

Proceedings 2018, 2, 550; doi:10.3390/proceedings2190550 www.mdpi.com/journal/proceedings

Proceedings

Deep Neural Networks on Mobile Healthcare
Applications: Practical Recommendations †
Jose I. Benedetto 1,*, Pablo Sanabria 1, Andres Neyem 1, Jaime Navon 1, Christian Poellabauer 2
and Bryan (Ning) Xia 2

1 Computer Science Department, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
psanabria@uc.cl (P.S.); aneyem@uc.cl (A.N.); jnavon@uc.cl (J.N.)

2 Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA; cpoellab@nd.edu (C.P.); nxia@nd.edu (B.N.X.)

* Correspondence: jibenede@uc.cl
† Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence

(UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018.

Published: 24 October 2018

Abstract: Deep learning has for a long time been recognized as a powerful tool in the field of
medicine for making predictions or detecting abnormalities in a patient’s data. However, up until
recently, hosting of these neural networks has been relegated to the domain of servers and powerful
workstations due to the vast amount of resources they require. This trend has been steadily shifting
in the recent years, and we are now beginning to see more and more mobile applications with
similar capabilities. Deep neural networks hosted completely on mobile platforms are extremely
valuable for providing healthcare services to remote areas without network connectivity. Yet
despite this, there is very little information regarding the migration process of an existing server-
based neural network to a mobile environment. In this work, we describe the various techniques
and considerations that should be taken into account when developing a deep-learning enabled
mobile application with offline support. We illustrate the above by providing a concrete example
through our experience in migrating to mobile an in-house developed medical application for
detecting early signs of traumatic brain injuries.

Keywords: machine learning; mobile devices; mobile healthcare; deep learning; keras; tensorflow

1. Introduction

The dramatic expansion of mobile technologies in the world has had a significant impact in our
way of life. Estimates indicate that by 2018, over 2.53 billion people will own a smartphone
(approximately one third of the world’s population). Smartphone global shipments currently exceed
1.4 billion units shipped every year and it is estimated that this number will increase to 1.7 billion by
2020 [1,2]. This change has radically changed many facets of our way of life, including the field of
healthcare provisioning. M-health technologies have already altered the way healthcare is delivered,
with smartphones enabling delivery of low-cost healthcare assistance to parents, the elderly and
residents of remote and/or unconnected areas [3].

Up until recently, mobile healthcare applications were rather limited in their functionalities by
the limited capabilities (CPU, memory) of general-purpose mobile devices. It is rare for applications
to offer more in the way of healthcare than catalogues of information, passive monitoring and simple
reminders. Yet, with the availability of more powerful mobile platforms and APIs that permit
developers to harness all the capabilities of the hardware, it is now starting to become more common
to see smarter applications.

Proceedings 2018, 2, 550 2 of 12

Deep neural networks (DNN), also known as deep learning, are of particular interest to mobile
healthcare applications, as they allow to find patterns useful for early warnings or diagnosis amongst
clusters of highly irregular, sparse and multi-dimensional data. The effectiveness of neural networks
in healthcare applications has long since been recognized [4–6], however, most implementations
found in academia today are limited to standard artificial neural networks (ANN), often featuring
only a couple of hidden layers. Deep learning differs significantly from standard ANNs in their
number of hidden layers, their connections and the architecture’s complexity. This allows them to
learn more meaningful abstractions that may be applied to solve a wide variety of problems. Perhaps
one of the most interesting demonstrations of the applicability of deep learning in medical healthcare
is Google’s AI retinal scanner showcased at Google IO 2018, where a deep learning implementation
proved itself capable of predicting various pathologies based on nothing but a patient’s retinal scan [7].
Deep learning applied to healthcare is rarer that ANNs, even more so when it comes to mobile
applications. This is due to both the novelty of the technology and the difficulty in implementing
such complex models in resource constrained mobile platforms. Yet precedent does exist, and so far
deep learning has proven itself capable of delivering novel healthcare capabilities on stand-alone
devices without network connectivity [8].

To date, the most accurate and complex DNN models are relegated to the domain of powerful
server environments due to the vast amount of resources they consume. Mobile applications
providing deep neural network capabilities usually act as a thin client to a DNN hosted on a server.
The few available DNN-enabled mobile applications with offline capabilities make use of heavily
optimized, relatively light, neural networks, which in several cases have to sacrifice significant
amounts of accuracy in their efforts to remaining mobile-friendly. Offline functionality is of particular
importance to mobile apps as it allows them to function in remote and underground locations with
poor or no network connectivity. Moreover, it allows them to save the end-user from significant
amounts of network traffic, therefore also leading to potential monetary impacts.

