
proceedings

Extended Abstract

When Diversity Met Accuracy: A Story of
Recommender Systems †

Alfonso Landin * , Eva Suárez-García and Daniel Valcarce

Department of Computer Science, University of A Coruña, 15071 A Coruña, Spain;
eva.suarez.garcia@udc.es (E.S.-G.); daniel.valcarce@udc.es (D.V.)
* Correspondence: alfonso.landin@udc.es; Tel.: +34-881-01-1276
† Presented at the XoveTIC Congress, A Coruña, Spain, 27–28 September 2018.

Published: 14 September 2018
����������
�������

Abstract: Diversity and accuracy are frequently considered as two irreconcilable goals in the field of
Recommender Systems. In this paper, we study different approaches to recommendation, based on
collaborative filtering, which intend to improve both sides of this trade-off. We performed a battery
of experiments measuring precision, diversity and novelty on different algorithms. We show that
some of these approaches are able to improve the results in all the metrics with respect to classical
collaborative filtering algorithms, proving to be both more accurate and more diverse. Moreover, we
show how some of these techniques can be tuned easily to favour one side of this trade-off over the
other, based on user desires or business objectives, by simply adjusting some of their parameters.
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1. Introduction

Over the years the user experience with different services has shifted from a proactive approach,
where the user actively look for content, to one where the user is more passive and content is suggested
to her by the service. This has been possible due to the advance in the field of recommender systems
(RS), making it possible to make better suggestions to the users, personalized to their preferences.

Most of the research on the field focuses on the accuracy as the main objective of the systems.
For example, the Netflix Prize goal was to improve the accuracy of Cinematch (Netflix recommendation
system) by 10%, measured by the root mean squared error of the predictions. This competition fuelled
the research and several advances came from it. However, in the wake of the results, studies have
proven the inadequacy of this measure when it comes to the top-n recommendation task [1], introducing
the use of IR metrics, such as precision or the normalized discounted cumulative gain (nDCG), to
assess the performance of the system. To introduce these measures non-rated items are considered as
non relevant. It has been acknowledged that making this consideration may underestimate the true
metric value; however, it provides a better estimation of the recommender quality [2].

Other studies have also pointed out the convenience of measuring different properties of
recommender systems such as diversity or novelty [3,4]. A system that is able to produce novel
recommendations increases the probability of suggesting items to a user that would not have
discovered by herself; this property is called serendipity. This quality is often associated with user
satisfaction [5], but it is difficult to measure, usually involving online experiments. We use novelty as a
proxy to measure this property. Being able to produce diverse recommendations, that make use of the
full catalogue of items instead of focusing on the more popular ones, is usually an added benefit to a
recommender system. Diversity is highly appreciated by vendors [6,7].

We analysed the performance of a couple of memory-based recommender systems, both using
four different clustering techniques to compute the neighbourhoods. This performance was evaluated
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in term of precision, diversity and novelty metrics. We also analysed how the systems perform with
different values of their parameters, with the intent of showing how the performance of the systems
with respect to the trade-off between accuracy and diversity/novelty can be tuned to suit the needs of
the user or the business objectives.

2. Materials and Methods

We conducted a series of experiments in order to analyse the trade-off between accuracy, diversity
and novelty in Recommender Systems.

2.1. Algorithms

We choose two memory-based based algorithms to analyse their performance. The first one,
Weighted Sum Recommender (WSR), is a formulation of the classic user based recommender that
stands out for its simplicity and performance [8]. The second one is an adaptation of Relevance-based
Language Model (frequently abbreviated as Relevance Models or RM), used in text retrieval to perform
pseudo relevance feedback [9]. In particular, we used the RM2 approach, which showed superior
performance than RM1 [10].

