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Abstract: Supervised activity recognition algorithms require labeled data to train classification 
models. Labeling an activity can be performed trough observation, in controlled conditions, or thru 
self-labeling. The two first approaches are intrusive, which makes the task tedious for the person 
performing the activity, as well as for the one tagging the activity. This paper proposes a technique 
for activity labeling using subtle gestures that are simple to execute, and that can be sensed and 
recognized using smartwatches. The signals obtained by the inertial sensor in a smartwatch are 
used to train classification algorithms in order to identify the gesture. We obtained data from 15 
participants who executed 6 proposed gestures in 3 different positions. 208 characteristics were 
computed from the accelerometer and gyroscope signals and were used to train two classification 
algorithms to detect the six proposed gestures. The results obtained achieve a precision of 81% for 
the 6 subtle gestures, and 91% when using only the first 3 gestures. 

Keywords: gesture recognition; data labeling; smartwatch; activity recognition 
 

1. Introduction 

Activity, and behavior recognition has become one of the most active areas of research in 
ubiquitous computing. The field makes use of data gathered using mobile, wearable and/or 
environmental sensors to create models capable of inferring the activity being performed by an 
individual [1]. These models are often obtained by training supervised classification algorithms. 
Thus, the data needs to be labeled in order to have “ground-truth” for training and testing the model 
or classifier [2]. 

Labeling mobile sensing data is a task that requires considerable effort and is error-prone, 
particularly if the data is captured in naturalistic conditions. One approach is to capture data in 
controlled conditions, such as in a laboratory environment. In such a setting labeling can be done by 
the research team with the help of specialized equipment. For instance, the individual can be made 
to walk at a certain speed on a treadmill; asked to prepare tea in an instrumented kitchen; or be 
monitored while sleeping using polysomnography with specialized equipment. 

Requiring subjects to attend a lab to capture and label data can be expensive. Furthermore, 
ecological validity can be compromised by the fact that the subjects are being observed or the 
instrumentation can interfere with the manner in which they perform the activity. For instance, 
sleeping in a lab with sensors attached to the body vs. sleeping in your own bed and subject to 
normal environmental conditions (noise, light, the presence of others, etc.). 

Another common approach is to ask the subject under study to perform her own labeling. This 
could be done with the help of mobile systems programed to capture labeling data. One such 
example would be a smartphone app that requires the subject to press a button just before going to 
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sleep and right after waking up. This approach has some drawbacks, including the fact that the 
subject could forget to indicate that the activity is being performed, or he can do so at a later time. 
The labeling could also interfere with the activity, for instance in the case of a subject who stops 
cycling to take his phone out and indicate that he is riding a bicycle. 

This article proposes an approach to data labeling based on self-report from the individual 
conducting the activity using the recognition of simple gestures. The approach follows the 
experience sample method [3], in which the subject under study wears a smartwatch, and receives a 
notification, either in the form of vibration or sound, requesting him for a label about his current 
activity or mood. The subject responds with a subtle gesture that demands little cognitive and 
physical effort and it is also discreet and thus can be used in various social settings without others 
being aware. For instance, the system could at random times query the subject about his current 
social setting (i.e., alone; with work peers; with family and/or friends; with strangers), or when the 
device infers from accelerometer data that the subject is moving it can ask him to confirm this and 
indicate the mode of transportation (i.e., not moving; walking; running; in a car/bus). The rest of the 
paper describes the subtle gestures proposed for labeling, the methodology used to classify the 
gesture, the classification results, and a discussion of the results and application of the proposed 
approach. 

2. Materials and Methods 

We describe the criteria proposed to define the gestures to be recognized, those that were 
selected and the approach proposed for their recognition as well as to assess its accuracy. 

2.1. Defining the Body Gestures to Label Activities 

Wearable computers are increasingly being used to infer activities. Some of these devices, 
notably smartwatches, already detect gestures to activate diverse functions, for instance turning the 
screen on when the wearer raises and turns his arm in the direction of his face, signaling that he 
wants to look at the watch. 