In the past, DNNs were rarely considered as an option for execution on mobile devices. This has
changed recently with the release of more and more powerful mobile devices from industry giants
such as Apple, Google, and Samsung, and the surge of a trend to facilitate the local hosting and
execution of complex machine learning (ML) models on mobile devices through official promotion
from the aforementioned companies and the release of new software optimized for mobile ML [9,10].
This trend was particularly highlighted with the announcement of TensorFlow Lite and a Neural
Network API for Android (at Google IO 2017), and the Core ML framework for iOS (at WWDC 2017).

Yet despite this paradigm shift, there is still a lack of understanding of the limits of this
technology. As such, developers are unsure up to what point it is possible to migrate a large DNN
model to a mobile platform, and the implications of such migration. There is also a lack of knowledge
of the various existing techniques to optimize arbitrary DNN models for mobile environments.

In this paper, we seek to provide detailed insight into the technical aspects involved in the
migration process of arbitrary DNN models to mobile environments, for both Android and iOS.
Furthermore, we illustrate these concepts through a practical implementation of a mobile healthcare
application that makes use of deep learning to analyze a patient’s speech and provide early warnings
of possible concussion symptoms following a trauma to the head.

2. Related Work

There are many fields in healthcare where deep learning has proven to be particularly effective.
One of the earliest areas in which this technology was applied was in clinical imaging. In [11], MRI
scans are analyzed by a deep neural network for the early detection of Mild Cognitive Impairment
(MCI) and Alzheimer’s Disease (AD). Deep learning was similarly used in the analysis of lung CT
scans and breast ultrasound images for detecting benign and malignant nodules or lesions [12]. Deep
learning has also shown success in analyzing patients’ electronic medical records. DeepCare [13] is
an example of such a technology, wherein a Recursive Neural Network (RNN) with Long-Short Term
Memory (LSTM) hidden units is used to predict a patient’s future medical trajectory based on his
past medical history. Genomics has also seen wide application of deep neural networks. For example,

Proceedings 2018, 2, 550 3 of 12

DeepBind [14] is a framework that makes use of Convolutional Neural Networks (CNNs) to predict
sequence specificities of DNA and RNA binding proteins.

A common trend amongst all of these applications is that they all operate on either servers or
powerful workstations. Despite the wide variety of applications of deep learning in the field of
medical healthcare, related mobile applications are rare, with surprisingly few results published in
academia. A couple of interesting applications we found are: a mobile-hosted CNN that takes input
from triaxial accelerometers and heart-rate sensors to predict Energy Expenditure (EE), a valuable
metric for preventing chronic diseases [15]; and an Android application that identifies skin diseases
by taking a picture of a suspected skin abnormality with the smartphone’s camera, and then
processing the image with a shallow neural network hosted on-device [16]. The latter example
however makes use of an ANN, so it does not fully qualify as deep-learning.

The lack of results in this area, despite the usefulness of deep learning in providing robust mobile
diagnosis tools, is mostly due to the difficulty in porting a server-based DNN to a mobile
environment, and the novelty of mobile hardware powerful enough to run them, and the software to
properly make use of it. There do exist however some publications that address the issue of migrating
large DNNs to mobile.

Chen et al. introduce a framework for migrating deep neural networks to iOS devices while
reducing execution time and the overall neural network size with negligible loss in accuracy. They
accomplish this by maximizing data reusability and pruning redundant kernels [17]. Their work is
focused on execution time speedups; as such, results are limited to relatively light neural networks
(16-layer deep CNNs in their examples). In [18], the authors shift their focus to energy optimizations
for migrating deep neural networks into generic embedded systems. They do this by applying
redundant connection pruning, weight sharing and quantization techniques. Quantized CNN [19]
also focuses on the benefits on quantization, with reports of up to 6× speed-ups and 20× compression
rates, with less than 1% accuracy loss. MCDNN is a neural network execution frameworks that
introduces a compiler for optimizing models, and client/cloud runtime that allows for resource
sharing between multiple DNNs across different contexts [20]. Following a similar idea, MoDNN [21]
focuses on local partitioning of already trained DNNs across multiple devices to obtain speedups.

