Reconstruction of Tomographic Images through Machine Learning Techniques †
Abstract
:1. Introduction
2. Challenges
3. Results
Acknowledgments
Conflicts of Interest
References
- Michalikova, M.; Abed, R.; Prauzek, M.; Koziorek, J. Image Reconstruction in Electrical Impedance Tomography Using Neural Network. In Proceedings of the Biomedical Engineering Conference (CIBEC), Giza, Egypt, 11–13 December 2014; pp. 39–42. [Google Scholar]
- Wang, P.; Li, H.L.; Xie, L.L.; Sun, Y.C. The implementation of FEM and RBF neural network in EIT. In Proceedings of the 2nd International Conference on Intelligent Networks and Intelligent Systems (ICINIS 2009 ), Tianjin, China, 1–3 November 2008; Volume 3, pp. 66–69. [Google Scholar]
- Wang, C.; Lang, L.; Wang, H.-X. RBF neural network image reconstruction for electrical impedance tomography. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; Volume 4, pp. 2549–2552. [Google Scholar]
- Adler, A.; Guardo, R. A Neural Network Image Reconstruction Technique for Electrical Impedance Tomography. IEEE Trans. Med. Imaging 1994, 13, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Yang, J.; Dong, X.; Fu, F.; Tao, F.; Liu, S. Comparative study of reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 2012, 51077127, 2296–2299. [Google Scholar]
- Guardo, R.; Boulay, C.; Murray, B.; Bertrand, M. An experimental study in electrical impedance tomography using backprojection reconstruction. IEEE Trans. Biomed. Eng. 1991, 38, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Hu, H.; Li, L.; Yang, X. An extreme learning machine combined with Landweber iteration algorithm for the inverse problem of electrical capacitance tomography. Flow Meas. Instrum. 2015, 45, 348–356. [Google Scholar] [CrossRef]
- Martin, S.; Choi, C.T. Nonlinear Electrical Impedance Tomography Reconstruction Using Artificial Neural Networks and Particle Swarm Optimization. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Martin, S.; Choi, C.T.M. A Post-Processing Method for Three-Dimensional Electrical Impedance Tomography. Sci. Rep. 2017, 7, 7212. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Lionheart, W.R. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006, 27, S25. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Fuentes, X.; Mera, D.; Gómez, A. Reconstruction of Tomographic Images through Machine Learning Techniques. Proceedings 2018, 2, 1172. https://doi.org/10.3390/proceedings2181172
Fernández-Fuentes X, Mera D, Gómez A. Reconstruction of Tomographic Images through Machine Learning Techniques. Proceedings. 2018; 2(18):1172. https://doi.org/10.3390/proceedings2181172
Chicago/Turabian StyleFernández-Fuentes, Xosé, David Mera, and Andrés Gómez. 2018. "Reconstruction of Tomographic Images through Machine Learning Techniques" Proceedings 2, no. 18: 1172. https://doi.org/10.3390/proceedings2181172
APA StyleFernández-Fuentes, X., Mera, D., & Gómez, A. (2018). Reconstruction of Tomographic Images through Machine Learning Techniques. Proceedings, 2(18), 1172. https://doi.org/10.3390/proceedings2181172