Most gesture recognition using smartphones use the accelerometer and/or gyroscope in the 
device. For instance, Kalatrian et al. report on their effort to predict activities such as food intake or 
opening a medication jar using a smartwatch [4], while Costante, G. et al., proposed an approach to 
detect personalized gestures to assist visually impaired users [5]. 

Our first task was to define the gestures to be recognized for labeling. The gestures had to fulfill 
the following criteria: 

• Between 4 and 8 gestures that could be adequately discriminated. This number could allow 
labeling applications to answer binary queries (Yes/No), ternary queries (Yes/No/I don’t know) 
and 5 or 7 likert-scale queries. 

• Users should require little effort to perform the gestures. 
• The gestures should be easy lo learn and differentiate by those performing them. 
• The proposed gestures should be different from those currently used in smartwatches to 

operate the device. 
• The user should be able to perform the gesture in different locations, while performing a variety 

of activates, while in different body postures (laying down, sitting, running, etc.) and in 
different social circumstances (in a meeting, at home, walking in the street, etc.). Thus, the 
gestures should be discrete and subtle; the user should be able to make the gesture without 
others noticing it. 

After considering several alternatives we settled for the six gestures shown in Figure 1. These 
gestures require a small movement of the hand to tap once, or twice, the thumb with the index, 
middle or ring finger. We originally considered an additional two gestures that involved the little 
finger, but our initial efforts showed that it was difficult to discriminate these gestures with those 
using the ring finger. These gestures fulfill the criteria defined above, but their subtlety makes it 
challenging to recognize them. Dementyev and Paradiso report on their efforts to recognize the 
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gesture made by taping the thumb with the index finger [6]. We next describe our proposed 
approach to recognize these gestures. 

 
(a) Tap with index (b) Tap with middle (c) Tap with ring 

Figure 1. The six gestures selected. They require users to tap their thumb, once or twice, with either 
the index, middle or ring finger. 

2.2. Data Sources, Signal Processing and Feature Extraction 

Two sensors in the smartwatch will be used to characterize the movement in the wrist 
associated to each gesture: accelerometer and gyroscope. The accelerometer measures the 
acceleration at which the sensor moves in three axes, while the gyroscope measures orientation and 
angular velocity in the same axes. One advantage of using a smartwatch is that it is normally worn in 
the wrist of the left hand of the individual and the X-axis coincides with the direction of the arm with 
positive values towards the fingers, while the Z-axis is perpendicular to the screen of the device. 

The acceleration signal is first processed to eliminate the acceleration due to gravity, which 
depending on the position of the hand could affect all axes. A low-pass filter is used to reduce the 
effect of this component. 

The next step is to segment the signal that includes the gesture. The recording of the gestures 
initiates right after the query is given (through vibration of the device or sound), but the subject 
might wait a short amount of time before it performs the gesture. From the analysis of signals of the 
gestures we estimated the maximum amount of time required to perform the more complex gesture 
(double-tap with the ring finger) and add 1.5 s to consider the time it takes the user to react after 
perceiving the query. This time window guarantees that the gesture will be contained in the signal, 
except in cases were there is considerable delay by the user in performing the gesture. The Dynamic 
Time Wrapping (DTW) algorithm is used [7] to make an initial assessment of the presence of a 
gesture by comparing the signal with that of a sample gesture. We found the signal from the 
gyroscope to be more stable and thus, the comparison is made with the signal registering angular 
velocity. The comparison is made with total angular velocity, which adds the contribution from the 3 
axes, to account for differences in orientation when performing the gesture [8]. 

Once the signal is classified as having a gesture using DWT we proceed to determine where the 
gesture starts and ends. The signal (magnitude of angular velocity) is divided in windows of 
approximately 240 ms each. The average angular velocity of each window is calculated and a new, 
compressed signal is produced with each average value per segment. A low and a high threshold 
were empirically determined to estimate the presence of a gesture in the signal. When the magnitude 
exceeds the high threshold we establish the possible presence of the gesture and a low threshold is 
used to establish where the signal starts and ends. Figure 2 illustrates this process with the signal of a 
double-tap with the index. A value above the high threshold is initially detected in data point 15, 
indicating the presence of a gesture. The window for the gesture is established between data point 9 
and 45, the first and last values below the low threshold. 
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Figure 2. Determining. 