Our contribution in this paper differs from all the above in that we focus on models inherently
too large to even be run on a mobile environment. We then seek to optimize them with the main focus
being memory reduction, even at the cost of execution time, to get them to run on stock mobile
devices available in today’s market. As such, we mainly aim to provide production-ready DNN-
enabled mobile applications based on existing deep learning models.

3. The Migration Process

The main challenge when deploying a deep neural network to a mobile device is the device’s
memory limitations. Most low to mid end mobile devices available in the market today feature
around 1 to 2 GB of RAM, with only the latest models released from 2017 onwards supporting up to
6 GB of RAM. This, coupled with the memory restrictions inherent to mobile operating systems,
means that programs executing these models exceeding or even approaching these thresholds are
killed by the OS. Empirical evidence shows that for mobile operating systems, programs are
extremely likely to being pre-emptively killed, even when running in the foreground, whenever they
use more than a certain threshold that varies per device (usually, a percentage of the maximum
amount of RAM, although this value varies per device and per OS). Even when remaining below that
number, we still noticed rare cases when the background threads doing the heavy lifting would get
killed. This differs from desktop and server OS behavior where the existence of a backing store allows
to temporarily swap memory into disk to run a program under critical memory conditions at the
expense of running time. As such, it is imperative to restrict memory consumption as much as
possible when running on mobile.

A second challenge to consider is the resulting app size. Complex deep neural networks can
easily reach many gigabytes in size when stored on disk. When included on a mobile software
package, there is very little compression that can be achieved and for the most part, the model’s

Proceedings 2018, 2, 550 4 of 12

original size will be added to the resulting app size. Developers are strongly recommended to
minimize app sizes as much as possible in whatever platform they may be working on in order to
improve user experience.

Then, there is the matter of execution time. Simple neural networks often return results
practically instantly and are suited for real time applications. Deep neural networks on the other hand
may require tens of seconds to complete a single input sample. Current multiplatform neural network
technologies do not support all mobile devices’ GPUs (although there do exist iOS and Android
exclusive technologies that support hardware accelerated neural networks). Consequently, all
processing must be done exclusively on the CPU, thereby requiring orders of magnitude more time
to complete than its server counterpart.

Finally, mobile compatible versions of the aforementioned multiplatform neural network APIs
feature several optimizations meant to accelerate mobile computation. By doing so, they actually
exclude support for several operations in the full version and may not be able to run arbitrary models
that were not originally targeted for mobile environments. Careful consideration must be made to
make sure the mobile neural network library includes support for all operations defined in the model
of interest.

Next, we discuss several methods we have successfully applied and tested that allow us to tackle
these challenges: stripping unused nodes and merging of constants, selective registration,
quantization and partitioning. While the first three techniques are rather well known and
documented (there are even publicly available scripts that implement them automatically), the last
one is a novel approach we hereby introduce. From here onwards, we will refer to the set of the first
three optimizations as: Standard Deep Learning Optimizations for Mobile.

3.1. Stripping Unused Nodes and Merging of Constants

Neural network models usually include a variety of nodes and operations that serve a purpose
during the training phase only. If we preserve these nodes in the inference phase, memory usage will
slightly increase, so it is recommended to remove them if possible. Additionally, it is common for
model definitions to be split in two sets of files: one that defines the model architecture and a second
one that defines each node’s weight. This distinction is important in the training phase because the
weights and biases vary when the neural network model is trained. However, this is no longer the
case when doing inference. Model and weights can be merged into a single file, where all trainable
nodes are replaced with constant nodes assigned with their respective weight values. This
optimization results in a slightly smaller model size and lower loading times.

3.2. Selective Registration

Neural network frameworks can be compiled with support for a variety of different operations
(in TensorFlow, these are referred to as Kernel Ops). The mobile distribution of the frameworks may
strip off certain operations to limit the resulting library size. This has two important consequences:
the default mobile distribution may lack support for certain operations included in certain models,
therefore being impossible to run on mobile devices; and lastly, the framework’s library may include
definitions for several operations that are not included in a particular model, thus resulting in wasted
space. Selective registration (Figure 1) is the process by which a deep learning framework library is
built with support for a specific subset of operations. Developers may use scripts to enumerate all
operations defined in a specific set of models they intend to load, and then build the deep learning
library with support for only those operations in particular. This significantly reduces the library’s
binary size, while also ensuring full compatibility with the related models.

Proceedings 2018, 2, 550 5 of 12

Figure 1. Overview of a TensorFlow Library built with Selective Registration.

