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Abstract: Energy-efficient electric motors are gathering an increased attention since they are used 
in electric cars or to reduce operational costs, for instance. Due to their high efficiency, permanent-
magnet synchronous motors are used progressively more. However, the need to use rare-earth 
magnets for such high-efficiency motors is problematic not only in regard to the cost but also in 
socio-political and environmental aspects. Therefore, an increasing effort has to be put in finding 
the best design possible. The goals to achieve are, among others, to reduce the amount of rare-earth 
magnet material but also to increase the efficiency. In the first part of this multipart paper, 
characteristics of optimization problems in engineering and general methods to solve them are 
presented. In part two, different approaches to the design optimization problem of electric motors 
are highlighted. The last part will evaluate the different categories of optimization methods with 
respect to the criteria: degrees of freedom, computing time and the required user experience. As will 
be seen, there is a conflict of objectives regarding the criteria mentioned above. Requirements, which 
a new optimization method has to fulfil in order to solve the conflict of objectives will be presented 
in this last paper. 
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1. Introduction 

The design of electric motors is a challenging task since various variables have to be taken into 
account and simultaneously different requirements have to be respected. In the past, the design 
process was characterized by iteratively optimizing the design proposal until the goals were achieved. 
This process was mainly influenced by the experience of the user, his knowledge of other motors 
which had to fulfil comparable requirements and was therefore a tedious task. The main steps in the 
design process were performed manually. Only the detailed analysis of the design proposal was 
executed with the help of software for numerical calculations [1]. Nowadays, with increasing 
computing capacities, it is possible not only to use numerical calculations for the verification of a 
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design proposal but also as an essential component in the design processes. In recent years, different 
approaches to the design optimization problem of electric motors using numerical calculations have 
been developed. Their common goal is to determine the best design possible regarding some objective 
functions under consideration of boundary conditions. Typical objective functions are: efficiency, 
torque, cogging torque, torque ripple, motor weight, material costs, etc. In addition, for valid design 
proposals, boundary conditions have to be respected, like: motor diameter, motor length, motor 
weight, minimal airgap or maximum allowable current density in the coils. 

All approaches to the design optimization problem have in common that they are handling the 
search for the best geometry as a mathematical optimization problem. 

This paper is divided into two main sections. In the following section, the distinct characteristics 
of the design optimization problem are stated. Section three is dedicated to give an overview of 
general optimization methods. The closing section of this paper is used for a summary of the findings. 

2. Essential Characteristics of the Design Optimization Problem 

The design process of electric motors can be seen as an optimization problem, where certain 
requirements have to be met and boundary conditions have to be respected. Consequently, these 
problems can be solved with mathematical means. 

Optimization problems can depend on one or multiple variables. In the following, only 
multidimensional optimization problems with 𝑛 independent design variables are considered. The 
individual design variables are combined in the design vector 𝒙. 

The first distinctive feature of such an optimization problem is the number of objective functions. 
In its simplest form, there is one objective function 𝑓ሺ𝒙ሻ , which has either to be maximized or 
minimized [2].  min𝒙∈ℝ 𝑓 ሺ𝒙ሻ (1) 

If there are two or more objective functions, for instance efficiency, weight and torque ripple, 
multi-objective optimization problems with 𝑚 objective functions have to be solved [3]. min𝒙∈ℝ൫𝑓ଵሺ𝒙ሻ, 𝑓ଶሺ𝒙ሻ, … , 𝑓ሺ𝒙ሻ൯ (2) 

Another distinctive feature of optimization problems is the behaviour of the objective functions. 
Typically, in engineering respectively modelling of physical systems, there is no linear correlation 
between its design variables and its objective functions. Therefore, they are called nonlinear 
optimization problems [4]. 

Further, optimization problems differ with respect to the type of design variables. Continuous 
design variables allow infinite steps between a lower and upper bound. Contrary to this are discrete 
variables, where only distinct values are permitted.  

Additionally, optimization problems are to be distinguished in terms of whether there are 
boundary conditions to be respected or not. Typically, multiple boundary conditions have to be taken 
into account, limiting the feasible sets of possible solutions by employing mathematically linear or 
nonlinear equality respectively inequality constraints [5]. 