Both algorithms use the notion of the neighbourhood of a user to perform their calculations.
Intuitively, they decide to recommend or not an item based on the preferences of other users that
are considered similar to the active one. We explored four clustering techniques to calculate these
neighbourhoods with both algorithms. The first one, k-Nearest Neighbours (k-NN), is a well-known
technique commonly used with neighbourhood based algorithms [11]. As a second method, we
also tested a modification of the k-NN technique, inverted nearest neighbours (k-iNN), that claim
to improve both novelty and accuracy [12]. Another technique we used was Posterior Probabilistic
Clustering [13], in particular the model that uses the K-L divergence cost function (PPC2). Lastly, we
used the Normalized Cuts (NC), a technique used in image segmentation [14], adapted to partition
users into clusters. These last two techniques are hard clustering techniques, where a user can only be
part of a single cluster. On the contrary, the first two are soft clustering techniques, meaning that a user
can be in more than one cluster at the same time. These two methods also make use of a similarity
measure, that has to be defined independently. For our research, we used the cosine similarity in
both cases.

2.2. Evaluation Protocol

We report out result only on the MovieLens 100k dataset, given the space constraints, although
similar trends have been observed in other collections. This is a very popular public dataset for
evaluating collaborative filtering methods. It contains 100,000 ratings that 943 users gave to 1682 items.
We used the splits provided by the collection to perform 5-fold cross-evaluation.

To evaluate de effectiveness of the recommendations we used the Normalized Discounted
Cumulative Gain (nDCG), using the standard formulation as described in [15] with ratings as graded
relevance judgements. In our experiments, only items with a rating of 4.0 or higher are considered
relevant when evaluating. To assess the diversity of the recommendations we use the inverse of the
Gini index [6]. When a value of the index is 0 it signifies that a single item is being recommended to
all users. A value of 1 means that all items are recommended equally to all the users. To evaluate the
novelty we use the mean self-information (MSI) [16]. All the metrics are evaluated at a cut-off of 10.
We do this because we are interested in evaluating the quality of the top recommendations.

3. Results

We tested all the combinations of recommender and clustering techniques. For the soft clustering
methods (k-NN and k-iNN) we varied the number of neighbours between 25 and 200. For the hard
clustering techniques (PPC2 and NC) we obtained the results modifying the number of clusters
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between 10 and 100. The results in terms of accuracy (nDCG), diversity (Gini) and novelty (MSI) can
be observed in Figure 1.
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Figure 1. Values of nDCG@10, Gini@10 and MSI@10 of all studied algorithms when varying the
number of clusters or neighbours.

When it comes to accuracy alone both k-NN and k-iNN show a superior performance when
compared to the hard clustering methods, offering both similar results in term of nDCG. For these
the type of recommender that offers the best results varies. k-NN obtains better results with the RM2
algorithm. In the case of k-iNN, it is the WSR algorithm that gets the better results.

In the case of the diversity and novelty results, it can be observed that most of the time tuning
a method to provide more accurate results leads to a decrease in these other to measures. This is
not always true, as can be seen with the soft clustering techniques, when increasing the numbers of
neighbours too much leads to decreases in accuracy, diversity and novelty. It can also be seen that
different algorithms can obtain different levels of diversity and novelty at the same level of accuracy.
In this regard, the k-iNN method shows superior levels of diversity and novelty when compared to
the k-NN technique at similar levels of accuracy, confirming the claim of their proponents.

4. Discussion

Results show that the intuition that during the process of tuning a recommender raising the
accuracy leads to decreases in novelty and diversity holds most of the time, but there can be situations
when this is no longer true, and the performance of the system moves in the same direction for all the
metrics when changing a parameter.

But the results also show that the choice of algorithms is important when it comes to improving
the properties of the system. It is possible to improve the performance of the system in diversity and
novelty, while maintaining similar levels of accuracy. It is also possible to tune the system to balance
how well it performs in all the metrics. This is a multi-objective problem and a trade off must be
chosen, either by a priori setting the weight that each measure has, or by choosing any of the possible
combination of parameters from the values in the Pareto front.
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