3.3. Quantization

Empirical evidence shows that weight definitions contribute by far the most to a model’s on-
disk representation. In our experiments, the weights of our built networks accounted for over 99% of
the overall model size. It is also true that most neural networks are designed to be resistant to noise,
so minor alterations in a node’s weight value should not significantly alter a model’s accuracy. It is
therefore possible to alter a model’s weight representation in a lossy way to reduce its size with barely
any changes to its output. Quantization is the process of rounding numerical values to an
approximate representation with reduced precision. For all relevant nodes, the interval between the
minimum and maximum weight value is divided into 2N buckets, where N is the number of bits
selected in the quantized representation. Next, all input weights W are replaced with an integer K
between 0 and 2N−1, such that: K ൌ 	 W െmin_weightmax_weight െ min_weight ∙ 2

A mapping for all nodes and their respective minimum and maximum weight values is kept so
that the original weight can be approximately restored from the quantized representation. Most
models are trained using 32-bit floating point numbers. Reducing their precision to 16 or 8 bits allows
us to reduce model sizes by 50% and 75% respectively with negligible loss of accuracy. Not only will
this reduce the application’s size, but our experiments show that significant memory savings can be
achieved in this fashion.

3.4. Model Partitioning

By default, neural network inference engines operate by loading an entire model into memory
and running the entire input set layer by layer until we obtain an output. It is an efficient mechanism
that puts performance first at the cost of higher memory requirements. Model partitioning refers to
determining a partition of a model’s underlying graph so that instead of executing the entire model
at once, every subgraph in the partition is run sequentially, with memory being collected in between.
Intermediate results are preserved and later fed to the subsequent iterations. Doing this can lead to
significant memory savings at the cost of a higher execution time, as long as the number of tensors to
keep track of in between iterations is small. If a model’s memory requirements exceed the host
platform’s limits, partitioning is a good alternative if a proper balance between memory consumption
and execution time is attained.

4. Evaluation

In order to evaluate these optimizations, we sought to migrate a complex deep neural network
developed for medical purposes. The DNN in question has been trained to detect abnormalities in a
patient’s speech stemming from traumatic brain injuries (TBI). It was originally developed for server
environments with the Keras framework, using Tensorflow as backend. At first, a light mobile client

Proceedings 2018, 2, 550 6 of 12

application was intended to make use of this model through a network-enabled API, but this
approach proved problematic in various scenarios where no network connection is available (such
as in remote locations with no mobile network connectivity, and facilities with no Wi-Fi hotspot in
range).

4.1. Contect

Contect is an early warning medical application built natively for the Android and iOS operating
systems that makes use of a deep learning algorithm to analyze a patient’s speech and detect
abnormalities indicative of possible neurological complications [22,23]. The workflow of the
application consists of three steps: first, an audio sample is recorded based on standardized speech-
language pathology (SLP) tests; then, the sample is processed, transformed into a spectrogram and
fed into a DNN; and finally, the application returns a concussion probability. Contect features five
types of SLP tests: enunciation of multisyllabic words, enunciation of sentences with consonant and
vowel phonemes with front and back articulation, repetition of sentences while applying stress and
intonation in different words, rapid repetition and alternation of the “Pa”, “Ta”, and “Ka” phonemes
to assess diadochokinetic alternating motion rate and diadochokinetic sequential motion rate, and
sustained vowel enunciation to capture voice quality and tremor. A signal-to-noise ratio analysis is
then conducted on the resulting audio samples to discard those with significant environmental noise.
Screenshots of the application can be seen in Figure 2.

Figure 2. Contect Screenshots.

Contect’s deep neural network architecture is based on the residual neural network concept
proposed by He et al. [24]. The model consists of 10 parallel 50-layer deep ResNets, with two LSTM
layers at the end of each of them (Figure 3). All ResNets are later merged into a series of fully
connected layers in order to obtain the final output.

Figure 3. Overview of Contect’s Deep Neural Network Architecture.

Proceedings 2018, 2, 550 7 of 12

In total, the resulting optimized neural network features 25,474 nodes and 252,739,743 weight
parameters.

4.2. Results

We now present the results obtained when running this model with all the aforementioned
optimizations under TensorFlow version 1.1 (Table 1). We consider the following cases: no
optimizations whatsoever; all standard deep learning optimizations for mobile, but no partitioning;
and all optimizations, including partitioning. For quantization, we used 8-bit quantization; and for
partitioning, we divided the execution of our neural network into 11 sequential steps: one per each
residual neural network and one final step for running the fully-connected layer. Further partitioning
is possible by splitting each individual residual neural network into multiple subgraphs.