If the length of the potential gesture segmented is less than 200 ms the signal is considered too 
short to include a gesture and the user is queried again to repeat the gesture. This minimum length 
of time was estimated empirically. To eliminate potential peaks in the signal produced by sporadic 
movements we confirm that the start and end of the signal is no less than 220 ms away from a 
threshold above 0.4 in angular velocity. If this is not the case, the length of the signal is adjusted as 
shown in Figure 3. Similarly, if the signal lasts more than 1300 ms it will be rejected. 

 
Figure 3. Determining the final length of the signal. A peak is detected and eliminated at the end of 
the signal to avoid movements not associated with the gesture. The final signal, of 800 ms, goes from 
data 13 to 33. 

Once the signal with a potential gesture is detected we proceed to extract relevant features to be 
used for gesture classification. The signals from each axis obtained from each sensor are combined to 
produce 14 signals (7 per sensor). This includes the original signals X, Y and Z, combinations of two 
of them XY (√ܺଶ  ܻଶ ), XZ (√ܺଶ  ܼଶ ), and YZ (√ܻଶ  ܼଶ ), and the total magnitude XYZ 
(√ܺଶ  ܻଶ		ܼଶ ). Seven features are extracted from each of these signals: average, maximum, 

Double	tap	with	index	finger 

# of data 

Double	tap	with	index	finger 

# of data 
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minimum, standard deviation, and the 3 quartiles, for a total of 98 (14 × 7) features per signal. An 
additional 12 features are calculated from the area under the curve of the signals corresponding to 
the three components of each sensor. Finally, 98 additional characteristics are obtained by applying a 
Fourier transform to the signals and estimating the same 7 measures mentioned above. This results 
in a total of 208 features. 

2.3. Gesture Classification 

As classifiers we propose the use of two supervised machine learning algorithms: Support 
Vector Machine (SVM) and Sequential Minimal Optimization (SMO). Initial experiments were also 
performed using a backpropagation neural network, but this technique was later eliminated due to 
long training times. For SVM we use the two most common kernels: linear and a radial basis function 
and tried several parameters of cost and gamma (γ) as suggested in [9]. The best results were 
obtained with a cost of C = 4 and γ = 0.0078125. For SMO we used Polykernel with the best results 
obtained for a C = 11. 

The 208 features obtained from each signal are normalized in the range of [–1, 1] to avoid for 
features of greater magnitude to dominate the classification. 

2.4. Evaluation of the Approach for Gesture Recognition 

An experiment was designed to evaluate the approach proposed and compare the performance 
of the two classifiers selected (SVM and SMO) using WEKA 3.9.1. 

The study design is within-subjects, in which participants are asked to perform the 6 gestures 
using a smartwatch that records the signals from the accelerometer and gyroscope. Two android 
smartwatches were used by each participant: an LG G100 and an ASUS ZenWatch 2. 

The individuals performed the gestures while in three different postures: standing with the 
arms facing down; standing with the arm bent and the watch facing the user; and siting down with 
the arm resting on a pile of books on top of a table (to provide support). 

A total of 15 participants were recruited to gather data to train the classifiers. Inclusion criteria 
for participants included: age between 10 and 60; no previous experience using a smartwatch; and 
being right-handed. As criteria for exclusion we considered having known motor problems that 
could cause excessive movement in their arms/hands. 

Each participant is asked to perform each gesture twice in each posture, for a total of 36 gestures 
per individual. Sound was used to indicate to the user which gesture to perform next. A researcher 
used a smartphone connected via Bluetooth to the smartwatch to initiate and control the 
intervention. 

3. Results 

To evaluate the approach estimating the precision of the approach using the two classifiers: 
SVM and SMO. 

3.1. Gesture Detection and Signal Segmentation 

Of the 90 sample recorded for each gesture the approach described in Section 2.2 to detect the 
presence of gesture eliminated approximately 4.5% of them, with a similar number of samples reject 
per gesture (SD = 0.013). Of those signals that were not excluded (N = 515) the DWT estimated that in 
94.7% of them a gesture was present. 

