spreading and 

the number of defects decrease with the increasing of  , i.e., the system tends from disorder to 

order. 

Table 1. Constants of lattices squa  and gexa  for modeling quasicrystal as an allocation radial 

distribution function at various block coefficients  , and other parameters included in Formulas (6) 

and (7). 

  /(2 )squa R  /(2 )gexa R  1/ 2/(2 )R  2 R  
2(2 )b R  

0.62 1.04 1.1 0.158 0.027 0.4 

0.6 1.056 1.12 0.176 0.03 0.41 

0.55 1.095 1.14 0.192 0.1 0.45 

0.5 1.11 1.2 0.2 0.2 0.53 

0.45 1.112 1.3 0.209 0.5 0.7 

0.4 1.115 1.6 0.213 0.9 1.1 

0.35 1.117 2.1 0.224 1.4 0.75 

0.3 1.12 2.3 0.236 2 0.6 1 
1 All the quantities are dimensionless. 
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(a) (b) 

Figure 4. Radial distributions function for filling 0.62 , in a range {1,5}  (a) and in a range 

{4,9}  (“a tail of the distribution function”) (b). Solid line is a solution of the Percus-Yevick 

equation, and dashed line is the quasicrystal model. 

 

  
(a) (b) 

Figure 5. Radial distribution functions for filling 0.3  , in a range {1,3.5}  (a) and in a range 

{2.5,5.0}  (“a tail of the distribution function”) (b). Solid line is a solution of the Percus-Yevick 

equation, and dashed line is the quasicrystal model. 

4. Conclusions 

Radial distribution function parameterization, based on the quasicrystal model, is presented. 

This parameterization describes the same footing as porous aluminum oxide, so as 2-D hard disk 

fluid. The quasicrystal model is based on two effects: the first one is the vacancy-type defects 

formation and the second one is the destroying of the crystal lattice by smearing. The successes of 

this parametrization show that even liquid of the hard disks contains features of a crystal. The model 

will serve as a tool for the description of the phase transitions in 2-D fluids. On the other hand, it 

could be the base for variational methods, because the parameters describing spreading, defects 

probability, and lattice constants could be found by the minimization of some function [36]. 
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