The following results consider the maximum RAM consumption and execution time for a single
inference. Test execution times are split into three phases: graph loading time (the time it takes to
load the neural network model into memory and initialize a TensorFlow session with it), inference
time (the time between feeding the input and getting an output tensor back) and general overhead.
In our experiments, the latter is mostly due to setting the input tensors. Results were averaged for 10
distinct test runs in each case. While it may be possible to further reduce overhead times by applying
different engineering strategies and more efficiently setting the tensors, there is very little
improvement possible regarding the other two metrics. Also, do note that TensorFlow has been
optimized for batch processing, therefore the processing time for multiple input sets is not
proportional to their number.

Table 1. Results when Running our Deep Neural Network under Different Scenarios.

Optimizations
Memory
Allocated

(MB)
Execution Time

IPA/APK
Size
(MB)

Standard Deep
Learning Opt.

For Mobile
Partitioning

Tensorflow
Graph Loading

Time (s)

Inference
Time (s)

Total
Execution
Time (s)

Computer × × 4397.6 122.91 3.79 126.7 N/A

iOS Simulator
× × 6677 2.518 11 24.598 1003
√ × 3614 0.8821 7.997 20.292 295.5
√ √ 1172 7.9095 8.464 30.906 295.5

iOS Mobile
Device

√ √ 1087.9 9.965 19.106 38.321 255

Android
Mobile
Device

√ √ 1320 46.458 22.976 77.402 252

Additionally, results also include the final app size for each case. We show these values for the
original model running on a computer with no optimization through the Keras interface (control
group), the model with and without our optimizations on an iOS simulator, and finally, the model
with all optimizations running on both an iPhone 6S mobile device and a Samsung Galaxy S7
smartphone. The simulator used was a 9.7-inch iPad simulator running on a MacBook Pro with 16
GB of RAM and a 2.6 GHz quad-core Intel Core I7 processor. Both the iPhone mobile device and iOS
simulator were running iOS 10.3.3, while the Android mobile device was running Android 7.0.
Results for the model running without optimizations on an actual mobile device are excluded as
memory requirements would exceed those on our test devices (2 GB), therefore getting the
application killed ahead of time and making it impossible for us to obtain meaningful results. Results
on an Android emulator without optimizations are also excluded as we were unable to successfully
execute this scenario, most likely due to the inherent differences between simulators and emulators.

It is to be noted though that while running on the simulator, many test runs were still
unsuccessful due to the simulator non-deterministically killing their respective background threads
ahead of schedule, even though the computer’s memory was adequate. Only successful test runs are
considered in the results.

Proceedings 2018, 2, 550 8 of 12

One of the first surprising results we found was the large amount of time it takes a desktop
computer to obtain a result. For some reason, it takes a considerable amount of time for Keras to load
a complex model for the first time. In our experiments, less than 4% of that time corresponds to the
inference process. This situation is reverted on mobile environments, where most of the time is spent
on inference. We have to lay stress on the fact however that we are using the Keras high level API for
desktop, while only pure TensorFlow for mobile devices and it is possible that Keras introduces an
additional overhead that we are unaware of.

The first important thing to notice is that running the models “as is” on a mobile environment
without any optimization whatsoever results in a significantly higher memory consumption (around
50% more). Most likely this is due to the lack of GPU support on mobile for the technologies we are
evaluating.

Overall, we can see that by applying the standard deep learning optimizations for mobile we
can achieve a steady reduction of all metrics: the maximum memory consumption is reduced almost
by a factor of almost two, and total execution time is reduced by around 20%. App size is also
significantly reduced to a quarter of its original size, mostly due to the benefits of quantization.
However, this is far from sufficient to achieve replication on a 2 GB mobile device. Partitioning allows
us to reduce memory consumption even further at the cost of increasing the execution time. By doing
this, memory consumption is further reduced by 70%, but CPU execution time suffers in consequence
and is increased by 50%. It has to be noted however that by partitioning a given model into additional
subsets, memory consumption could be further improved at the cost of additional time, therefore a
proper balance has to be found by the developer.