The resulting general optimization problem takes the following form. It consists of 𝑚 nonlinear 
objective functions 𝑓ሺ𝒙ሻ, 𝑖  equality constraints 𝑔ሺ𝒙ሻ, 𝑗 inequality constraints ℎሺ𝒙ሻ and 𝑘  of the 𝑛 design variables are integers. min𝒙∈ℝ൫𝑓ଵሺ𝒙ሻ, 𝑓ଶሺ𝒙ሻ, … , 𝑓ሺ𝒙ሻ൯ 𝑤. 𝑟. 𝑡. 𝑔ሺ𝒙ሻ =  ൫𝑔ଵሺ𝒙ሻ, 𝑔ଶሺ𝒙ሻ, … , 𝑔ሺ𝒙ሻ൯ ℎሺ𝒙ሻ =  ቀℎଵሺ𝒙ሻ, ℎଶሺ𝒙ሻ, … , ℎሺ𝒙ሻቁ 𝑥ଷ, 𝑥ସ, … 𝑥 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

(3) 

The mathematical description of the objective functions is another distinctive feature 
characterising the design optimization problem. Generally, there are two different approaches. The 
first approach is to directly describe the physical properties with Maxwell’s equations, mainly using 
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finite element analysis (FEA) or analytical models [6,7]. The other approach is to use surrogate 
models, approximating the physical properties. Different surrogate models have been developed, for 
instance response surface models, radial basis function models or kriging models [8,9]. 

In order to solve optimization problems efficiently, deterministic or stochastic algorithms can be 
used. Deterministic algorithms solve optimization problems in a mathematically exact way. But the 
solution found does not necessarily have to be the global optimum [10]. If probability is a crucial 
factor for the working principle of optimization algorithms, they are called stochastic methods. These 
algorithms might not find the exact best solution but they are able to determine the global optimum 
with a certain probability [11].  

3. Recent Design Optimization Methods 

Over time, different approaches to the design optimization problem of electric motors have been 
developed. The common goal of the design processes is to determine a geometry of stator and rotor, 
which meet certain requirements and boundary conditions. A general overview of different 
procedures regarding the design optimization problem can be found in [12–14]. In the upcoming 
sections a deeper insight into deterministic and stochastic methods will be given. 

3.1. Deterministic Methods 

The core principle of deterministic methods is to solve optimization problems in an iterative but 
mathematically exact manner. In each iteration step, a new point, which is closer to the optimum than 
the preceding one, is computed. Dependent on what information of the mathematical properties 
concerning the optimization problem is used, different types of algorithms can be distinguished. If 
only the actual value of the objective function is used, these types are called zero-order methods. 
Accordingly, methods which make use of the first and second derivative, are named one- respectively 
second-order methods. For multi-objective optimization problems, diverse procedures are used to 
deal with the multiple objective functions. A possible approach is to combine the multiple objective 
functions into one objective function. Other approaches use boundary conditions int order to account 
for the different objective functions. Generally, the consideration of boundary conditions is another 
important aspect of deterministic methods. Their presence in an optimization problem has to be 
especially considered in the solution process. To cope with this additional complexity, various 
techniques to implement the boundary conditions into the problem formulation are used. The 
downside of deterministic methods is that they are not able to distinguish between local and global 
optima. Dealing with this is possible in different ways, but a practical and most common approach is 
to rerun the optimization with different starting values. A deeper insight into various deterministic 
optimization methods is given in [15–17]. 

3.2. Stochastic Methods 

The most significant feature of stochastic methods is probability. There is no absolute certainty 
that the optimum will be achieved nor that the exact same solution will be calculated even with the 
same starting values. However, the chance to achieve a global optimum is very high, which is a major 
advantage. Mimicking natural phenomena is the main principle of these methods. One of the most 
popular types are genetic algorithms. Their functional principle is to emulate the process of natural 
selection. The basis is a population of many individuals. The individuals consist of genes which are 
the encoded description of the optimization problem. To determine which individuals are better than 
the others and therefore have a higher probability to survive, the objective functions are used. The 
nature-like mechanisms of mutation and breeding are applied onto the population. Breeding of the 
next generation happens mainly by recombination of two individuals, exchanging parts of their genes. 
Other individuals proceed to the next generation mainly unchanged, but small random changes to 
their genes occur with a certain probability. This process of replacing previous generations is carried 
out until the optimum of the optimization problem is found or other termination criteria are reached. 
Another important stochastic method is particle swarm optimization. Inspired by the movement of 
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birds or fish, this algorithm tries to determine the global optimum by moving particles around the 
design space. Furthermore, other methods exist e.g., simulated annealing, where the motion of atoms 
and the probability of accepting states with higher or lower energy dependent of a temperature is 
imitated. A thorough overview with detailed information can be found in [11,18–20]. 

4. Conclusions 

In this first part, the general characteristics of the design optimization problem of electric motors 
were detailed. Based on these attributes, basic methods to solve the optimization problems were 
presented. In the following part of this multipart paper, these methods are investigated based on the 
model description used and the fundamental workflows are highlighted. 
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