Figure 4 shows an example of the presence of a gesture being detected using DWT. Figure 4a 
shows the signal used as reference, which corresponds to the magnitude of angular velocity of an 
individual performing a tap with the index finger. Figure 4b shows the signal of another gesture that 
is accurately recognized as including a gesture using DWT. Finally, Figure 4c shows the signal 
produced by the circular movement of the wrist, which the algorithm correctly identifies as not 
having one of the gestures of interest. 
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Figure 4. Recognizing the presence of a signal using DWT. (a) Signal of the magnitude of angular 
velocity used as a reference (single-tap with index finger). (b) Signal in which the presence of a 
gesture is correctly inferred (double-tap with ring finger). (c) Signal from a hand performing another 
movement (circular movement with the wrist). 

3.2. Gesture Recognition 

To estimate the accuracy of the approach a 10-fold cross validation was performed. The average 
precision using SVM was of 81.55, with tap with the index finger having the highest precision of 
89.4%. The lowest precision was obtained with the double tap with the index finger (77.1%). Table 1 
shows the confusion matrix for these results. Of the 85 gestures of a single tap with the index finger, 
9 were incorrectly classified (false negatives) and 6 were identified as this gesture when in fact they 
were not (false positive). False negatives are less important than false positives, since the system 
could ask the user to repeat a gesture it doesn’t recognize. 

Table 1. Confusion matrix for 6 gestures using SVM and 10-fold validation. 

a b c d e f 
 

  Classified as 
76 0 2 5 2 0 a= index 
1 64 2 1 5 6 b= middle 
2 2 66 3 7 2 c= ring 
3 0 1 64 12 3 d= double index 
0 2 0 2 65 12 e= double middle 
0 1 2 2 10 63 f= double ring 

The SMO classifier had similar results, with an average precision of 81.15%. Similarly, the best 
accuracy was obtained with a single tap with the index finger (89.41%) and the lowest with the 
double tap with the index finger (77.1%). 

We performed an additional evaluation using just the 3 gestures that require only a single tap. 
The average accuracy improved to 91.46% using SVM. 

Single	tap	with	index	finger 

# of data 

# of data # of data 

Double	tap	with	middle	finger 

Circular	movement 



Proceedings 2018, 2, 1210 7 of 7 

 

WristFlex is an array of force sensitive resistors worn around the wrist, which was developed to 
infer gestures similar to the ones proposed here [6]. A test was conducted to recognize 6 gestures, 
including the 3 we propose, plus taping also the little finger, a relaxed hand, and an open hand with 
fingers spread, with 10 individuals. While the approaches could not be directly compared given the 
slight differences in gestures used the accuracy obtained was similar. Yet, our approach does not 
require the use of specialized hardware, but rather uses standard commercial smartwatches. 

5. Conclusions 

We described an approach to data labeling for activity recognition thru gesture recognition 
with a smartwatch. Data labeling remains an open problem in activity and behavior recognition, 
which often use supervised classifiers. We proposed 6 subtle gestures that take little time and effort 
to perform and that could be enacted in a wide variety of postures and social settings. With 6 
different labels participatory data labeling can be done for a variety of mobile sensing applications 
which might require the user to confirm her current activity/behavior, or respond to binary, tertiary 
or likert-type queries. 

The precision obtained for 6 gestures (81%) seems is low for the application, it would generate a 
significant number of false positives. However, considering only 3 gestures the precision improved 
to 91% which seems practical for several circumstances, particularly considering that participatory 
sensing is often done with high frequency and a few data points incorrectly labeled might have little 
impact. In addition, the application could decide to query the user a second time if it estimates that 
the answer provided is inconsistent with the readings from the sensor. 

The approach proposed could be improved if the model could be tailored trough additional 
learning with a few sample gestures from each individual. 

A limitation of this work is that the gestures were performed in control conditions; we expect 
accuracy to decrease when the gestures are performed under naturalistic conditions. 
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