Only this final model proved to be suited for execution on mobile devices with 2 GB of RAM.
Nevertheless, we also noticed additional differences in our metrics when moving to physical devices,
compared to those obtained on a simulator. When deploying to iOS, we noticed a further 8%
reduction in memory consumption, which is quite positive for our purposes; however, overall
execution times suffered due to the lower specifications of the iPhone’s processor and increased by
26%. Surprisingly though, these results were substantially better than those found for the Android
platform, considering TensorFlow was developed by Google: on a Samsung Galaxy S7, maximum
memory consumption ended up 22% higher than in an iPhone 6S and total execution times actually
doubled.

4.3. A Closer Look at Partitioning

We have just analyzed the benefits of one particular partitioning scheme applied to our deep
neural network, however, in practice rarely will the partitioning strategy be self-evident. By splitting
the neural network’s graph into more and more subgraphs, memory consumption will indeed
decrease, but at the same time, the time it takes to complete a single inference will also increase.
Developers should strive to find a proper balance between these two factors. To give insight into this
problem, we provide an analysis of how these two properties correlate through running our deep
neural network under different partition strategies.

To this end, we evaluated our model’s behavior when run under increasing amounts of
sequential steps. For every different strategy, we show the evolution of the overall execution time to
run a single sample and the maximum memory allocation (Figure 4).

Our experiments show there is no significant difference in total inference times when increasing
the partition size. On the other hand, graph loading times are proportional to the number of items in
the partition. This is to be expected as the graph needs to be flushed and reloaded for every iteration
in order to recover its allocated memory. At the time of writing, we have yet to discover a more
efficient way to do this in TensorFlow. For overhead times, we noticed a small increase in between
the first and last partition strategies (~27%). While not negligible, it pays a very minor role in overall
time increases when compared to graph loading times. Even more so when considering these values
may be further reduced with more engineering. In contrast, memory consumption appears to follow
an exponential decrease pattern. Overall, the greatest gain in memory consumption when compared

Proceedings 2018, 2, 550 9 of 12

to the increase in execution time occurs with a size 2 partition. From there onwards, relative gains
become less and less significant.

Figure 4. Evolution of Running Time and Memory Consumption when Increasing Partition Size.

4.4. The Effect on Battery Life

While running a deep learning model locally is very beneficial for usability purposes, it does
carry with it a cost in terms of battery life. Deep learning inference can be a very process-intensive
task; therefore, energy consumption will be affected. In order to gain an insight into the magnitude
of this effect, we compared the energy consumption of an Android mobile device invoking a web
service that runs our deep learning model on a server, versus that of the same device executing our
ported model locally. For this experiment, we used a Samsung Galaxy S5 device with Android
Nougat, while energy measurements were carried out with a Monsoon Power Monitor.

Results show that a running our model locally took about 260 Joules, while offloading the same
model to a server only took about 6.5 Joules (Figure 5), about 40 times less energy. When porting
deep learning models to mobile, developers will need to assess if the benefits of offline availability
outweigh the costs in terms of energy.

Figure 5. Running Time and Energy Consumption Comparison between Local Execution and Cloud
Execution.

5. Lessons Learned

One of the first difficulties we experienced in this project occurred when trying to port our Keras-
built model to a mobile environment. While Keras itself is backed by the multiplatform TensorFlow
framework, which offers support for iOS, Android and Raspberry Pi, the binary library of the
framework distributed for mobile environments is far from being equivalent to its desktop
counterpart. Many kernels and data types have been removed from the mobile library to reduce the
library size and encourage the execution of models optimized for mobile. As such, models including
any of these restricted operations would fail to be loaded by the mobile framework. The library itself
would need to be modified at compile-time in order to include support for all operations defined in
a given model. Fortunately, selective registration handles this task for us automatically. While we
must emphasize that it is always desirable to train models with the specific operations included in
the default mobile library to boost performance, our approach will enable developers to run arbitrary
models without the need for re-architecting it for a different environment, therefore significantly

Proceedings 2018, 2, 550 10 of 12

reducing time to market. Even though this will come at a certain cost in performance, sometimes this
cost will be acceptable.

