Computationally Efficient Bootstrap Expressions for Bandwidth Selection in Nonparametric Curve Estimation †
Abstract
:1. Introduction
2. Nonparametric Density Estimation
3. Nonparametric Hazard Rate Estimation
4. Simulation Results
- Density estimation: An AR(1) model given by , where .
- Hazard rate estimation: A Gumbel model such that .
5. Discussion
Funding
Conflicts of Interest
Abbreviations
MISE | Mean integrated squared error |
ISE | Integrated squared error |
SSB | Smoothed stationary bootstrap |
SMBB | Smoothed moving blocks bootstrap |
iid | Independent and identically distributed |
DO-validation bandwidth selector for hazard rate estimation (see [10]) | |
González-Manteiga, Cao, Marron bandwidth selector for hazard rate estimation (see [11]) | |
Plug-in bandwidth selector for bandwidth selection with dependent data (see [12]) | |
Leave--out cross-validation for density estimation (see [13]) | |
Modified cross validation for density estimation with dependent data (see [8]) | |
Penalized cross validation for density estimation with dependent data (see [8]) | |
Cross validation bandwidth selector for hazard rate estimation (see [14]) | |
Bandwidth selector which minimizes the theoretical MISE(h) |
Appendix A
- Draw from , the empirical distribution function of the sample.
- Define , where has been drawn with density K and independently from .
- Assume we have already drawn (and, consequently, ) and consider the index j, for which . We define a binary auxiliary random variable , such that and . We assign whenever and we use the empirical distribution function for, where stands for the modulus operator.
- Once drawn , we define , where, again, has been drawn from the density K and independently from .
- Fix the block length, , and define
- Define:
- Draw with uniform discrete distribution on , with
- Define as the first n components of
- Define , where has been drawn with density K and independently from , for all
References
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, UK, 1986. [Google Scholar]
- Devroye, L. A Course in Density Estimation; Birkhauser: Boston, MA, USA, 1987. [Google Scholar]
- Watson, G.S.; Leadbetter, M.R. Hazard analysis I. Biometrika 1964a, 51, 175–184. [Google Scholar] [CrossRef]
- Watson, G.S.; Leadbetter, M.R. Hazard analysis II. Sankhyā Ser. A 1964b, 26, 101–116. [Google Scholar]
- Parzen, E. Estimation of a probability density-function and mode. Ann. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Rosenblatt, M. Estimation of a probability density-function and mode. Ann. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Barbeito, I.; Cao, R. Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data. Comput. Stat. Data Anal. 2016, 104, 130–147. [Google Scholar] [CrossRef]
- Barbeito, I.; Cao, R. A review and some new proposals for bandwidth selection in nonparametric density estimation for dependent data. In From Statistics to Mathematical Finance: Festschrift in Honour of Winfried Stute; Ferger, D., González Manteiga, W., Schmidt, T., Wang, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 173–208. ISBN 978-3-319-50986-0. [Google Scholar]
- Barbeito, I.; Cao, R. Smoothed bootstrap bandwidth selection for nonparametric hazard rate estimation. Preprint 2018. [Google Scholar] [CrossRef]
- Gámiz, M.L.; Mammen, E.; Martínez-Miranda, M.D.; Nielsen, J.P. Double one-sided cross-validation of local linear hazards. J. R. Stat. Soc. Ser. B Stat. 2016, 78, 775–779. [Google Scholar] [CrossRef]
- González-Manteiga, W.; Cao, R.; Marron, J.S. Bootstrap Selection of the Smoothing Parameter in Nonparametric Hazard Rate Estimation. J. Am. Stat. Assoc. 1996, 91, 1130–1140. [Google Scholar]
- Hall, P.; Lahiri, S.N.; Truong, Y.K. On bandwidth choice for density estimation with dependent data. Ann. Stat. 1995, 23, 2241–2263. [Google Scholar] [CrossRef]
- Hart, J.D.; Vieu, P. Data-driven bandwidth choice for density estimation based on dependent data. Ann. Stat. 1990, 18, 873–890. [Google Scholar] [CrossRef]
- Patil, P.N. On the Least Squares Cross-Validation Bandwidth in Hazard Rate Estimation. Ann. Stat. 1993, 21, 1792–1810. [Google Scholar] [CrossRef]
CV | DO | BOOT1 | BOOT2 | GCM | ||
---|---|---|---|---|---|---|
Gumbel model | Mean | |||||
Median |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbeito, I.; Cao, R. Computationally Efficient Bootstrap Expressions for Bandwidth Selection in Nonparametric Curve Estimation. Proceedings 2018, 2, 1164. https://doi.org/10.3390/proceedings2181164
Barbeito I, Cao R. Computationally Efficient Bootstrap Expressions for Bandwidth Selection in Nonparametric Curve Estimation. Proceedings. 2018; 2(18):1164. https://doi.org/10.3390/proceedings2181164
Chicago/Turabian StyleBarbeito, Inés, and Ricardo Cao. 2018. "Computationally Efficient Bootstrap Expressions for Bandwidth Selection in Nonparametric Curve Estimation" Proceedings 2, no. 18: 1164. https://doi.org/10.3390/proceedings2181164
APA StyleBarbeito, I., & Cao, R. (2018). Computationally Efficient Bootstrap Expressions for Bandwidth Selection in Nonparametric Curve Estimation. Proceedings, 2(18), 1164. https://doi.org/10.3390/proceedings2181164