Next comes the matter of the mobile OS behavior of pre-emptively killing processes when
running short of memory. While the general behavior is well understood, the specific thresholds at
which the different OS do so is not well documented, so there is always the uncertainty of whether a
long-running task requiring large amounts of memory will finish running before the OS decides to
kill it. We noticed distinct behaviors on both iOS and Android. On iOS, one of the first things we
noticed is that it is possible for the OS to kill individual threads instead of an entire process if the
memory consumption is not critical enough. In our experiments, the likelihood of a thread using over
65% of a device’s memory being killed was exceedingly high, but even when limiting memory
consumption to around 55%, there would still be rare occasions where the process would not be
allowed to complete. On Android on the other hand, we need to distinguish two runtime
environments: the Java (Dalvik/ART) runtime environment and the native runtime environment
accessible through the NDK. On Java, memory limitations are rather tight and depend on a per app
heap limit that varies according to the device’s screen size and pixel density (curiously, it does not
depend on the device’s total available memory). As an example, on a Samsung Galaxy S7 running
Android 7.0, the maximum heap size is 256 MB. It is however possible to increase this limit by
specifying a “large heap” flag on an application’s manifest. While the specifics of the memory
increase are not documented, in our experiments we noticed the addition of this flag would double
the maximum heap size on our setup. By contrast, the Android’s native environment allows us to
bypass these limitations as long as memory consumption does not exceed the limits imposed by the
OS. These limits are again not documented, but in our experiments, we noticed that applications
would get killed with a very high likelihood whenever the sum of all allocated memories (native +
Java + code, etc.) would exceed 70% of the device’s total memory without the overhead of other
applications running on the background in parallel.

In conclusion, to guarantee stability in both platforms, we recommend keeping memory
consumption below 50% of the total device’s memory and to introduce a routine in code that checks
if the relevant task managed to complete. That would allow the app to restart or postpone it, on the
off chance the thread was killed prematurely by the OS. In the specific case of Android, it is
recommended to handle memory intensive tasks with the NDK to bypass ART or Dalvik’s limitations
and to try to stay below the 50% of total device memory threshold for the sum of all categories of
memory.

Finally, despite our optimizations, deep neural network models of our complexity can easily
weigh various hundreds of megabytes. If the models were to be included in the official app releases,
end-users are likely to be displeased due to the heavy toll they may take on their internal memory,
as the public is yet unaccustomed to business apps this large in size. It is therefore recommended not
to include these models in the original application, and instead distribute them through a separate
and optional download. An online-only approach could still be included for those end-users who are
unwilling to perform these downloads.

6. Conclusions and Future Work

In this study, we introduced a detailed analysis into various optimization techniques for
migrating arbitrary large DNNs from server to mobile environments. This includes extensive insight
into how various metrics (execution time, memory usage, app size) evolve when applying these
optimizations consecutively. Although we illustrate all of the above with a practical healthcare
application, we must lay stress on the fact that this study may be extended to other areas as well.

When compared to a model running as is on a simulator, the listed optimizations managed to
reduce maximum memory consumption by a factor of between 6 and 7, while increasing total
execution time only by around 25%. The deployment on an actual device showed a slight decrease in
memory consumption with only 26% increased execution times on iOS. Android ended being
surprisingly less efficient than iOS, with 22% increased memory usage and double the execution time
of iOS. More modest results are also attainable without partitioning the graph, allowing both a

Proceedings 2018, 2, 550 11 of 12

memory and execution time reduction by a factor of 2 on simulator. Most importantly, all our work
was done on stock iOS and Android mobile devices, proving that our method can be easily
reproduced and is fit for production-ready applications. Given the multiplatform characteristic of
TensorFlow, it is theoretically possible to also apply our findings to the Raspberry Pi platform as well.

However, deploying deep learning applications on standalone mobile platforms does present
some drawbacks developers need to be aware of. Due to the high amount of processing required, a
significant increase in energy consumption is to be expected throughout the duration of the inference
process. In smaller embedded devices, thermal dissipation can also become an issue. Therefore, we
recommend developing standalone mobile deep learning applications only when their use is
expected to be sporadic.

Nevertheless, our work was focused solely on TensorFlow Mobile, which does not include GPU
support for all mobile devices. With the release of the Core ML framework for iOS, TensorFlow Lite,
and the Neural Network API for Android 8.1, better metrics should be attainable with these
technologies. Alternatively, if we were to focus exclusively on iOS, MPSCNN and BNNS should also
allow us to achieve better results by exploiting the capabilities of Metal on devices running iOS 10
forward. The same can be said for Android exclusive deep learning solutions that harness the GPU,
such as CNNDroid. However, these technologies are not multiplatform.

Acknowledgments: This work was partially supported by DCC-UC Research Grant and CONICYT-
PCHA/National PhD/2016—No. 21161015 Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Global Smartphone Shipments Forecast from 2010 to 2022 (in Million Units). Available online:
https://www.statista.com/topics/840/smartphones/ (accessed on 30 May 2018).

2. Smartphones—Statistics & Facts. Available online: https://www.statista.com/topics/840/smartphones/
(accessed on 30 May 2018).

3. West, D. How mobile devices are transforming healthcare. Issues Technol. Innov. 2012, 18, 1–11.
4. Eggers, K.M.; Ellenius, J.; Dellborg, M.; Groth, T.; Oldgren, J.; Swahn, E.; Lindahl, B. Artificial neural

network algorithms for early diagnosis of acute myocardial infarction and prediction of infarct size in chest
pain patients. Int. J. Cardiol. 2007, 114, 366–374.

5. Lewenstein, K. Radial basis function neural network approach for the diagnosis of coronary artery disease
based on the standard electrocardiogram exercise test. Med. Biol. Eng. Comput. 2001, 39, 362–367.

6. Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet.
2015, 16, 6, 321.

7. Google’s New “Android Things” OS Hopes to Solve Awful IoT Security. Available online: https://goo.gl/
sWHXAw (accessed on 30 May 2018).

8. Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Brief. Bioinform. 2017, doi:10.1093/bib/bbx044.
9. Lane, N.D.; Warden, P. The Deep (Learning) Transformation of Mobile and Embedded Computing.

Computer 2018, 51, 12–16.
10. Lane, N.D.; Bhattacharya, S.; Mathur, A.; Georgiev, P.; Forlivesi, C.; Kawsar, F. Squeezing deep learning

into mobile and embedded devices. IEEE Pervasive Comput. 2017, 82–88, doi:10.1109/MPRV.2017.2940968.
11. Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D. Early diagnosis of Alzheimer’s disease with deep

learning. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI),
Beijing, China, 29 April–2 May 2014; pp. 1015–1018.

12. Cheng, J.Z.; Ni, D.; Chou, Y.H.; Qin, J.; Tiu, C.M.; Chang, Y.C.; Huang, C.S.; Shen, D.; Chen, C.M. Computer-
aided diagnosis with deep learning architecture: Applications to breast lesions in US images and
pulmonary nodules in CT scans. Sci. Rep. 2016, 6, doi:10.1038/srep24454.

13. Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Deepcare: A deep dynamic memory model for predictive
medicine. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Seoul,
Korea, 30 April–2 May 2003; pp. 30–41.

14. Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA-and RNA-
binding proteins by deep learning. Nat. Biotechnol. 2015, 33, 8, 831.

Proceedings 2018, 2, 550 12 of 12

15. Jindan Zhu, Amit Pande, Prasant Mohapatra, and Jay J Han. Using deep learning for energy expenditure
estimation with wearable sensors. In Proceedings of the 17th International Conference on E-health
Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 501–506.

16. Bourouis, A.; Zerdazi, A.; Feham, M.; Bouchachia, A. M-health: Skin disease analysis system using
smartphone’s camera. Procedia Comput. Sci. 2013, 19, 1116–1120.

17. Chen, C.F.; Lee, G.G.; Sritapan, V.; Lin, C.Y. Deep Convolutional Neural Network on iOS Mobile Devices.
In Proceedings of the IEEE International Workshop on Signal Processing Systems (SiPS), Dallas, TX, USA,
26–28 October 2016; pp. 130–135.

18. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on
compressed deep neural network. SIGARCH Comput. Archit. News 2016, 44, 243–254.

19. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 4820–4828.

20. Han, S.; Shen, H.; Philipose, M.; Agarwal, S.; Wolman, A.; Krishnamurthy, A. MCDNN: An execution
framework for deep neural networks on resource-constrained devices. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services; ACM: New York, NY, USA, 2016.

21. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Che, Y.N. MoDNN: Local distributed mobile computing system
for Deep Neural Network. In Proceedings of the 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1396–1401.

22. Daudet, L.; Yadav, N.; Perez, M.; Poellabauer, C.; Schneider, S.; Huebner, A. Portable mTBI assessment
using temporal and frequency analysis of speech. IEEE J. Biomed. Health Inform. 2017, 21, 496–506.

23. Yadav, N.; Poellabauer, C.; Daudet, L.; Collins, T.; McQuillan, S.; Flynn, P. Portable neurological disease
assessment using temporal analysis of speech. In Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology and Health Informatics; ACM: New York, NY, USA, 2015; pp. 77–85.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

